
Explicit Motivic Chabauty-Kim Method

D. Corwin

October 30, 2019

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 1 / 27



Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= Ok [1/S ])
and X = P1 \ {0, 1,∞}.

Theorem

There are finitely many z ,w ∈ Z× such that z + w = 1
Equivalently, |X (Z )| <∞.

Originally proven by Siegel using Diophantine approximation around 1929.

Problem

Find X (Z ) for various Z , or even find an algorithm.

In 2004, Minhyong Kim gave a proof in the case k = Q using a
non-abelian version of Chabauty’s method.

Refined Problem (Chabauty-Kim Theory)

Find p-adic analytic (Coleman) functions on X (Zp) that vanish on X (Z ).

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 2 / 27



Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= Ok [1/S ])
and X = P1 \ {0, 1,∞}.

Theorem

There are finitely many z ,w ∈ Z× such that z + w = 1
Equivalently, |X (Z )| <∞.

Originally proven by Siegel using Diophantine approximation around 1929.

Problem

Find X (Z ) for various Z , or even find an algorithm.

In 2004, Minhyong Kim gave a proof in the case k = Q using a
non-abelian version of Chabauty’s method.

Refined Problem (Chabauty-Kim Theory)

Find p-adic analytic (Coleman) functions on X (Zp) that vanish on X (Z ).

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 2 / 27



(p-adic) Polylogarithms

The p-adic analytic functions that appear are p-adic polylogarithms.

We now recall the definition of the k-logarithm for k ∈ Z≥1

Definition

Lik(z) :=
∞∑
n=1

zn

nk

These functions satisfy the recursive differential equation

d

dz
Lik(z) =

1

z
Lik−1(z),

with Li1(z) = − log(1− z) and Lik(0) = 0 for all k .

p-adic polylogarithms Lipk(z) are defined as p-adic analytic functions
satisfying the same differential equations

As the p-adics are totally disconnected, one must use Coleman’s
theory to fix the constants of integration
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Recent Explicit Results

Kim’s method defines a set IZ of Qp-valued analytic functions on X (Zp)
that vanish on X (Z ) and have finitely many zeroes (for any p /∈ S).

Theorem (Dan-Cohen, Wewers, 2013)

For Z = Z[1/`] and all p, the following Coleman function is in IZ :

2Lip2(z)− logp(z)Lip1(z)

For Z = Z[1/2] and p 6= 2, the following Coleman function is in IZ :

24 logp(2)ζp(3)Lip4(z) +
8

7

(
logp(2)4 + 24Lip4(

1

2
)

)
logp(z)Lip3(z)

+

(
4

21
logp(2)4 +

32

7
Lip4(

1

2
) + logp(2)ζp(3)

)
logp(z)3 logp(1− z)
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Recent Results, cont.

In 2015, Dan-Cohen posted a preprint showing that this could be
made into an algorithm, whose halting is conditional on refinements
of conjectures due to Kim and Goncharov.

Theorem (C, Dan-Cohen, 2017)

For Z = Z[1/3] and p 6= 2, 3, the following Coleman function is in IZ4 :

ζp(3) logp(3)Lip4(z)−
(

18

13
Lip4(3)− 3

52
Lip4(9)

)
logp(z)Lip3(z)

−
(logp(z))3Lip1(z)

24

(
ζp(3) logp(3)− 4

(
18

13
Lip4(3)− 3

52
Lip4(9)

))
,
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Recent results, cont.

Dan-Cohen–Wewers and C–Dan-Cohen have used these to verify a
conjecture of Kim in special cases:

Conjecture (Kim et al., 2014)

The set of common zeroes of elements of IZ is precisely X (Z ).

Another arXiv preprint of C–Dan-Cohen presents an improved
algorithm

If the algorithm halts, then it provably gives the correct answer

Kim’s conjecture and some standard conjectures about mixed motives
imply the algorithm halts
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Next Goal: Chabauty-Kim for a Punctured Elliptic Curve

Let Z be an integer ring with a finite set of primes inverted (= Ok [1/S ])
and E ′ = E \ {O} for some elliptic curve E/Q with good reduction outside
S .

