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Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= Ok[1/5])
and X =P\ {0,1, c}.

There are finitely many z,w € Z* such that z+w =1

Equivalently, |X(Z)| < o.

Originally proven by Siegel using Diophantine approximation around 1929.
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Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= O[1/S5])
and X =P\ {0,1, c}.

There are finitely many z,w € Z* such that z+w =1
Equivalently, |X(Z)| < o.

Originally proven by Siegel using Diophantine approximation around 1929.

Problem
Find X(Z) for various Z, or even find an algorithm.

In 2004, Minhyong Kim gave a proof in the case k = Q using a
non-abelian version of Chabauty’s method.

Refined Problem (Chabauty-Kim Theory)
Find p-adic analytic (Coleman) functions on X(Z,) that vanish on X(Z).
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(p-adic) Polylogarithms

@ The p-adic analytic functions that appear are p-adic polylogarithms.
@ We now recall the definition of the k-logarithm for k € Z>1

Definition
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(p-adic) Polylogarithms

@ The p-adic analytic functions that appear are p-adic polylogarithms.
@ We now recall the definition of the k-logarithm for k € Z>1

Definition

o0 n

Lix(z) == Z %

n=1

@ These functions satisfy the recursive differential equation

d . 1_.
EL][{(Z) = ;le_]_(Z)7

with Lij(z) = —log(1 — z) and Li,(0) = 0 for all k.
o p-adic polylogarithms Li7(z) are defined as p-adic analytic functions
satisfying the same differential equations

@ As the p-adics are totally disconnected, one must use Coleman's
theory to fix the constants of integration
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Recent Explicit Results

Kim's method defines a set 72 of Q,-valued analytic functions on X(Z,)
that vanish on X(Z) and have finitely many zeroes (for any p ¢ S).
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Recent Explicit Results

Kim's method defines a set 72 of Q,-valued analytic functions on X(Z,)
that vanish on X(Z) and have finitely many zeroes (for any p ¢ S).

Theorem (Dan-Cohen, Wewers, 2013)

e For Z = Z[1//] and all p, the following Coleman function is in Z%:

2Li5(z) — logP(2)Lif(z)
o For Z =7Z[1/2] and p # 2, the following Coleman function is in Z?:
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Recent Explicit Results

Kim's method defines a set 72 of Q,-valued analytic functions on X(Z,)
that vanish on X(Z) and have finitely many zeroes (for any p ¢ S).

Theorem (Dan-Cohen, Wewers, 2013)

e For Z = Z[1//] and all p, the following Coleman function is in Z%:

2Li5(z) — logP(2)Lif(z)
o For Z =7Z[1/2] and p # 2, the following Coleman function is in Z?:

24 logP(2)¢P(3)Lif(2) + g <|og”(2)4 + 24Li§(%)> log”(z)Li5(z)

+ (% |0gp(2)4 + ?Liﬁ(%) + |ogP(2)CP(3)> |ng(z)3 logP(1 — z)

v
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Recent Results, cont.

@ In 2015, Dan-Cohen posted a preprint showing that this could be
made into an algorithm, whose halting is conditional on refinements
of conjectures due to Kim and Goncharov.

Theorem (C, Dan-Cohen, 2017)
For Z = Z[1/3] and p # 2,3, the following Coleman function is in Z:

PR RLE) - (T5LEG) - SLEO)) ke (L)

_ (log”(2))°Lif (2) <§p( ) logP(3) — (1§L P(3) — 32Li§(9))),

24
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Recent results, cont.

@ Dan-Cohen—Wewers and C—Dan-Cohen have used these to verify a
conjecture of Kim in special cases:

Conjecture (Kim et al., 2014)

The set of common zeroes of elements of ZZ is precisely X(Z).
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Recent results, cont.

@ Dan-Cohen—Wewers and C—Dan-Cohen have used these to verify a
conjecture of Kim in special cases:

Conjecture (Kim et al., 2014)

The set of common zeroes of elements of ZZ is precisely X(Z).

