
Ordinary differential equations
(201.1.0061. Spring 2021. Dmitry Kerner)
Homework 0. Not for submission

Notations/conventions:

• The unit vector in j’th direction x̂j∈Rn. A point in the standard coordinates is x=(x1,. . .,xn)∈Rn.
• An open subset U ⊆ Rn. The standard sphere Sn−1 := {x

∣∣ ||x|| = 1} ⊂ Rn.

• The partial derivative ∂jf . The (total) k’th order derivative at a point f (k)|x0 .

• Given (a, b) ⊆ R1 and 0 ≤ k ≤ ∞ denote by Ck(a, b) the ring of functions with continuous k’th
derivative. Denote by Cω(a, b) the ring of functions analytic at each point of (a, b). For [a, b] ⊂ R1

denote by Ck[a, b] ⊂ Ck(a, b) the ring of functions with finite limits lim
x→a+

f (k)|x, lim
x→b−

f (k)|x.

• A function Rn ⊇ X f→ R is called Lipschitz (or uniformly Lipschitz) if |f(x)− f(x0)| ≤ C · ||x− x0||
for a (fixed) constant C ∈ R>0 and any points x, x0 ∈ X. The function is called locally Lipschitz on
X if for each point there exists a neighborhood, x ∈ U ⊆ X, such that f is Lipschitz on U .
• The max-norm on C0[a, b] is defined by ||f || = max[a,b]|f(x)|.

1. a. Suppose f ∈ Cω(a, b) vanishes on a segment (x0 − ε, x0 + ε) ⊂ (a, b). Prove: f = 0 on (a, b).
Does this hold also for C∞-functions?

b. Fix a function g ∈ C0[a, b]. For which sub-spaces of C0(a, b) does the map f →
∫ b
a g(x) · f(x) · dx

define an R-linear functional?

c. Take a continuous vector valued function on a compact set Rn ⊃ X f→ Rm.
Prove: ||

∫
X f(x)dnx|| ≤

∫
X ||f(x)||dnx.

d. Prove: all the norms on Rn are equivalent. (You have seen this proof in the previous courses, recall
that it is enough to consider the restriction onto Sn−1.)

2. a. Expand arctan x+y
1+x2

to the Taylor power series at the point (0, 0) up to the order 5.
b. Take some real numbers 0 < a1 < · · · < ak, 0 < b1 < · · · < bl and c1 < · · · < cr.

Prove: the functions {sin(ai · x)}i, {cos(bi · x)}i, {exp(ci · x)}i are R-linearly independent.
(Can you do this in several different ways?)

3. A function Rn ⊇ U f→ R1 is called homogeneous of order d ∈ R if it satisfies f(t ·x) = td · f(x),∀ t ∈ R≥0.
a. Given a (not necessarily continuous) function on the standard sphere, Sn−1 g→ R1 define f(x) :=
||x||d · g( x

||x||) for x 6= o, and f(o) = 0. Prove: f is homogeneous of order d.

Give a condition (on g and d) to ensure: i. f is a polynomial. ii. f ∈ Ck(Rn).
b. Suppose f ∈ C1(Rn) is homogeneous of order d. Prove:

∑
xi∂if = d · f .

c. Let f be homogeneous of order 0. Prove: f is a function of (n− 1) variables locally at each point of
Rn \ {o}.

4. a. Prove: if Rn ⊇ X f→ R is locally Lipschitz on X then f is Lipschitz on every compact subset of X.
b. (Dis)Prove: if f is differentiable near o and f(x) = o(||x||1001) then f is locally Lipschitz near o.

c. Suppose one wants to use the following definition. “A function Rn ⊇ X
f→ R is called Lipschitz at a

point x0 ∈ X if |f(x)− f(x0)| ≤ C · ||x− x0||, for a constant C ∈ R>0 and any x ∈ X close to x0. A
function is called locally Lipschitz on X if f is Lipschitz at each point of X.”
Is this definition equivalent to the initial one?

d. Suppose f ∈ C1(U) for a convex set U ⊆ Rn. Prove: f is Lipschitz on U iff f ′ is bounded.

e. Define U ⊂ R2 by 1 < r < 2, φ ∈ (0, 2π), in polar coordinates. Define the function U f→ (0, 2π) by
f(r, φ) = φ. Prove: f ∈ C1(U), with bounded derivative, but f is not Lipschitz.

5. a. For which constants 0 < α, β does the series
∑

n
1

nα·lnβ(n) converge?

b. Let fn ∈ C0[a, b] be a Cauchy sequence (for the max-norm on C0[a, b]).
Prove: if xn is a Cauchy sequence on [a, b] then the sequence fn(xn) converges.

c. Take a sequence of continuous functions {Rn ⊇ X fk→ R}. Prove: if the series
∑
fk converges uniformly

on X then the limit is a continuous function. (Do not just cite the well-known theorem, write the
actual proof.)
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d. Let {[a, b] fn→ R} be a Cauchy sequence of monotonic functions. Suppose {fn} converges to a continuous
function. Prove: the convergence is uniform. Is the monotonicity condition necessary here?

e. Given a Rieman-integrable function [a, b]
f0→ R, define the sequence of functions by fk+1(x) :=∫ x

a fk(t)dt. Prove: {fk} converges uniformly (and find the limit).