Theorem

|E ′(Z )| <∞

Also proven by Siegel; re-proven when E is CM by Kim.

Problem

Extend the previous method from P1 \ {0, 1,∞} to E ′ using mixed elliptic
motives in place of mixed Tate motives (more on this later).

Some of what we need in this case is conjectural, but we can still do
computations.

Eventual goal: show that standard conjectures about mixed motives
plus Kim’s conjecture imply an effective Faltings
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How does one cut out X (Z ) inside X (Zp)?

Let p /∈ S . For any z ∈ X (Zp) and k ∈ Z≥1, we have Lipk(z) ∈ Qp

But, when z ∈ X (Z ), we can do better:

There is a graded Hopf algebra A(Z ) over Q, finite-dimensional in
each degree, with a (conjecturally injective) ring homomorphism

perp : A(Z )→ Qp

Each z ∈ X (Z ) gives rise to an element Liuk(z) ∈ A(Z ) such that

Lipk(z) = perp(Liuk(z))

Furthermore, using deep results in arithmetic (about algebraic
K-theory), we can describe A(Z ) abstractly as a graded Hopf algebra

This extra structure on A(Z ) along with precise information about its
size greatly limits which z ∈ X (Zp) can actually be in X (Z )
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Using the extra structure to define IZ

Definition

Let πPL
1 (X ) := Spec(Q[logu,Liu1,Liu2, · · · ]).

Each z ∈ X (Z ) defines a homomorphism κ(z) : O(πPL
1 (X ))→ A(Z )

sending Liuk to Liuk(z).

There is furthermore a graded Hopf algebra structure on O(πPL
1 (X )),

in which Liuk has degree k, logu has degree 1, and the reduced
coproduct ∆′ is given by:

∆′Liuk =
k−1∑
i=1

Liuk−i ⊗
(logu)i

i !
.

Fact

For z ∈ X (Z ), the homomorphism κ(z) is a homomorphism of graded
Hopf algebras.
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Using the extra structure to define IZ , cont.

For a prime p, this gives us a diagram:

X (Z ) −−−−→ X (Zp)

κ

y

y

HomGrHopf(O(πPL
1 (X )),A(Z ))

perp−−−−→ HomAlg(O(πPL
1 (X )),Qp)

We recall the period map perp : A(Z )→ Qp for p ∈ Spec(Z ).

This induces

HomGrHopf(O(πPL
1 (X )),A(Z ))

perp−−→ HomAlg(O(πPL
1 (X )),Qp).

In addition, an arbitrary z ∈ X (Zp) induces a homomorphism
O(πPL

1 (X ))→ Qp sending Liuk to Lipk(z).
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Motivic Kim’s Cutter, cont.

X (Z ) −−−−→ X (Zp)

κ

y y
HomGrHopf(O(πPL

1 (X )),A(Z ))
perp−−−−→ HomAlg(O(πPL

1 (X )),Qp)

The above diagram is known as Kim’s Cutter.

We may upgrade the bottom horizontal morphism to a map of
schemes, as follows:

We define a scheme Z 1,Gm

PL over Q by

Z 1,Gm

PL (R) = HomGrHopf(O(πPL
1 (X )),A(Z ))⊗ R) for a Q-algebra R.

The bottom arrow may then be viewed as a map of Qp-schemes

Z 1,Gm

PL ⊗Qp → πPL
1 (X )⊗Qp
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Motivic Kim’s Cutter, cont.

X (Z ) −−−−→ X (Zp)

κ

y y
Z 1,Gm

PL ⊗Qp

perp−−−−→ πPL
1 (X )⊗Qp

Dimension counts show that the bottom horizontal arrow is
non-dominant, which is what proves Siegel’s theorem.

Therefore, there is a nonzero ideal IZPL ⊆ O(πPL
1 (X ))⊗Qp vanishing

on the image of the bottom arrow, known as the (polylogarithmic)
Chabauty-Kim ideal.