@ Another arXiv preprint of C—Dan-Cohen presents an improved
algorithm

o If the algorithm halts, then it provably gives the correct answer

@ Kim's conjecture and some standard conjectures about mixed motives
imply the algorithm halts
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Next Goal: Chabauty-Kim for a Punctured Elliptic Curve

Let Z be an integer ring with a finite set of primes inverted (= O[1/5])
and E' = E \ {O} for some elliptic curve E/Q with good reduction outside
S.

|E'(Z)] < o0

Also proven by Siegel; re-proven when E is CM by Kim.
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Next Goal: Chabauty-Kim for a Punctured Elliptic Curve

Let Z be an integer ring with a finite set of primes inverted (= O[1/5])

and E' = E \ {O} for some elliptic curve E/Q with good reduction outside
S.

|E'(Z)] < o0

Also proven by Siegel; re-proven when E is CM by Kim.

Extend the previous method from P! \ {0, 1,00} to E’ using mixed elliptic
motives in place of mixed Tate motives (more on this later).

@ Some of what we need in this case is conjectural, but we can still do
computations.

@ Eventual goal: show that standard conjectures about mixed motives
plus Kim's conjecture imply an effective Faltings
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How does one cut out X(Z) inside X(Z,)?

o Let p¢ S. Forany z € X(Zp) and k € Z>1, we have Li}(z) € Qp
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How does one cut out X(Z) inside X(Z,)?

o Let p¢ S. Forany z € X(Zp) and k € Z>1, we have Li}(z) € Qp
@ But, when z € X(Z), we can do better:
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How does one cut out X(Z) inside X(Z,)?

o Let p¢ S. Forany z € X(Zp) and k € Z>1, we have Li}(z) € Qp
@ But, when z € X(Z), we can do better:

@ There is a graded Hopf algebra A(Z) over Q, finite-dimensional in
each degree, with a (conjecturally injective) ring homomorphism

per,: A(Z) — Qp
e Each z € X(Z) gives rise to an element Li}(z) € A(Z) such that

Li?(2) = per, (Li}(2))
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How does one cut out X(Z) inside X(Z,)?

o Let p¢ S. Forany z € X(Zp) and k € Z>1, we have Li}(z) € Qp
@ But, when z € X(Z), we can do better:

@ There is a graded Hopf algebra A(Z) over Q, finite-dimensional in
each degree, with a (conjecturally injective) ring homomorphism

per,: A(Z) — Qp

e Each z € X(Z) gives rise to an element Li}(z) € A(Z) such that

Li?(2) = per, (Li}(2))

e Furthermore, using deep results in arithmetic (about algebraic
K-theory), we can describe A(Z) abstractly as a graded Hopf algebra

@ This extra structure on A(Z) along with precise information about its
size greatly limits which z € X(Z,) can actually be in X(2)

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 8 /27



Using the extra structure to define Z¢

Definition

Let mP4(X) := Spec(Q[log", Li}, L3, - - -]).
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Using the extra structure to define Z¢

Definition

Let mP4(X) := Spec(Q[log", Li}, L3, - - -]).

e Each z € X(Z) defines a homomorphism x(z): O(mtH(X)) — A(Z)
sending Li}, to Li}(z).

o There is furthermore a graded Hopf algebra structure on O(7 (X)),
in which Li} has degree k, log" has degree 1, and the reduced
coproduct A’ is given by:
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Using the extra structure to define Z¢

Definition

Let mP4(X) := Spec(Q[log", Li}, L3, - - -]).

e Each z € X(Z) defines a homomorphism x(z): O(mtH(X)) — A(Z)
sending Li}, to Li}(z).

o There is furthermore a graded Hopf algebra structure on O(7 (X)),
in which Li} has degree k, log" has degree 1, and the reduced
coproduct A’ is given by:

k—1 "
A'Lip =) Li} ;® (loﬁ )
i=1
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Using the extra structure to define Z¢

Definition

Let mP4(X) := Spec(Q[log", Li}, L3, - - -]).

e Each z € X(Z) defines a homomorphism x(z): O(mtH(X)) — A(Z)
sending Li}, to Li}(z).

