Ordinary differential equations (201.1.0061. Spring 2021. Dmitry Kerner) Homework 0. Not for submission

Notations/conventions:

- The unit vector in j'th direction $\hat{x}_j \in \mathbb{R}^n$. A point in the standard coordinates is $\underline{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$.
- An open subset $\mathcal{U} \subseteq \mathbb{R}^n$. The standard sphere $\mathbb{S}^{n-1} := \{ \underline{x} \mid ||\underline{x}|| = 1 \} \subset \mathbb{R}^n$.
- The partial derivative $\partial_j f$. The (total) k'th order derivative at a point $f^{(k)}|_{x_0}$.
- Given $(a, b) \subseteq \mathbb{R}^1$ and $0 \leq k \leq \infty$ denote by $C^k(a, b)$ the ring of functions with continuous k'th derivative. Denote by $C^{\omega}(a, b)$ the ring of functions analytic at each point of (a, b) . For $[a, b] \subset \mathbb{R}^1$ denote by $C^k[a,b] \subset C^k(a,b)$ the ring of functions with finite limits $\lim_{h \to 0} f^{(k)}|_x$, $\lim_{h \to 0} f^{(k)}|_x$.
- A function $\mathbb{R}^n \supseteq X \stackrel{f}{\to} \mathbb{R}$ is called Lipschitz (or uniformly Lipschitz) if $|f(x) f(x_0)| \leq C \cdot ||x x_0||$ for a (fixed) constant $C \in \mathbb{R}_{>0}$ and any points $x, x_0 \in X$. The function is called locally Lipschitz on X if for each point there exists a neighborhood, $x \in \mathcal{U} \subseteq X$, such that f is Lipschitz on \mathcal{U} .
- The max-norm on $C^0[a, b]$ is defined by $||f|| = max_{[a, b]} |f(x)|$.
- **1. a.** Suppose $f \in C^{\omega}(a, b)$ vanishes on a segment $(x_0 \epsilon, x_0 + \epsilon) \subset (a, b)$. Prove: $f = 0$ on (a, b) . Does this hold also for C^{∞} -functions?
	- **b.** Fix a function $g \in C^0[a, b]$. For which sub-spaces of $C^0(a, b)$ does the map $f \to \int_a^b g(x) \cdot f(x) \cdot dx$ define an R-linear functional?
	- **c.** Take a continuous vector valued function on a compact set $\mathbb{R}^n \supset X \stackrel{f}{\to} \mathbb{R}^m$. Prove: $||\int_X f(x)d^nx|| \leq \int_X ||f(x)||d^nx$.
	- d. Prove: all the norms on R (You have seen this proof in the previous courses, recall that it is enough to consider the restriction onto \mathbb{S}^{n-1} .)
- **2. a.** Expand $arctan \frac{x+y}{1+x^2}$ to the Taylor power series at the point $(0,0)$ up to the order 5.
	- **b.** Take some real numbers $0 < a_1 < \cdots < a_k$, $0 < b_1 < \cdots < b_l$ and $c_1 < \cdots < c_r$. Prove: the functions $\{sin(a_i \cdot x)\}_i, \{cos(b_i \cdot x)\}_i, \{exp(c_i \cdot x)\}_i$ are R-linearly independent. (Can you do this in several different ways?)
- **3.** A function $\mathbb{R}^n \supseteq \mathcal{U} \stackrel{f}{\to} \mathbb{R}^1$ is called *homogeneous of order* $d \in \mathbb{R}$ if it satisfies $f(t \cdot \underline{x}) = t^d \cdot f(\underline{x})$, $\forall t \in \mathbb{R}_{\geq 0}$. **a.** Given a (not necessarily continuous) function on the standard sphere, $\mathbb{S}^{n-1} \stackrel{g}{\to} \mathbb{R}^1$ define $f(x) :=$ $||\underline{x}||^d \cdot g(\frac{\underline{x}}{||\underline{x}||})$ for $\underline{x} \neq o$, and $f(o) = 0$. Prove: f is homogeneous of order d.
	- Give a condition (on g and d) to ensure: i. f is a polynomial. $k(\mathbb{R}^n)$. **b.** Suppose $f \in C^1(\mathbb{R}^n)$ is homogeneous of order d. Prove: $\sum x_i \partial_i f = d \cdot f$.
	- c. Let f be homogeneous of order 0. Prove: f is a function of $(n-1)$ variables locally at each point of $\mathbb{R}^n\setminus\{o\}.$
- **4. a.** Prove: if $\mathbb{R}^n \supseteq X \stackrel{f}{\to} \mathbb{R}$ is locally Lipschitz on X then f is Lipschitz on every compact subset of X. **b.** (Dis)Prove: if f is differentiable near o and $f(x) = o(||x||^{1001})$ then f is locally Lipschitz near o.
	- **c.** Suppose one wants to use the following definition. "A function $\mathbb{R}^n \supseteq X \stackrel{f}{\to} \mathbb{R}$ is called Lipschitz at a point $x_0 \in X$ if $|f(x) - f(x_0)| \leq C \cdot ||x - x_0||$, for a constant $C \in \mathbb{R}_{\geq 0}$ and any $x \in X$ close to x_0 . A function is called locally Lipschitz on X if f is Lipschitz at each point of X." Is this definition equivalent to the initial one?
	- **d.** Suppose $f \in C^1(\mathcal{U})$ for a convex set $\mathcal{U} \subseteq \mathbb{R}^n$. Prove: f is Lipschitz on \mathcal{U} iff f' is bounded.
	- **e.** Define $\mathcal{U} \subset \mathbb{R}^2$ by $1 < r < 2$, $\phi \in (0, 2\pi)$, in polar coordinates. Define the function $\mathcal{U} \stackrel{f}{\to} (0, 2\pi)$ by $f(r,\phi) = \phi$. Prove: $f \in C^1(\mathcal{U})$, with bounded derivative, but f is not Lipschitz.
- **5. a.** For which constants $0 < \alpha, \beta$ does the series $\sum_{n} \frac{1}{n^{\alpha} \cdot ln^{\beta}(n)}$ converge?
	- **b.** Let $f_n \in C^0[a, b]$ be a Cauchy sequence (for the max-norm on $C^0[a, b]$). Prove: if x_n is a Cauchy sequence on [a, b] then the sequence $f_n(x_n)$ converges.
	- **c.** Take a sequence of continuous functions $\{\mathbb{R}^n \supseteq X \stackrel{f_k}{\to} \mathbb{R}\}$. Prove: if the series $\sum f_k$ converges uniformly on X then the limit is a continuous function. (Do not just cite the well-known theorem, write the actual proof.)