The right-hand vertical map is Coleman analytic, so elements of IZPL
pull back to Coleman functions on X (Zp) that vanish on X (Z ); these
are elements of IZ
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Where does A(Z ) come from?

There is a Q-linear Tannakian category MT (Z ) of mixed Tate
motives over Z

MT (Z ) is the category of representations of the pro-algebraic group
πMT
1 (Z ) over Q.

This group has a semidirect product decomposition

πMT
1 (Z ) = πun

1 (Z ) oGm,

where πun
1 (Z ) is pro-unipotent.

Then A(Z ) := O(πun
1 (Z )), with grading coming from the Gm-action.

A(Z ) is known as the ring of mixed Tate motivic periods over Z

Its elements are formal versions of numbers that arise from (p-adic)
integrals of algebraic differential forms
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integrals of algebraic differential forms
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Polylogarithms as Motivic Periods

How do polylogarithms relate to A(Z )?

The differential equation shows that polylogarithms can be expressed
via interated integration on P1 \ {0, 1,∞}
These integrals show up in relative cohomology of powers
(P1 \ {0, 1,∞})n

The relevant relative cohomology groups give objects in MT (Z )

One can abstractly describe the graded Hopf algebra A(Z ) using our
knowledge of

Ext1MT (Z)(Q(−n),Q(0)) ∼= K2n−1(Z )Q

This is given in more detail on the next slide:
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Abstract Structure of A(Z )

As a graded vector space, A(Z[1/S ]) is the free vector space over Q
on symbols fw , where w is a word in the set {τ`}`∈S ∪ {σ2n+1}n≥1,
with τ` in degree 1 and σ2n+1 in degree 2n + 1.

For words w1,w2, the product is given as follows:

fw1fw2
:=

∑
σ∈X(`(w1),`(w2))

fσ(w1w2),

where ` denotes the length of a word, X(`(w1), `(w2)) ⊆ S`(w1)+`(w2)

denotes the group of shuffle permutations of type (`(w1), `(w2)), and
w1w2 denotes concatenation.

E.g., fτ2σ3fτ2 = 2fτ2τ2σ3 + fτ2σ3τ2 .

The coproduct ∆ is given by

∆fw :=
∑

w1w2=w

fw1 ⊗ fw2 = fw ⊗ 1 + ∆′fw + 1⊗ fw .

E.g., ∆fτ2σ3 = 1⊗ fτ2σ3 + fτ2 ⊗ fσ3 + fτ2σ3 ⊗ 1, so ∆′fτ2σ3 = fτ2 ⊗ fσ3 .
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Computing Explicit Generators for A(Z )

To compute the functions, we need to write the elements fw explicitly
in the form Liun(z).

One may choose:
fτ` = logu(`)

fσ2n+1 = ζu(2n + 1) = Liu2n+1(1),

where fσ2n+1 corresponds to a generator of K4n+1(Z ).

Up to degree 4, A(Z[1/`]) has the basis

{1, fτ` , fτ2` , fτ3` , fσ3 , fτ4` , fτ`σ3 , fσ3τ`}.

As f nτ` = n!fτn` , we explicitly understand everything except the last two
basis elements.

As fτ`fσ3 = fτ`σ3 + fσ3τ` , we need to understand only the last element.

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 16 / 27



Computing Explicit Generators for A(Z )

To compute the functions, we need to write the elements fw explicitly
in the form Liun(z).

One may choose:
fτ` = logu(`)

fσ2n+1 = ζu(2n + 1) = Liu2n+1(1),

where fσ2n+1 corresponds to a generator of K4n+1(Z ).

Up to degree 4, A(Z[1/`]) has the basis

{1, fτ` , fτ2` , fτ3` , fσ3 , fτ4` , fτ`σ3 , fσ3τ`}.

As f nτ` = n!fτn` , we explicitly understand everything except the last two
basis elements.

As fτ`fσ3 = fτ`σ3 + fσ3τ` , we need to understand only the last element.

