Introduction to Algebraic Curves

201.2.4451. Spring 2018 (D.Kerner)

Homework 4

- (1) Fix a non-constant holomorphic map of compact Riemann surfaces, $X \xrightarrow{f} Y$, and a point $x \in X$.
 - (a) To define $mult_x(f)$ we have chosen particular local coordinates in X, Y. Prove that the multiplicity does not depend on the choices.
 - (b) Suppose $mult_x(f) = 1$. Prove that f is locally a biholomorphism at x. Conclude that f is a local bihilomorphism everywhere except for a finite set of points on X.
 - (c) Prove that a map of deg(f) = 1 has no ramifications and is a global isomorphism of Riemann surfaces.
 - (d) Can the maps $X \xrightarrow{f,g} Y$ be added/multiplied? For $X \xrightarrow{f} Y \xrightarrow{g} Z$ compute $mult_x(g \circ f)$.
 - (e) Consider a meromorphic function $f \in \mathcal{M}_X(\mathcal{U})$ as a map of Riemann surfaces, denote it by F. What is the relation between $mult_x(F)$ and $ord_x(f)$? (Distinguish between the zeros/poles of f and other points.)
 - (f) Prove/disprove:
 - (i) There exist neighborhoods $x \in \mathcal{U}_x \subset X$, $f(x) \in \mathcal{U}_{f(x)} \subset Y$ such that for any $y \in \mathcal{U}_{f(x)}$ holds: $\sum_{\substack{x_i \in \mathcal{U}_x \cap f^{-1}(f(x))}} mult_{x_i} f = mult_x(f).$
 - (ii) For any neighborhood $x \in \mathcal{U}_x \subset X$ there exists a neighborhood $f(x) \in \mathcal{U}_{f(x)} \subset Y$ such that for any $y \in \mathcal{U}_{f(x)}$ holds: $\sum_{x_i \in \mathcal{U}_x \cap f^{-1}(f(x))} mult_{x_i} f = mult_x(f).$
- (2) (a) What is the minimal triangulation of the cylinder?
 - (b) Does there exist a triangulation of S^2 with just three triangles? Does there exist a triangulation of S^2 with 7 faces, 12 edges and 8 vertices?
 - (c) Construct some simple triangulations of S^2 with g handles. (Here 'simple' is not 'the minimal possible'.)
- (3) (a) Let $f(z) = \frac{4z^2(z-1)^2}{(2z-1)^2}$ a meromorphic function on \mathbb{C} , consider the corresponding holomorphic map $\mathbb{P}^1_{\mathbb{C}} \xrightarrow{F} \mathbb{P}^1_{\mathbb{C}}$. Describe its ramification data. What is deg(F)?
 - (b) Project the curves $\{xy=1\}\subset\mathbb{C}^2,\ \{y=x^2\}\subset\mathbb{C}^2$ onto \hat{y} -axis. Are the degrees of this projection constant?
 - (c) Fix a smooth real algebraic curve (not necessarily connected), $C = \{f(x,y) = 0\} \subset \mathbb{R}^2$. Suppose the degree of the projection $C \xrightarrow{\pi_x} \mathbb{R}$ is constant, i.e. the total number of preimages $\pi_x^{-1}(x)$ (counted with their multiplicities) does not depend on x. Prove that all the multiplicities of $\{\pi_x\}_{x\in X}$ are odd. What are the possible topological types of C?
- (4) (a) Prove: the action $\mathbb{P}GL(3,\mathbb{C}) \subset \mathbb{P}^2_{\mathbb{C}}$ preserves the degrees and genera of smooth algebraic curves.
 - (b) Prove the Riemann-Hurwitz formula.
 - (c) Compute the genus of a smooth plane projective cubic. (Recall: any such curve can be brought, by a $\mathbb{P}GL(3,\mathbb{C})$ transformation, to the Weierstraß form, which in the affine coordinates is $\{y^2 = x^3 + ax + b\}$.)
 - (d) Let $X \xrightarrow{f} Y$ be a non-constant holomorphic map or compact Riemann surfaces. Prove:
 - (i) $g(X) \ge g(Y)$.
 - (ii) If g(X) = g(Y) = 1 then f is unramified.
 - (iii) If g(X) = g(Y) = 2 then f is an isomorphism.
 - (iv) The sum of ramification indices of f is even. (The ramification index at a point x is $(mult_x(f) 1)$.)
- (5) In the lecture we saw how to "plug the holes" in a punctured Riemann surface.
 - (a) Prove that plugging the holes preserves Hausdorffness and path-connectedness.
 - (b) A curve $\{f(x,y)=0\}\subset\mathbb{C}^2$ is said to "have a node" at (0,0) if $f(0,0)=0=\partial_x f|_{(0,0)}=\partial_y f|_{(0,0)}$ and the Hessian matrix of f at (0,0) is non-degenerate. Prove that by a local holomorphic change of coordinates at (0,0) we can bring f to the form x^2-y^2 .
 - (c) Let $C \subset \mathbb{P}^2_{\mathbb{C}}$ be a singular algebraic curve and let X be the Riemann surface obtained by puncturing the singular points of C and plugging the holes. Take the natural projection $X \xrightarrow{\pi} C$. Fix a point of C and take some local coordinates on \mathbb{P}^2 at this point: (x,y). Prove: any (holomorphic/meromorphic) function f(x,y) on \mathbb{C}^2 induces a local holomorphic map: $X \supset \mathcal{U} \xrightarrow{f|_{C} \circ \pi} \mathbb{P}^1$.
 - (d) Compute the genera of the Riemann surfaces obtained from the curves $\{y^2 = x^3\} \subset \mathbb{C}^2$, $\{y^2 = x^3 + x^2\} \subset \mathbb{C}^2$ by compactifying (in \mathbb{P}^2), puncturing the singularities, and plugging the holes.
 - (e) Let X be a Riemann surface with punctures, so that the surface \overline{X} , obtained by plugging all the holes in X, is a compactification of X. Prove that this compactification is unique, i.e. for any two compact Riemann surfaces $\overline{X}_1 \supset X \subset \overline{X}_2$ holds: $\overline{X}_1 \xrightarrow{\sim} \overline{X}_2$.