o There is furthermore a graded Hopf algebra structure on O(7 (X)),
in which Li} has degree k, log" has degree 1, and the reduced
coproduct A’ is given by:

k—1 :
log")’
A'Lit = ZLP;_,- ® (log") :

i=1

il

For z € X(Z), the homomorphism £(z) is a homomorphism of graded
Hopf algebras.
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Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:

X(2) — X(Zp)

|

Homgropt(O(m1(X)), A(Z))
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Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:

X(2) — X(Zp)

|

Homgropt(O(m1(X)), A(Z))

® We recall the period map per,: A(Z) — Qp for p € Spec(Z).
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Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:
X(2) — X(Zp)

Homgropt(O(m1(X)), A(Z))

® We recall the period map per,: A(Z) — Qp for p € Spec(Z).

@ This induces per
HomGropr(O(714(X)), A(Z)) — Homyje(O(n7H(X)), Qp).

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019



Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:
X(2) — X(Zp)

|
per

Homgropt(O(m1(X)), A(Z)) — Homyg(O(m1"(X)), Qp)

® We recall the period map per,: A(Z) — Qp for p € Spec(Z).

@ This induces per
HomGropr(O(714(X)), A(Z)) — Homye(O(n71(X)), Qp).

10 / 27
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Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:

X(2) — X(Zp)

|
per

Homgropt(O(m1(X)), A(Z)) — Homyg(O(m1"(X)), Qp)

® We recall the period map per,,: A(Z) = Qp, for p € Spec(Z).
@ This induces
PL Pery PL
HomGrHopf(O(ﬂ'l (X)), A(Z)) — HomAlg(O(T"l (X)), Qp).
@ In addition, an arbitrary z € X(Z,) induces a homomorphism
O(mtH(X)) — Qp sending Li} to Lif(z).
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Using the extra structure to define Z%, cont.

For a prime p, this gives us a diagram:

X(2) — X(Zp)

| l

per

Homgropt(O(m1(X)), A(Z)) — Homyg(O(m1"(X)), Qp)

® We recall the period map per,,: A(Z) = Qp for p € Spec(Z).
@ This induces
PL Pely PL
HomGrHopf(O(ﬂ'l (X)), A(Z)) — HomAlg(O(T"l (X)), Qp).
e In addition, an arbitrary z € X(Z,) induces a homomorphism
O(mtH(X)) — Qp sending Li} to Lif(z).
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Motivic Kim's Cutter, cont.

X(2) — X(Zp)

| |

per,

Homgopr(O(m1H(X)), A(Z)) — Homyg(O(m1H(X)), Qp)

@ The above diagram is known as Kim’s Cutter.
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Motivic Kim's Cutter, cont.

X(2) — X(Zp)

| |

PL Pely PL
Homgriopt(O(71 (X)), A(Z)) —— Hompg(O(m17(X)), Qp)
@ The above diagram is known as Kim’s Cutter.

@ We may upgrade the bottom horizontal morphism to a map of
schemes, as follows:
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Motivic Kim's Cutter, cont.

X(2) — X(Zp)

| |

per,

Homgopr(O(m1H(X)), A(Z)) — Homyg(O(m1H(X)), Qp)

@ The above diagram is known as Kim’s Cutter.

@ We may upgrade the bottom horizontal morphism to a map of
schemes, as follows:

@ We define a scheme ZE’LG’" over Q by
Zpi""(R) = Homgopt(O(71H(X)), A(Z)) @ R) for a Q-algebra R.

@ The bottom arrow may then be viewed as a map of Q,-schemes
1.Gm
ZPI: ® QP — 71'{)L(X) @ Qp
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Motivic Kim's Cutter, cont.
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Motivic Kim's Cutter, cont.

X(Z) — X(Zp)

| !

Z58m 9@, 5 7PL(X) @ Qp

@ Dimension counts show that the bottom horizontal arrow is
non-dominant, which is what proves Siegel's theorem.
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Motivic Kim's Cutter, cont.

X(Z) — X(Zp)

| !

