Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 11. Submission date: 10.06.2021 Questions to submit: 1.a. 2.b. 2.c. 2.e. 3.a. 3.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1. a.** Suppose x(t) is a solution of $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$. We have seen how one can use x(t) to pass to an equation $y^{(n-1)} + \tilde{a}_{n-2}(t)y^{(n-2)} + \cdots + \tilde{a}_0(t)y = 0$. Prove: x(t)together with the solutions of this last equations provide the complete system of solutions of the initial equations. In particular, given the independent solutions $y_1(t), \ldots, y_{n-1}(t)$ verify:
 - the functions $x(t), x(t) \cdot y_1(t), \ldots, x(t) \cdot y_{n-1}(t)$ are \mathbb{R} -linearly independent. **b.** Suppose the coefficients of $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots = 0$ are periodic. Prove: for any basis of solutions $x_1(t), \ldots, x_n(t)$ one can present $\underline{x}(t) = \underline{y}(t) \cdot e^{Rt}$, where \underline{y} is a row of periodic functions, while $R \in Mat_{n \times n}(\mathbb{C})$.
- **2.** Consider the equation L(x) = g(t), where $L(x) = x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_0x$, with $a_i \in \mathbb{R}$. **a.** Write the general solution of $x^{(4)} + 4x = \sum b_j e^{\omega_j t}$, here $\omega_j \in \mathbb{C}$, possibly $\omega_j = 0$ or $\omega_j^3 = -4$.
 - **b.** Suppose $\mu \in \mathbb{C}$ is not an eigenvalue of the characteristic polynomial of L. Prove: the equation $L(x) = t^k \cdot e^{\mu t}$, with $k \in \mathbb{N}$, has a solution of the form $g_k(t) \cdot e^{\mu t}$ for a polynomial $g_k(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. (Hint. It is enough to show: the operator $L \circlearrowright \mathbb{C}[t]_{\leq k} \cdot e^{\mu t}$ acts surjectively. And for this it is enough to verify: L acts injectively.)
 - **c.** Suppose $\mu \in \mathbb{C}$ is an eigenvalue of the characteristic polynomial of L, of multiplicity p. Prove: the equation $L(x) = t^k \cdot e^{\mu t}$ has a solution of the form $t^p \cdot g(t) \cdot e^{\mu t}$ for a polynomial Wiki: "Resonance". $q_k(t) \in \mathbb{C}[t]_{\leq k}$ of degree k.
 - **d.** Write the general solution of $x^{(4)} + 4x = b \cdot t \cdot e^{\mu t}$. (Here $b, \mu \neq 0$ are parameters.)
 - **e.** Consider the equation $Lx = p(t) \cdot e^{\mu t}$, here $p(t) \in \mathbb{C}[t]$. What is the necessary and sufficient condition to ensure that the equation has a periodic solution? A bounded solution?
- **3. a.** Find the general solution of x" ⁴/_tx' + ^{6x}/_{t²} = t³ + t. **b.** Find the general solution of (t² 1)x" + 4tx' + 2x = 6t, given the particular solutions $x_1(t) = t, \ x_2(t) = \frac{t^2 + t + 1}{t + 1}.$
 - **c.** Find the general solution of tx'' (t+n)x' + nx = 0, for $n \in \mathbb{N}$, given a solution e^t .
- 4. a. Write the general solution of the equation $\underline{x}' = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix} \cdot \underline{x} + \begin{bmatrix} 3e^t \\ 0 \\ 3e^{-t} \end{bmatrix}.$
 - **b.** Consider the equation $\underline{x}' = A \cdot \underline{x} + e^{\mu t} t^k \cdot \underline{b}$, here \underline{b} is a constant vector. Prove:
 - i. If μ is not an eigenvalue of A then there exists a solution of the form $e^{\mu t}g(t)$, where the entries of g are polynomials of degree $\leq k$.
 - ii. If μ is an eigenvalue of A then there exists a solution of the form $e^{\mu t}g(t)$, where the entries of g are polynomials of degree $\leq k + Jord.Size.(A)$, here Jord.Size.(A) is the size of the maximal Jordan cell of A.
 - **iii.** We have proved: if x(t) is a solution of $\underline{x}' = A(t)\underline{x}$ then $|\underline{x}(t)| \leq |x(t_0)| \cdot e^{\int_{t_0}^t ||A(s)||_{op} ds}$ Obtain a similar bound for a solution of $\underline{x}' = A(t)\underline{x} + \underline{b}(t)$.