Introduction to Algebraic Curves

201.2.4451. Spring 2018 (D.Kerner)

Homework 8

- (1) Let $0 \to V_1 \to \cdots \to V_n \to 0$ be an exact sequence of finite-dimensional k-vector spaces. Show: $\sum_i (-1)^j dim_k(V_j) = 0$.
- (2) In the proof of "mult_{pt}(f) = $\mathfrak{m}_{pt}^{j}/\mathfrak{m}_{pt}^{j+1}$ for $j \gg 1$ ", we have used the exact sequence $0 \to \mathfrak{m}^{j}/\mathfrak{m}^{j+1} \to \mathcal{O}_{(C,pt)}/\mathfrak{m}^{j+1} \to \mathcal{O}_{(C,pt)}/\mathfrak{m}^{j+1}$ $\mathcal{O}_{(C,pt)/\mathbf{m}^j} \to 0$. For an arbitrary algebraic subset $X \subset \mathbb{k}^n$ the Hilbert-Samuel function of the local ring at $pt \in X$ is defined as $\chi(j) := \dim_{\mathbb{K}} \mathcal{O}_{(X,pt)}/\mathfrak{m}_{pt}^{j}$.
 - (a) Prove that the function $\chi(j) := \dim_k \mathcal{O}_{(k^n, pt)}/\mathfrak{m}_{pt}^j$ is a polynomial in j, of degree n, whose leading coefficient is $\frac{1}{n!}$.
 - (b) Let $X = \{f(\underline{x}) = 0\} \subset \mathbb{k}^n$ be a hypersurface. Prove: for $j \gg 1$ the function $\chi(j) := \dim_{\mathbb{k}} \mathcal{O}_{(X,pt)}/\mathfrak{m}_{pt}^j$ is a polynomial in j, of degree (n-1), whose leading coefficient is $\frac{ord_{pt}(f)}{(n-1)!}$.
- (3) Here we assume $k = \bar{k}$.
 - (a) Go over all the details in the definition/proof $i_{pt}(f_1, f_2) = \dim \mathbb{k}[x, y]_{\mathfrak{m}_{pt}/(f_1, f_2)}$.
 - Using this proof compute $i_0(f_1, f_2)$ for $f_1(x, y) = (x^2 + y^2)^2 + 3x^2y y^3$, $f_2(x, y) = (x^2 + y^2)^3 4x^2y^2$.
 - (b) Suppose $pt \in C \subset k^2$ is a smooth point and fix a uniformizer $t \in \mathcal{O}_{(C,pt)}$. Let $D = \{f(x,y) = 0\}$. Prove: $i_{pt}(C, D) = ord_t(f(x(t), y(t))).$
 - (c) Go over all the details of the proof of " $i_{pt}(C,D) \ge mult_{pt}(C) \cdot mult_{pt}(D)$ with equality iff ...". In particular, prove: If $\mathfrak{m}^{m_1+m_2-1} \subseteq (f,g) + \mathfrak{m}^{m_1+m_2} \subseteq \Bbbk[x,y]_{\mathfrak{m}}$ then $\mathfrak{m}^{m_1+m_2-1} \subseteq (f,g) \subseteq \Bbbk[x,y]_{\mathfrak{m}}$. This is immediate if one uses the Nakayama lemma. For a proof without Nakayama see Fulton, page 39.
 - (d) Let $pt \in \{f(x,y)=0\}$ be a smooth point. Prove: $i_{pt}(f,g+h) \ge min(i_{pt}(f,g),i_{pt}(f,h))$. Does this hold also for non-smooth points?
 - (e) Fix a curve $C = \{f(x, y) = 0\}$ and a parameterized line $L = \{(x(t), y(t)) = (a_x t + b_x, a_y t + b_y)\}$. Check that the roots of the equation f(x(t), y(t)) = 0 correspond to the intersection points, $C \cap L$, with their multiplicities. Prove: $\sum i_{pt}(L,C) \leq deg(f)$. When is the equality realized?
 - (f) Give an example of two (smooth) conics both passing through $(0,0) \in k^2$, whose local intersection multiplicity at (0,0) equals 4.
 - (g) Suppose C is smooth at pt and $L = T_{(C,pt)}$. Check: $i_{pt}(C,L) \ge 2$. This point is called an inflection point (or "a flex") if $i_{pt}(C,L) > 2$. What are the flexes of the curve $\{y = x^n\} \subset k^2$?
 - (i) Does this definition depend on the choice of local coordinates?
 - (ii) Prove: a smooth conic in \mathbb{k}^2 has no flexes. (Hint: no heavy computations are needed here)
 - (iii) Prove: $pt \in \{f(x, y) = 0\}$ is an inflection point iff the Hessian matrix satisfies:

$$(-\partial_y f, \partial_x f)|_{pt} \cdot \partial^2 f|_{pt} \cdot \begin{pmatrix} -\partial_y f \\ \partial_x f \end{pmatrix}|_{pt} = 0.$$

- (4) (a) Let $\{\mathcal{U}_i\}$ be the standard affine charts on \mathbb{P}^n . Describe the sets $X_i := \mathbb{P}^n \setminus \{\bigcup_{j \neq i} \mathcal{U}_j\}, X_{12} := \mathbb{P}^n \setminus \{\bigcup_{j \neq 1, 2} \mathcal{U}_j\}.$
 - (b) Prove: through any two points of \mathbb{P}^2 passes unique (projective) line.
 - (c) Prove: given any $\binom{d+2}{2} 1$ points in \mathbb{P}^k there is a curve of degree d passing through them. Moreover, if the points are "mutually generic" then such a curve is unique. (Here the genericity condition is formulated as the non-degeneracy of some matrix, what is this matrix?)
 - (d) Let $L_1, L_2 \subset \mathbb{P}^n$ be planes of dimensions d_1, d_2 . Prove: $\dim(L_1 \cap L_2) \ge d_1 + d_2 n$. Does this hold also in \mathbb{R}^n ? (Which condition should be added?)
- (5) (a) Prove: $f(\underline{x}) \in \mathbb{k}[x_1, \dots, x_n]$ is irreducible iff $x_0^{deg(f)} f(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) \in \mathbb{k}[x_0, \dots, x_n]$ is irreducible. (b) Prove: $I \subset \mathbb{k}[x_0, \dots, x_n]$ has a system of homogeneous generators iff for any $f \in I$ all the homogeneous components of f belong to I.
 - (c) Prove: an algebraic set $X \subset \mathbb{P}^n$ is irreducible iff the ideal $I(X) \subset \Bbbk[x_0, \ldots, x_n]$ is prime.
 - (d) Let $I \subset k[\underline{x}]$ be a homogeneous prime ideal. Prove: if $f \cdot g \in I$ then either all homogeneous components of f belong to I or the same for g. (Thus I is "homogeneously prime".)
 - (e) Prove: if I is a homogeneous ideal then \sqrt{I} is homogeneous.
 - (f) Suppose k is infinite. Prove: if $X \subset \mathbb{P}^n$ is an algebraic subset and $f \in k[x_0, \ldots, x_n]$ vanishes identically on X, then all the homogeneous components of f vanish on X.
 - (g) Prove: any intersection/finite union of algebraic subsets of \mathbb{P}^n is algebraic.
 - (h) The group $\mathbb{P}GL(n+1,\mathbb{k}) = GL(n+1,\mathbb{k})/_{\mathbb{k}} \times \text{ acts on } \mathbb{P}^n$, these are called: projective transformations. Prove: $\mathbb{P}GL(n+1,\mathbb{k})$ sends algebraic subsets to algebraic, hypersurfaces to hypersurfaces, smooth points of plane curves to smooth points.