Z58m 9@, 5 7PL(X) @ Qp

@ Dimension counts show that the bottom horizontal arrow is
non-dominant, which is what proves Siegel's theorem.

o Therefore, there is a nonzero ideal Z5 C O(mF1(X)) ® Qp vanishing
on the image of the bottom arrow, known as the (polylogarithmic)
Chabauty-Kim ideal.

@ The right-hand vertical map is Coleman analytic, so elements of Z5
pull back to Coleman functions on X(Z;) that vanish on X(Z); these
are elements of 77

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 12 /27



Where does A(Z) come from?

@ There is a Q-linear Tannakian category MT(Z) of mixed Tate
motives over Z

@ MT(Z) is the category of representations of the pro-algebraic group
7M(Z) over Q.
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Where does A(Z) come from?

@ There is a Q-linear Tannakian category MT(Z) of mixed Tate
motives over Z

@ MT(Z) is the category of representations of the pro-algebraic group
7M(Z) over Q.

@ This group has a semidirect product decomposition
m'(Z) = 7iN(Z) % G,

where 71"™(Z) is pro-unipotent.
e Then A(Z) := O(nj{™(Z)), with grading coming from the Gp,-action.
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Where does A(Z) come from?

@ There is a Q-linear Tannakian category MT(Z) of mixed Tate
motives over Z

@ MT(Z) is the category of representations of the pro-algebraic group
7M(Z) over Q.

@ This group has a semidirect product decomposition
m'(Z) = 7iN(Z) % G,

where 71"™(Z) is pro-unipotent.
e Then A(Z) := O(nj{™(Z)), with grading coming from the Gp,-action.
e A(Z) is known as the ring of mixed Tate motivic periods over Z

@ lts elements are formal versions of numbers that arise from (p-adic)
integrals of algebraic differential forms
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Polylogarithms as Motivic Periods

@ How do polylogarithms relate to A(Z)?
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Polylogarithms as Motivic Periods

@ How do polylogarithms relate to A(Z)?

@ The differential equation shows that polylogarithms can be expressed
via interated integration on P!\ {0, 1, 00}

@ These integrals show up in relative cohomology of powers
(P*\ {0,1,00})"
@ The relevant relative cohomology groups give objects in M7 (Z)
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Polylogarithms as Motivic Periods

@ How do polylogarithms relate to A(Z)?

@ The differential equation shows that polylogarithms can be expressed
via interated integration on P!\ {0, 1, 00}

@ These integrals show up in relative cohomology of powers
(P*\ {0,1,00})"
@ The relevant relative cohomology groups give objects in M7 (Z)

@ One can abstractly describe the graded Hopf algebra A(Z) using our
knowledge of

EXt}vtT(z)(Q(—”)a Q(0)) = Kan-1(2)o

@ This is given in more detail on the next slide:
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Abstract Structure of A(Z)

o As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.
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Abstract Structure of A(Z)

o As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.

@ For words wy, ws, the product is given as follows:
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Abstract Structure of A(Z)

o As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.

@ For words wy, ws, the product is given as follows:

le fW2 = Z fa(W1W2)7
o€l (£(w1),£(w2))
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Abstract Structure of A(Z)

o As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.

@ For words wy, ws, the product is given as follows:

le fW2 = Z fa(W1W2)7
o€l (£(w1),£(w2))

where ¢ denotes the length of a word, TII(£(w1), £(w2)) C Sy(wy)+e(ws)
denotes the group of shuffle permutations of type (¢(wy), ¢(w2)), and
wiwy denotes concatenation.
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Abstract Structure of A(Z)

o As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.

@ For words wy, ws, the product is given as follows:

le fW2 = Z fa(W1W2)7
o€l (£(w1),£(w2))

where ¢ denotes the length of a word, TII(£(w1), £(w2)) C Sy(wy)+e(ws)
denotes the group of shuffle permutations of type (¢(wy), ¢(w2)), and
wiwy denotes concatenation.

o E.g., frosfry = 2frmyos + fraosm-
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Abstract Structure of A(Z)

As a graded vector space, A(Z[1/S]) is the free vector space over QQ
on symbols f,,, where w is a word in the set {7/ }scs U {o2n+1}n>1,
with 7, in degree 1 and 02,41 in degree 2n + 1.

