Introduction to Algebraic Curves

201.2.4451. Spring 2018 (D.Kerner)

Homework 8

(1) Let $0 \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of finite-dimensional \mathbb{k}-vector spaces. Show: $\sum_{i}(-1)^{j} \operatorname{dim}_{\mathrm{k}}\left(V_{j}\right)=0$.
(2) In the proof of " $\operatorname{mult}_{p t}(f)=\mathfrak{m}_{p t}^{j} / \mathfrak{m}_{p t}^{j+1}$ for $j \gg 1$ ", we have used the exact sequence $0 \rightarrow \mathfrak{m}^{j} / \mathfrak{m}^{j+1} \rightarrow \mathcal{O}_{(C, p t) / \mathfrak{m}^{j+1}} \rightarrow$ $\mathcal{O}_{(C, p t)} / \mathfrak{m}^{j} \rightarrow 0$. For an arbitrary algebraic subset $X \subset \mathbb{k}^{n}$ the Hilbert-Samuel function of the local ring at $p t \in X$ is defined as $\chi(j):=\operatorname{dim}_{\mathrm{k}} \mathcal{O}_{(X, p t)} / \mathfrak{m}_{p t}^{j}$.
(a) Prove that the function $\chi(j):=\operatorname{dim}_{\mathbb{k}} \mathcal{O}_{\left(\mathbb{k}^{n}, p t\right)} / \mathfrak{m}_{p t}^{j}$ is a polynomial in j, of degree n, whose leading coefficient is $\frac{1}{n!}$.
(b) Let $X=\{f(\underline{x})=0\} \subset \mathbb{k}^{n}$ be a hypersurface. Prove: for $j \gg 1$ the function $\chi(j):=\operatorname{dim}_{\mathbb{k}} \mathcal{O}_{(X, p t) / m_{p t}^{j}}$ is a polynomial in j, of degree $(n-1)$, whose leading coefficient is $\frac{\operatorname{ord}_{p t}(f)}{(n-1)!}$.
(3) Here we assume $\mathbb{k}=\overline{\mathbb{k}}$.
(a) Go over all the details in the definition/proof " $i_{p t}\left(f_{1}, f_{2}\right)=\operatorname{dim} \mathbb{k}[x, y]_{\mathfrak{m}_{p t}} /\left(f_{1}, f_{2}\right)$ ".

Using this proof compute $i_{0}\left(f_{1}, f_{2}\right)$ for $f_{1}(x, y)=\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}, f_{2}(x, y)=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}$.
(b) Suppose $p t \in C \subset \mathbb{k}^{2}$ is a smooth point and fix a uniformizer $t \in \mathcal{O}_{(C, p t)}$. Let $D=\{f(x, y)=0\}$. Prove: $i_{p t}(C, D)=\operatorname{ord}_{t}(f(x(t), y(t)))$.
(c) Go over all the details of the proof of " $i_{p t}(C, D) \geq \operatorname{mult}_{p t}(C) \cdot \operatorname{mult}_{p t}(D)$ with equality iff \ldots..

In particular, prove: If $\mathfrak{m}^{m_{1}+m_{2}-1} \subseteq(f, g)+\mathfrak{m}^{m_{1}+m_{2}} \subseteq \mathbb{k}[x, y]_{\mathfrak{m}}$ then $\mathfrak{m}^{m_{1}+m_{2}-1} \subseteq(f, g) \subseteq \mathbb{k}[x, y]_{\mathfrak{m}}$.
This is immediate if one uses the Nakayama lemma. For a proof without Nakayama see Fulton, page 39.
(d) Let $p t \in\{f(x, y)=0\}$ be a smooth point. Prove: $i_{p t}(f, g+h) \geq \min \left(i_{p t}(f, g), i_{p t}(f, h)\right)$.