Do the same question for the sequence fk+1(x) := C +
∫ x
a fk(t)dt, for a constant C ∈ R.

f. Define the function R>0
f→ R by f(x) = x · sin 1

x + sin(x2)
x2

+ x·ln(x)
1+x . Is it uniformly continuous?

g. For a sequence of continuous functions R {fn}n→ R consider the conditions:
i. Each fn is uniformly continuous. ii. The sequence is uniformly bounded.
iii. The sequence is equi-continuous. iv. The family converges uniformly.

(Dis)Prove: (i.+ii.+iii.)V iv. (i.+ii.+iv.)V iii. And so on.

6. a. LetA ∈Matn×n(R) and suppose v1, . . . , vk are eigenvectors with pairwise distinct eigenvalues λ1, . . . , λk.
Prove: v1, . . . , vk are linearly independent.

b. Prove: det[1I + t ·A] = 1 + t · trace(A) +O(t2).
c. Let A = {aij(t)} ∈Matn×n, here aij(t) are differentiable functions of one variable. Prove:

det[A]′ = det

{a1j(t)′}{a2j(t)}
. . .

+ det


{a1j(t)}
{a2j(t)′}
{a3j(t)}
. . .

+ · · ·+ det

 {a1j(t)}. . .
{anj(t)′}



7. Define the map Matn×n(R)
φ→ Rn2

by φ(A) = {aij} (the long vector of all the matrix entries). Define

the norm on Matn×n(R) by ||A|| =
√
trace(A ·At). (This is not the operator norm.) Prove: this norm is

induced from the standard norm on Rn2
, i.e. ||A|| = ||φ(A)||. Conclude: φ is an isomorphism of normed

vector spaces. This defines the topology on Matn×n(R), and we can speak of Ck functions.

a. Consider the functions: Matn×n(R)
trace,det→ R. Prove: these are C∞.

b. Prove: the matrix product, Matn×n(R)×Matn×n(R)→Matn×n(R), (A,B)→ A·B, is a C∞-function.
Prove: the inverse of a matrix, GL(n,R)→ GL(n,R), A→ A−1, is a C∞-function.

c. Take the characteristic polynomial of A and denote by {cj(A)} its coefficients.

Prove: Matn×n(R)
{cj(A)}→ Rn+1 is a C∞-function.

d. Let Σdiag ⊂Matn×n(R) be the subset of all the matrices that are diagonalizable over C. (i.e. U ·A·U−1
is diagonal for some U ∈ GL(n,C)) Prove: any matrix whose eigenvalues are pairwise distinct complex
numbers belongs to the interior int(Σdiag). (You can use the fact: if all the comlpex roots of a
polynomial are distinct then they are C∞-functions of the coefficients of the polynomial.)

e. Conclude: Σdiag = Matn×n(R) and int(Matn×n(R) \ Σdiag) = ∅. (Because of this many engineers
claim “Any matrix in real life is C-diagonalizable”.)

f. Is Matn×n(R) \ Σdiag a closed subset of Matn×n(R)? (Hint: look at Mat2×2(R))

8. a. Define the map Matn×n(R)
exp→ Matn×n(R) by exp(A) =

∞∑
j=0

Aj

j! . (Convention: A0 = 1I)

• Compute exp(A) for a diagonal matrix. (In particular verify that the series converges)

• Compute exp(A) for A =

[
0 1
1 0

]
and for A =

1 1 0
0 1 1
0 0 1

.

b. Prove: the power series of exp(A) converges absolutely, and the convergence is uniform on compact
subsets of Matn×n(R). You can use ||A ·B|| ≤ ||A|| · ||B||.

c. Consider A as a complex matrix and take its Jordan form, A = U−1(DA+CA)U , where U ∈ GL(n,C),
DA is diagonal and CA is strictly upper-triangular (corresponding to the Jordan cell structure). Verify:
CnA = O and DA · CA = CA ·DA.

Prove: exp(A) = U−1 · exp(DA) · (
∑n

k=0
CkA
k! ) · U . (You will have to open the brackets/to change the

order of summation in the series. Justify these steps.)
d. Prove: if A,B commute then exp(A+B) = exp(A)exp(B).

e. Fix some A ∈Matn×n(R) and define R1 γ→Matn×n(R), by γ(t) = exp(t ·A). Compute dγ
dt .

f. Can you define the function ln(A) and establish its (corresponding) properties?