For words wy, ws, the product is given as follows:

le fW2 = Z fa(W1W2)7
o€l (£(w1),£(w2))

where ¢ denotes the length of a word, TII(£(w1), £(w2)) C Sy(wy)+e(ws)
denotes the group of shuffle permutations of type (¢(wy), ¢(w2)), and
wiwy denotes concatenation.

o Eg. frosfr, = 20005 + Trosm,-
@ The coproduct A is given by

Afy = > fu,®fy,=f,@1+0f +18f,.

wiwa=w

E.g. Afryoy, = 1® fryoy + fr, @ foy + Fryoy @1, 50 NNy = Fr, @ .
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Computing Explicit Generators for A(Z)

@ To compute the functions, we need to write the elements f,, explicitly
in the form Li%(z).

@ One may choose:
fr, =log"(¢)
f02n+1 = Cu(2n + 1) = Lign+1(1)7

where £, corresponds to a generator of Kapi1(Z).

O2n+1
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Computing Explicit Generators for A(Z)

To compute the functions, we need to write the elements f,, explicitly
in the form Li%(z).

One may choose:

£, = log'(0)
f02n+1 = Cu(2n + 1) = Lign+1(1)7

where f;, .. corresponds to a generator of K4,11(Z).
Up to degree 4, A(Z[1/¢]) has the basis

{1’ fTe» f-rf» ng” fﬂ:w fré" fTeUen fU3Te}'

As £ = nlf.n, we explicitly understand everything except the last two
basis elements.

As ., fr, = fr,05 + f537,, we need to understand only the last element.
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Finding f,,-,

e Finding f;,;, depends on /. We start with ¢ = 2.
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Finding f,,-,

e Finding f;,;, depends on /. We start with ¢ = 2.
@ The structure tells us that f;,7, is the unique element whose reduced
coproduct

foy @ fr, = C*(3) ® log"(¢).
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Finding f,,-,

e Finding f;,;, depends on /. We start with ¢ = 2.
@ The structure tells us that f;,7, is the unique element whose reduced

coproduct
fry ® F, = C*(3) @ log"(£).

e As1/2 € X(Z), a natural element to try is Liz(1/2).

October 30, 2019 17 /

Explicit Motivic Chabauty-Kim Method

Corwin



Finding f,,-,

e Finding f;,;, depends on /. We start with ¢ = 2.
@ The structure tells us that f;,7, is the unique element whose reduced

coproduct
fry ® F, = C*(3) @ log"(£).

e As 1/2 € X(Z), a natural element to try is Li;(1/2).

@ The coproduct formula expresses A’Liz(1/2) in terms of Li5(1/2),
which one must then write in terms of f,, = ¢*(3) and
£ — log"(2)*/6.

@ Using the coproduct formula and the fact that log"(1/2) = —log"(2),
one may check that

A (Lig(1/2) - W) = 0.

e This implies that Li3(1/2) — W is a rational multiple of
foy = C*(3)
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Finding f,,.,, cont.

@ By p-adically approximating

Lif(1/2) — (eg"(2)°
¢P(3)

in SAGE for various small p, one seems to get the value 7/8.
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Finding f,,.,, cont.

@ By p-adically approximating
. logP(2))3
Lig(1/2) — (g7
¢P(3)
in SAGE for various small p, one seems to get the value 7/8.

o The identity Li§(1/2) = 182> 4 7¢4(3) is verified in the
appendices of Dan-Cohen—Wewers using identities for polylogarithms.

@ Using this identity, one may check that

& (-2 (B L)) - e o gt

7 24

as desired.
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Finding 15,

@ In C—Dan-Cohen, we show that for £ = 3, we have

18 _. 3.
fosry = 1731412(3) - 5721412(9)'
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Finding 15,

@ In C—Dan-Cohen, we show that for £ = 3, we have

18 _. 3.
fosry = 1731412(3) - 5721412(9)'

@ The difficulty here is that X(Z[1/3]) = 0, so we cannot easily write
elements of A(Z[1/3]) other than log"(3) and ¢*(n).
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Finding 15,

@ In C—Dan-Cohen, we show that for £ = 3, we have

18 _. 3.
fosry = 1731412(3) - 5721412(9)'

@ The difficulty here is that X(Z[1/3]) = 0, so we cannot easily write
elements of A(Z[1/3]) other than log"(3) and ¢*(n).