Corwin Explicit Motivic Chabauty-Kim Method October 30, 2019 16 / 27



Finding fσ3τ2

Finding fσ3τ` depends on `. We start with ` = 2.

The structure tells us that fσ3τ` is the unique element whose reduced
coproduct

fσ3 ⊗ fτ` = ζu(3)⊗ logu(`).

As 1/2 ∈ X (Z ), a natural element to try is Liu4(1/2).
The coproduct formula expresses ∆′Liu4(1/2) in terms of Liu3(1/2),
which one must then write in terms of fσ3 = ζu(3) and
fτ3`

= logu(2)3/6.

Using the coproduct formula and the fact that logu(1/2) = −logu(2),
one may check that

∆′
(

Liu3(1/2)− (logu(2))3

6

)
= 0.

This implies that Liu3(1/2)− (logu(2))3

6 is a rational multiple of
fσ3 = ζu(3).
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Finding fσ3τ2, cont.

By p-adically approximating

Lip3(1/2)− (logp(2))3

6

ζp(3)

in SAGE for various small p, one seems to get the value 7/8.

The identity Liu3(1/2) = (logu(2))3

6 + 7
8ζ

u(3) is verified in the
appendices of Dan-Cohen–Wewers using identities for polylogarithms.

Using this identity, one may check that

∆′
(
−8

7

(
logu(2)4

24
+ Liu4(1/2)

))
= ζu(3)⊗ logu(2),

as desired.
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Finding fσ3τ3

In C–Dan-Cohen, we show that for ` = 3, we have

fσ3τ` =
18

13
Liu4(3)− 3

52
Liu4(9).

The difficulty here is that X (Z[1/3]) = ∅, so we cannot easily write
elements of A(Z[1/3]) other than logu(3) and ζu(n).

To deal with this, we must consider the larger Hopf algebra A(Z[1/6]).

The abstract coordinates tell us how A(Z[1/3]) sits inside A(Z[1/6]).
Indeed, Liu4(3),Liu4(9) ∈ A(Z[1/6]) \ A(Z[1/3]).

A(Z[1/6]) is already more complicated in weight 2, as
logu(2)2, logu(3)2, logu(2)logu(3) do not span the weight 2 part. By
computing its coproduct, one may show that Liu2(−2) = −fτ3τ2 .

Similar to the ` = 2 case, one must figure out the rational number
Liu3 (9)−12Liu3 (3)

ζu(3) by p-adic approximation; we have found that it is about

−26
3 .
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Summary: What ingredients did we need?

In order to see how one might generalize to the elliptic case, let’s review
some key ingredients:

1 We have πPL
1 (Z ), whose coordinate ring lives in a Tannakian category

of motives MT (Z );

more generally we can consider the de Rham
fundamental group O(πun

1 (XQ)), which contains Liuk1,··· ,kr for r > 1
2 We understand the abstract structure of its fundamental group
πMT1 (Z ) as a pro-algebraic group (via the graded Hopf algebra A(Z ));
this comes from our knowledge of algebraic K-theory of integer rings

3 We know how to write down explicit elements of O(πun
1 (XQ)) and

have a formula for their coproducts; these are our Liuk (or more
generally, Liuk1,··· ,kr )

4 We know how to write down explicit elements of O(πMT1 (Z )) and
have a formula for their coproducts; these are our Liuk(z) for
z ∈ X (Z ) (or more generally, Liuk1,··· ,kr (z))

5 We know how to compute (up to p-adic approximation) p-adic
periods of these elements and p-adic power series for the
corresponding functions
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1. Motives for Elliptic Curves

The de Rham fundamental group of E ′ lies not in MT (Z ), but in a
larger category MEE ′(Z ) of mixed motives generated by Tate
motives and the Tate module H1(E ′) of E ′

We know this category to exist only by assuming the Beilinson-Soulé
Vanishing Conjecture; but we may still use candidate categories
constructed by Owen Patashnick and others