d. Let $\{[a,b] \stackrel{f_n}{\to} \mathbb{R}\}$ be a Cauchy sequence of monotonic functions. Suppose $\{f_n\}$ converges to a continuous function. Prove: the convergence is uniform. Is the monotonicity condition necessary here?

e. Given a Rieman-integrable function $[a, b] \stackrel{f_0}{\rightarrow} \mathbb{R}$, define the sequence of functions by $f_{k+1}(x) :=$ \int_{a}^{x} $\int_a^x f_k(t)dt$. Prove: $\{f_k\}$ converges uniformly (and find the limit). Do the same question for the sequence $f_{k+1}(x) := C + \int_a^x f_k(t)dt$, for a constant $C \in \mathbb{R}$.

- **f.** Define the function $\mathbb{R}_{>0} \stackrel{f}{\to} \mathbb{R}$ by $f(x) = x \cdot \sin \frac{1}{x} + \frac{\sin(x^2)}{x^2} + \frac{x \cdot \ln(x)}{1+x}$ $\frac{Im(x)}{1+x}$. Is it uniformly continuous?
- **g.** For a sequence of continuous functions $\mathbb{R} \stackrel{\{f_n\}_n}{\to} \mathbb{R}$ consider the conditions: i. Each f_n is uniformly continuous. ii. The sequence is uniformly bounded. iii. The sequence is equi-continuous. iv. The family converges uniformly.

 (Dis) Prove: $(i + ii + iii) \Rightarrow iv.$ $(i + ii + iv.) \Rightarrow iii.$ And so on.

- **6. a.** Let $A \in Mat_{n \times n}(\mathbb{R})$ and suppose v_1, \ldots, v_k are eigenvectors with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Prove: v_1, \ldots, v_k are linearly independent.
	- **b.** Prove: $det[\mathbb{I} + t \cdot A] = 1 + t \cdot trace(A) + O(t^2)$.
	- c. Let $A = \{a_{ij}(t)\}\in Mat_{n\times n}$, here $a_{ij}(t)$ are differentiable functions of one variable. Prove:

$$
det[A]' = det \begin{bmatrix} \{a_{1j}(t)'\} \\ \{a_{2j}(t)\} \\ \cdots \end{bmatrix} + det \begin{bmatrix} \{a_{1j}(t)\} \\ \{a_{2j}(t)'\} \\ \{a_{3j}(t)\} \\ \cdots \end{bmatrix} + \cdots + det \begin{bmatrix} \{a_{1j}(t)\} \\ \cdots \\ \{a_{nj}(t)'\} \end{bmatrix}
$$

