Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 12. Submission date: 17.06.2021 Questions to submit: 1.a. 1.b. 1.c. 1.d. 2.a. 2.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1. a.** Suppose e^t , sin(t), t^{17} are solutions of a linear non-homogeneous equation of 2'nd order. Write the general solution. Find the solution satisfying: x(0) = a, x'(0) = b.
 - **b.** Given two solutions te^t , $(t-2)e^t$ of the equation $tx'' (t+1)x' + x = (t-1)e^x$, find the general solution.
 - c. Find the general solution of Bessel's equation $t^2x'' + tx' + (t^2 \frac{1}{4})x = 3t^{\frac{3}{2}}sin(t), t > 0$, given
 - **d.** Suppose $A(t) = \begin{bmatrix} sin(t) & arctan(cos(2t)) \\ cos(sin(2t)) & \frac{1}{10} cos(t) \end{bmatrix}$. Prove: the system $\underline{x}' = A(t) \cdot \underline{x}$ has at least one unbounded solution.
- **2.** a. Let $x_1(t)$, $x_2(t)$ linearly independent solutions of the equation $x'' + a_1(t)x' + a_0x = 0$. Prove: between any two zeros of $x_1(t)$ lies exactly one zero of $x_2(t)$.
 - **b.** Consider the equation x'' + a(t)x = 0 on the interval (t_0, ∞) . Prove:
 - i. If $0 < m \leq a(t) \leq M$ then the distance between any two consecutive zeros is $\frac{\pi}{\sqrt{M}} \leq \frac{1}{\sqrt{M}}$ $dist \leq \frac{\pi}{\sqrt{m}}.$
 - ii. (Kneser's theorem) If $a(t) > \frac{1+\epsilon}{4t^2}$, for some $\epsilon > 0$, then any solution has infinite number (Hint: compare to $x'' + \frac{1}{4t^2}x = 0.$) of zeros.
 - iii. If $a(t) < \frac{1}{4t^2}$ then any non-zero solution has a finite number of zeros.
- **3.** The Bessel function $J_n(t)$ is defined as the solution of the equation $x'' + (1 + \frac{1/4 n^2}{t^2})x = 0$. **a.** Prove: $J_n(t)$ has infinite number of zeros, denote $J_n(t_k) = 0$, and $|t_{k+1} t_k| \to \pi$ as $t \to \infty$.
 - **b.** When does one have $|t_{k+1} t_k| > \pi$, $|t_{k+1} t_k| < \pi$?
 - **c.** Prove: if n > m then between every two zeros or J_m lies a zero of J_n .