Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 10. Not for submission

- **1. a.** Write the general solution of the system $x' = \frac{x}{1+t^2} + y \cdot sin(2t), y' = y \cdot cos(t)$.
 - **b.** Write the general solution of the equation $(\frac{d}{dt} c_1(t)) \circ (\frac{d}{dt} c_2(t))x = 0$, $c_1(t), c_2(t) \in C^0(a, b)$. **c.** Find the full Taylor expansion of the solution of $x'' + t^p \cdot x = 0$, $p \in \mathbb{N}$, x(0) = 0, x'(0) = 1.
- **2. a.** Suppose the matrices A(t) and $\int_{t_0}^t A(s)ds$ commute for each $t \in (a, b)$.
 - Prove: the (unique) solution of $\underline{x}' = A(t) \cdot \underline{x}$, $\underline{x}(t_0) = \underline{x}_0$ is given by $\underline{x}(t) = e^{\int_{t_0}^{t} A(s)ds} \underline{x}_0$. **b.** Let $\{A_j\}$ be some constant pairwise commuting matrices. Let $\{g_j(t)\}$ be $C^0(a, b)$.
 - Solve the system $\underline{x}' = (\sum g_j(t)A_j)\underline{x}, \ \underline{x}(t_0) = \underline{x}_0.$
 - c. Prove that the assumption in a. implies: the matrices A(t)' and $\int_{t_0}^t A(s) ds$ commute for each $t \in (a, b)$.
 - **d.** Give an example of equation $\underline{x}' = A(t) \cdot \underline{x}$ for which $e^{\int_{t_0}^t A(s)ds} \underline{x}_0$ is not a solution.
- **3.** a. Let $\mathbb{X}(t) := [\underline{x}_1(t), \dots, \underline{x}_n(t)] \in Mat_{n \times n}(C^1(a, b))$, here the columns are some solutions of $\underline{x}' = A(t) \cdot \underline{x}$. Prove: $det[\mathbb{X}(t)] \neq 0$ iff $\mathbb{X}(t)$ is non-degenerate for all $t \in (a, b)$.
 - **b.** Find a system $\underline{x}' = A(t) \cdot \underline{x}$ of minimal size whose solutions are $\underline{x}_1(t) = [e^t \cos(t), e^t \sin(t)]$ and $\underline{x}_{2}(t) = [-sin(t), cos(t)].$
 - **c.** Prove: if $\lim_{t\to\infty} \int^t trace[A(s)]ds = \infty$ then at least one solution of $\underline{x}' = A(t)\underline{x}$ is unbounded. Show by an example that the conclusion " $|x(t)| \to \infty$ for at least one solutions" does not necessarily hold.
 - **d.** Prove: the rescaling $\underline{x} \to e^{-\int^t \frac{trace[A(s)]}{n} ds} \underline{x}$ transforms $\underline{x}' = A(t) \cdot \underline{x}$ into the system $\underline{x}' = \tilde{A}(t) \cdot \underline{x}$ with $trace[\tilde{A}(t)] = 0$.
- **4. a.** Prove: there exists a fundamental matrix $\mathbb{X}(t)$ of the equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots = 0$ satisfying $\mathbb{X}(t_0) = \mathbb{I}$.
 - **b.** Verify: the functions $sin(t^2)$, $cos(t^2)$ are (linearly independent) solutions of $tx'' X' + 4t^3x =$ 0, but the Wronskian of these functions vanishes at a point. Any contradiction to **3.a**?
 - c. Write the general solution of tx'' + 2x' tx = 0. (Hint: one solution is $x(t) = \frac{e^t}{t}$.)
 - **d.** Find a linear ODE whose space of solutions is spanned by $sin\frac{1}{t}$, $cos\frac{1}{t}$.
 - **e.** Prove: the rescaling $x \to e^{-\int^t \frac{a_{n-1}(s)}{n} ds} x$ transforms the equation $x^{(n)} + a_{n-1}(t) x^{(n-1)} + \dots + a_{$ $a_0(t)x = 0$ into an equation with $\tilde{a}_{n-1}(t) = 0$.