- **7.** Define the map $Mat_{n\times n}(\mathbb{R}) \stackrel{\phi}{\to} \mathbb{R}^{n^2}$ by $\phi(A) = \{a_{ij}\}\$ (the long vector of all the matrix entries). Define the norm on $Mat_{n\times n}(\mathbb{R})$ by $||A|| = \sqrt{trace(A \cdot A^t)}$. (This is not the operator norm.) Prove: this norm is induced from the standard norm on \mathbb{R}^{n^2} , i.e. $||A|| = ||\phi(A)||$. Conclude: ϕ is an isomorphism of normed vector spaces. This defines the topology on $Mat_{n\times n}(\mathbb{R})$, and we can speak of C^k functions.
	- **a.** Consider the functions: $Mat_{n\times n}(\mathbb{R}) \stackrel{trace, det}{\rightarrow} \mathbb{R}$. Prove: these are C^{∞} .
	- **b.** Prove: the matrix product, $Mat_{n\times n}(\mathbb{R})\times Mat_{n\times n}(\mathbb{R})\to Mat_{n\times n}(\mathbb{R})$, $(A, B)\to A\cdot B$, is a C^{∞} -function. Prove: the inverse of a matrix, $GL(n,\mathbb{R})\to GL(n,\mathbb{R})$, $A\to A^{-1}$, is a C^{∞} -function.
	- c. Take the characteristic polynomial of A and denote by $\{c_i(A)\}\)$ its coefficients.

Prove: $Mat_{n\times n}(\mathbb{R}) \stackrel{\{c_j(A)\}}{\rightarrow} \mathbb{R}^{n+1}$ is a C^{∞} -function.

- **d.** Let $\Sigma_{diag} \subset Mat_{n \times n}(\mathbb{R})$ be the subset of all the matrices that are diagonalizable over \mathbb{C} . (i.e. $U \cdot A \cdot U^{-1}$ is diagonal for some $U \in GL(n, \mathbb{C})$ Prove: any matrix whose eigenvalues are pairwise distinct complex numbers belongs to the interior $int(\Sigma_{diag})$. (You can use the fact: if all the comlpex roots of a polynomial are distinct then they are C^{∞} -functions of the coefficients of the polynomial.)
- e. Conclude: $\overline{\Sigma_{diag}} = Mat_{n\times n}(\mathbb{R})$ and $int(Mat_{n\times n}(\mathbb{R}) \setminus \Sigma_{diag}) = \emptyset$. (Because of this many engineers claim "Any matrix in real life is C-diagonalizable".)
- **f.** Is $Mat_{n\times n}(\mathbb{R})\setminus \Sigma_{diag}$ a closed subset of $Mat_{n\times n}(\mathbb{R})$? (Hint: look at $Mat_{2\times 2}(\mathbb{R})$)

8. a. Define the map
$$
Mat_{n\times n}(\mathbb{R}) \stackrel{exp}{\rightarrow} Mat_{n\times n}(\mathbb{R})
$$
 by $exp(A) = \sum_{j=0}^{\infty} \frac{A^j}{j!}$. (Convention: $A^0 = \mathbb{I}$)

- Compute $exp(A)$ for a diagonal matrix. (In particular verify that the series converges)
- Compute $exp(A)$ for $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and for $A =$ $\sqrt{ }$ $\overline{1}$ 1 1 0 0 1 1 0 0 1 1 $\vert \cdot$
- **b.** Prove: the power series of $exp(A)$ converges absolutely, and the convergence is uniform on compact subsets of $Mat_{n\times n}(\mathbb{R})$. You can use $||A \cdot B|| \leq ||A|| \cdot ||B||$.
- **c.** Consider A as a complex matrix and take its Jordan form, $A = U^{-1}(D_A + C_A)U$, where $U \in GL(n, \mathbb{C})$, D_A is diagonal and C_A is strictly upper-triangular (corresponding to the Jordan cell structure). Verify: $C_A^n = \mathbb{O}$ and $D_A \cdot C_A = C_A \cdot D_A$.

Prove: $exp(A) = U^{-1} \cdot exp(D_A) \cdot (\sum_{k=0}^{n}$ $\frac{C_A^k}{k!}$) · U. (You will have to open the brackets/to change the order of summation in the series. Justify these steps.)

- **d.** Prove: if A, B commute then $exp(A + B) = exp(A)exp(B)$.
- **e.** Fix some $A \in Mat_{n\times n}(\mathbb{R})$ and define $\mathbb{R}^1 \stackrel{\gamma}{\to} Mat_{n\times n}(\mathbb{R})$, by $\gamma(t) = exp(t \cdot A)$. Compute $\frac{d\gamma}{dt}$.
- f. Can you define the function $ln(A)$ and establish its (corresponding) properties?