@ To deal with this, we must consider the larger Hopf algebra A(Z[1/6]).

@ The abstract coordinates tell us how A(Z[1/3]) sits inside A(Z[1/6]).
Indeed, Liy(3),Li;(9) € A(Z[1/6]) \ A(Z[1/3)]).
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Finding 15,

@ In C—Dan-Cohen, we show that for £ = 3, we have

18 _. 3.
fosry = ELIZ(?’) - 5721412(9)-

The difficulty here is that X(Z[1/3]) = 0, so we cannot easily write
elements of A(Z[1/3]) other than log"(3) and ¢*(n).

@ To deal with this, we must consider the larger Hopf algebra A(Z[1/6]).
@ The abstract coordinates tell us how A(Z[1/3]) sits inside A(Z[1/6]).
Indeed, Liy(3),Liz(9) € A(Z[1/6]) \ A(Z[1/3]).

A(Z[1/6]) is already more complicated in weight 2, as
log"(2)?,10g"(3)?,log"(2)log"(3) do not span the weight 2 part. By
computing its coproduct, one may show that Li3(—2) = —f,,.
Similar to the ¢ = 2 case, one must figure out the rational number

%(132}1‘3‘(3) by p-adic approximation; we have found that it is about
6

? .
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Summary: What ingredients did we need?

In order to see how one might generalize to the elliptic case, let's review
some key ingredients:

@ We have w{’L(Z), whose coordinate ring lives in a Tannakian category
of motives MT(2);
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Summary: What ingredients did we need?

In order to see how one might generalize to the elliptic case, let's review
some key ingredients:
@ We have w{’L(Z), whose coordinate ring lives in a Tannakian category
of motives M7 (Z); more generally we can consider the de Rham
fundamental group O(7{"(Xg)), which contains Li} .. , for r >1

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 20 / 27



Summary: What ingredients did we need?

In order to see how one might generalize to the elliptic case, let's review
some key ingredients:

@ We have w{’L(Z), whose coordinate ring lives in a Tannakian category
of motives M7 (Z); more generally we can consider the de Rham
fundamental group O(7{"(Xg)), which contains Li} .. , for r >1

@ We understand the abstract structure of its fundamental group
M7 (Z) as a pro-algebraic group (via the graded Hopf algebra A(Z));
this comes from our knowledge of algebraic K-theory of integer rings

© We know how to write down explicit elements of O(7{"(Xgp)) and
have a formula for their coproducts; these are our Li}, (or more
generally, Li} . ;)
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Summary: What ingredients did we need?

In order to see how one might generalize to the elliptic case, let's review
some key ingredients:

@ We have w{’L(Z), whose coordinate ring lives in a Tannakian category
of motives M7 (Z); more generally we can consider the de Rham
fundamental group O(7{"(Xg)), which contains Li} .. , for r >1

@ We understand the abstract structure of its fundamental group
M7 (Z) as a pro-algebraic group (via the graded Hopf algebra A(Z));
this comes from our knowledge of algebraic K-theory of integer rings

© We know how to write down explicit elements of O(7{"(Xgp)) and
have a formula for their coproducts; these are our Li}, (or more
generally, Li} . ;)

@ We know how to write down explicit elements of O(7{7(Z)) and
have a formula for their coproducts; these are our Li}(z) for
z € X(Z) (or more generally, Liy, .. , (2))

@ We know how to compute (up to p-adic approximation) p-adic
periods of these elements and p-adic power series for the
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1. Motives for Elliptic Curves

@ The de Rham fundamental group of E’ lies not in MT(Z), but in a
larger category MEg/(Z) of mixed motives generated by Tate
motives and the Tate module H;(E’) of E’

@ We know this category to exist only by assuming the Beilinson-Soulé
Vanishing Conjecture; but we may still use candidate categories
constructed by Owen Patashnick and others
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1. Motives for Elliptic Curves