For a non-CM elliptic curve, the Tannakian fundamental group

πME,E ′

1 (Z ) of MEE ′(Z ) is an extension of GL2 by a pro-unipotent
group

In particular, the coordinate ring AE ′
(Z ) of this pro-unipotent group

is “graded” by a GL2-action

To understand the pro-unipotent part, we must compute dimensions
of motivic Ext groups, or equivalently, of algebraic K-theory, as
described on the next slide
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1. Motives for Elliptic Curves

The de Rham fundamental group of E ′ lies not in MT (Z ), but in a
larger category MEE ′(Z ) of mixed motives generated by Tate
motives and the Tate module H1(E ′) of E ′

We know this category to exist only by assuming the Beilinson-Soulé
Vanishing Conjecture; but we may still use candidate categories
constructed by Owen Patashnick and others
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2. Algebraic K-Theory for Elliptic Curves

For each irreducible representation V of GL2, we need to know the
dimension of Ext1MEE ′ (Z)(V ,Q(0))

For this, we must use the Bloch-Kato conjecture for powers of the
elliptic curve E along with Euler characteristic formulas in Galois
cohomology.

Conjecture (Bloch-Kato)

For a smooth projective variety Z/Q, n > 0, and 2r 6= n + 1, the natural
map

K2r−1−n(Z )
(r)
Qp
→ H1

f (GQ,H
n
ét(ZQ,Qp(r)))

is bijective.

Note that ExtMEE ′ (Z)(H
1(E ),Q(0)) has dimension the rank of the

Mordell-Weil group E (Q).

In particular, it is an arithmetic invariant that depends heavily on
which elliptic curve E we choose
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3. Functions on the de Rham Fundamental Group

We need a way to explicitly write down regular functions on
πun
1 (E ′Q,O)

The story is much more complicated than for P1 \ {0, 1,∞} because
there is no canonical de Rham path (because unipotent vector
bundles can be non-trivial)

Therefore, we must restrict a quotient of πun
1 (E ′Q,O) defined using

the Hodge filtration

Such a function should correspond to a function on E ′ defined by a
(homotopy-invariant) iterated integral based at O

The analogous object for P1 \ {0, 1,∞} is Liuk1,··· ,kr (z), where z is
viewed as a variable endpoint for the iterated integral (aka Liuk1,··· ,kr )

We need to write them down in such a way that we can compute
their coproducts and know which GL2-isotypic component they lie in.
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4. Functions on the Motivic Galois Group

Once one has functions on the appropriate quotient of πun
1 (E ′Q,O),

we can input specific values of z ∈ E ′(Z ) to get elements of AE ′
(Z )

We need a coproduct formula for these elements, analogous to the
Ihara-Goncharov coproduct formula

Patashnick’s category of mixed elliptic motives is defined using a bar
construction on Bloch’s cycle complexes (similar to the approach of
Bloch-Kriz for mixed Tate motives)

Bloch-Kriz express multiple zeta values in terms of cycles, so one
might also be able to write such elements down in terms of cycles on
powers of E
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5. p-adic integration

Given an iterated integral on E ′, there are methods due to
Balakrishnan for computing its p-adic version
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Useful References/Credits

The following are on arXiv:

Mixed Tate Motives and the Unit Equation, Ishai Dan-Cohen and
Stefan Wewers

Mixed Tate Motives and the Unit Equation II, Ishai Dan-Cohen

Single-Valued Motivic Periods, Francis Brown

Motivic Periods and P1 \ {0, 1,∞}, Francis Brown

Notes on Motivic Periods, Francis Brown

Integral Points on Curves, the Unit Equation, and Motivic Periods,
Francis Brown.

The polylog quotient and the Goncharov quotient in computational
Chabauty-Kim theory I, David Corwin and Ishai Dan-Cohen

The polylog quotient and the Goncharov quotient in computational
Chabauty-Kim theory II, David Corwin and Ishai Dan-Cohen

The elliptic case involves ongoing discussions with Ishai Dan-Cohen,
Stefan Wewers, Owen Patashnick, and others.
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Thank You!
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