Does this hold also for non-smooth points?
(e) Fix a curve $C=\{f(x, y)=0\}$ and a parameterized line $L=\left\{(x(t), y(t))=\left(a_{x} t+b_{x}, a_{y} t+b_{y}\right)\right\}$. Check that the roots of the equation $f(x(t), y(t))=0$ correspond to the intersection points, $C \cap L$, with their multiplicities. Prove: $\sum i_{p t}(L, C) \leq \operatorname{deg}(f)$. When is the equality realized?
(f) Give an example of two (smooth) conics both passing through $(0,0) \in \mathbb{k}^{2}$, whose local intersection multiplicity at $(0,0)$ equals 4 .
(g) Suppose C is smooth at $p t$ and $L=T_{(C, p t)}$. Check: $i_{p t}(C, L) \geq 2$. This point is called an inflection point (or "a flex") if $i_{p t}(C, L)>2$. What are the flexes of the curve $\left\{y=x^{n}\right\} \subset \mathbb{k}^{2}$?
(i) Does this definition depend on the choice of local coordinates?
(ii) Prove: a smooth conic in \mathbb{k}^{2} has no flexes. (Hint: no heavy computations are needed here)
(iii) Prove: $p t \in\{f(x, y)=0\}$ is an inflection point iff the Hessian matrix satisfies:

$$
\left.\left.\left.\left(-\partial_{y} f, \partial_{x} f\right)\right|_{p t} \cdot \partial^{2} f\right|_{p t} \cdot\binom{-\partial_{y} f}{\partial_{x} f}\right|_{p t}=0
$$

(4) (a) Let $\left\{\mathcal{U}_{i}\right\}$ be the standard affine charts on \mathbb{P}^{n}. Describe the sets $X_{i}:=\mathbb{P}^{n} \backslash\left\{\cup_{j \neq i} \mathcal{U}_{j}\right\}, X_{12}:=\mathbb{P}^{n} \backslash\left\{\cup_{j \neq 1,2} \mathcal{U}_{j}\right\}$.
(b) Prove: through any two points of \mathbb{P}^{2} passes unique (projective) line.
(c) Prove: given any $\binom{d+2}{2}-1$ points in \mathbb{P}^{k} there is a curve of degree d passing through them. Moreover, if the points are "mutually generic" then such a curve is unique. (Here the genericity condition is formulated as the non-degeneracy of some matrix, what is this matrix?)
(d) Let $L_{1}, L_{2} \subset \mathbb{P}^{n}$ be planes of dimensions d_{1}, d_{2}. Prove: $\operatorname{dim}\left(L_{1} \cap L_{2}\right) \geq d_{1}+d_{2}-n$. Does this hold also in \mathbb{k}^{n} ? (Which condition should be added?)
(5) (a) Prove: $f(\underline{x}) \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is irreducible iff $x_{0}^{\operatorname{deg}(f)} f\left(\frac{x_{1}}{x_{0}}, . ., \frac{x_{n}}{x_{0}}\right) \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ is irreducible.
(b) Prove: $I \subset \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ has a system of homogeneous generators iff for any $f \in I$ all the homogeneous components of f belong to I.
(c) Prove: an algebraic set $X \subset \mathbb{P}^{n}$ is irreducible iff the ideal $I(X) \subset \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ is prime.
(d) Let $I \subset \mathbb{k}[\underline{x}]$ be a homogeneous prime ideal. Prove: if $f \cdot g \in I$ then either all homogeneous components of f belong to I or the same for g. (Thus I is "homogeneously prime".)
(e) Prove: if I is a homogeneous ideal then \sqrt{I} is homogeneous.
(f) Suppose \mathbb{k} is infinite. Prove: if $X \subset \mathbb{P}^{n}$ is an algebraic subset and $f \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ vanishes identically on X, then all the homogeneous components of f vanish on X.
(g) Prove: any intersection/finite union of algebraic subsets of \mathbb{P}^{n} is algebraic.
(h) The group $\mathbb{P} G L(n+1, \mathbb{k})=G L(n+1, \mathbb{k}) / \mathbb{k} \times$ acts on \mathbb{P}^{n}, these are called: projective transformations. Prove: $\mathbb{P} G L(n+1, \mathbb{k})$ sends algebraic subsets to algebraic, hypersurfaces to hypersurfaces, smooth points of plane curves to smooth points.