@ The de Rham fundamental group of E’ lies not in MT(Z), but in a
larger category MEg/(Z) of mixed motives generated by Tate
motives and the Tate module H;(E’) of E’

@ We know this category to exist only by assuming the Beilinson-Soulé
Vanishing Conjecture; but we may still use candidate categories
constructed by Owen Patashnick and others

@ For a non-CM elliptic curve, the Tannakian fundamental group
W?AE’E (Z) of MEE/(Z) is an extension of GL, by a pro-unipotent
group

@ In particular, the coordinate ring AEI(Z) of this pro-unipotent group
is “graded” by a GLy-action

@ To understand the pro-unipotent part, we must compute dimensions
of motivic Ext groups, or equivalently, of algebraic K-theory, as
described on the next slide

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 21 /27



2. Algebraic K-Theory for Elliptic Curves

@ For each irreducible representation V' of GLy, we need to know the
. . 1
dlmen?,lon of ExtMgE,(Z)(V,@(O)) .
@ For this, we must use the Bloch-Kato conjecture for powers of the
elliptic curve E along with Euler characteristic formulas in Galois
cohomology.

Conjecture (Bloch-Kato)

For a smooth projective variety Z/Q, n > 0, and 2r # n + 1, the natural
map

Kar-1-n(2)8) — H}(Go, HE(Zg, @p(1)))

is bijective.

e Note that EXtMgE,(Z)(Hl(E), @Q(0)) has dimension the rank of the
Mordell-Weil group E(Q).

@ In particular, it is an arithmetic invariant that depends heavily on
which elliptic curve E we choose
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3. Functions on the de Rham Fundamental Group

We need a way to explicitly write down regular functions on
m"(Eg, O)

@ The story is much more complicated than for P!\ {0,1, 00} because
there is no canonical de Rham path (because unipotent vector
bundles can be non-trivial)

@ Therefore, we must restrict a quotient of wi‘n(E(’@, O) defined using
the Hodge filtration

@ Such a function should correspond to a function on E’ defined by a
(homotopy-invariant) iterated integral based at O

e The analogous object for P\ {0,1,00} is Li§ . , (z), where z is
viewed as a variable endpoint for the iterated integral (aka Lij .. )

@ We need to write them down in such a way that we can compute
their coproducts and know which GLj-isotypic component they lie in.
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4. Functions on the Motivic Galois Group

@ Once one has functions on the appropriate quotient of W?“(E@, 0),
we can input specific values of z € E/(Z) to get elements of AE'(Z)

@ We need a coproduct formula for these elements, analogous to the
Ihara-Goncharov coproduct formula

@ Patashnick’s category of mixed elliptic motives is defined using a bar
construction on Bloch's cycle complexes (similar to the approach of
Bloch-Kriz for mixed Tate motives)

@ Bloch-Kriz express multiple zeta values in terms of cycles, so one

might also be able to write such elements down in terms of cycles on
powers of E

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 24 /27



5. p-adic integration

@ Given an iterated integral on E’, there are methods due to
Balakrishnan for computing its p-adic version
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Useful References/Credits

The following are on arXiv:

@ Mixed Tate Motives and the Unit Equation, Ishai Dan-Cohen and
Stefan Wewers
Mixed Tate Motives and the Unit Equation I, Ishai Dan-Cohen
Single-Valued Motivic Periods, Francis Brown
Motivic Periods and P! \ {0, 1, 00}, Francis Brown
Notes on Motivic Periods, Francis Brown

Integral Points on Curves, the Unit Equation, and Motivic Periods,

Francis Brown.

@ The polylog quotient and the Goncharov quotient in computational
Chabauty-Kim theory |, David Corwin and Ishai Dan-Cohen

@ The polylog quotient and the Goncharov quotient in computational

Chabauty-Kim theory I, David Corwin and Ishai Dan-Cohen

The elliptic case involves ongoing discussions with Ishai Dan-Cohen,
Stefan Wewers, Owen Patashnick, and others.
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Thank You!
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