Explicit Motivic Chabauty-Kim Method

D. Corwin

October 30, 2019

Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= $\mathcal{O}_k[1/S]$) and $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}$.

Theorem

```
There are finitely many z, w \in Z^{\times} such that z + w = 1
Equivalently, |X(Z)| < \infty.
```

Originally proven by Siegel using Diophantine approximation around 1929.

Background: The Unit Equation

Let Z be an integer ring with a finite set of primes inverted (= $\mathcal{O}_k[1/S]$) and $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}$.

Theorem

There are finitely many $z, w \in Z^{\times}$ such that z + w = 1Equivalently, $|X(Z)| < \infty$.

Originally proven by Siegel using Diophantine approximation around 1929.

Problem

Find X(Z) for various Z, or even find an algorithm.

In 2004, Minhyong Kim gave a proof in the case $k = \mathbb{Q}$ using a non-abelian version of Chabauty's method.

Refined Problem (Chabauty-Kim Theory)

Find *p*-adic analytic (Coleman) functions on $X(\mathbb{Z}_p)$ that vanish on X(Z).

(p-adic) Polylogarithms

- The *p*-adic analytic functions that appear are *p*-adic polylogarithms.
- We now recall the definition of the k-logarithm for $k \in \mathbb{Z}_{\geq 1}$

Definition		
	$\mathrm{Li}_k(z) := \sum_{n=1}^{\infty} \frac{z^n}{n^k}$	

(p-adic) Polylogarithms

- The *p*-adic analytic functions that appear are *p*-adic polylogarithms.
- We now recall the definition of the k-logarithm for $k \in \mathbb{Z}_{\geq 1}$

Definition

$$\operatorname{Li}_k(z) := \sum_{n=1}^{\infty} \frac{z^n}{n^k}$$

• These functions satisfy the recursive differential equation

$$\frac{d}{dz}\mathrm{Li}_k(z)=\frac{1}{z}\mathrm{Li}_{k-1}(z),$$

with $\operatorname{Li}_1(z) = -\log(1-z)$ and $\operatorname{Li}_k(0) = 0$ for all k.

- *p*-adic polylogarithms Li^p_k(z) are defined as *p*-adic analytic functions satisfying the same differential equations
- As the *p*-adics are totally disconnected, one must use Coleman's theory to fix the constants of integration

Recent Explicit Results

Kim's method defines a set \mathcal{I}^Z of \mathbb{Q}_p -valued analytic functions on $X(\mathbb{Z}_p)$ that vanish on X(Z) and have finitely many zeroes (for any $p \notin S$).

Recent Explicit Results

Kim's method defines a set \mathcal{I}^Z of \mathbb{Q}_p -valued analytic functions on $X(\mathbb{Z}_p)$ that vanish on X(Z) and have finitely many zeroes (for any $p \notin S$).

Theorem (Dan-Cohen, Wewers, 2013)

• For $Z = \mathbb{Z}[1/\ell]$ and all p, the following Coleman function is in \mathcal{I}^Z :

$$2\mathrm{Li}_2^p(z) - \log^p(z)\mathrm{Li}_1^p(z)$$

• For $Z = \mathbb{Z}[1/2]$ and $p \neq 2$, the following Coleman function is in \mathcal{I}^Z :

Recent Explicit Results

Kim's method defines a set \mathcal{I}^Z of \mathbb{Q}_p -valued analytic functions on $X(\mathbb{Z}_p)$ that vanish on X(Z) and have finitely many zeroes (for any $p \notin S$).

Theorem (Dan-Cohen, Wewers, 2013)

• For $Z = \mathbb{Z}[1/\ell]$ and all p, the following Coleman function is in \mathcal{I}^Z :

$$2\mathrm{Li}_2^p(z) - \log^p(z)\mathrm{Li}_1^p(z)$$

• For $Z = \mathbb{Z}[1/2]$ and $p \neq 2$, the following Coleman function is in \mathcal{I}^Z :

$$24 \log^{p}(2)\zeta^{p}(3) \operatorname{Li}_{4}^{p}(z) + \frac{8}{7} \left(\log^{p}(2)^{4} + 24 \operatorname{Li}_{4}^{p}(\frac{1}{2}) \right) \log^{p}(z) \operatorname{Li}_{3}^{p}(z) + \left(\frac{4}{21} \log^{p}(2)^{4} + \frac{32}{7} \operatorname{Li}_{4}^{p}(\frac{1}{2}) + \log^{p}(2)\zeta^{p}(3) \right) \log^{p}(z)^{3} \log^{p}(1-z)$$

• In 2015, Dan-Cohen posted a preprint showing that this could be made into an algorithm, whose halting is conditional on refinements of conjectures due to Kim and Goncharov.

Theorem (C, Dan-Cohen, 2017)

For $Z = \mathbb{Z}[1/3]$ and $p \neq 2, 3$, the following Coleman function is in \mathcal{I}_4^Z :

$$\zeta^{p}(3)\log^{p}(3)\mathrm{Li}_{4}^{p}(z) - \left(\frac{18}{13}\mathrm{Li}_{4}^{p}(3) - \frac{3}{52}\mathrm{Li}_{4}^{p}(9)\right)\log^{p}(z)\mathrm{Li}_{3}^{p}(z) \\ - \frac{(\log^{p}(z))^{3}\mathrm{Li}_{1}^{p}(z)}{24}\left(\zeta^{p}(3)\log^{p}(3) - 4\left(\frac{18}{13}\mathrm{Li}_{4}^{p}(3) - \frac{3}{52}\mathrm{Li}_{4}^{p}(9)\right)\right),$$

• Dan-Cohen–Wewers and C–Dan-Cohen have used these to verify a conjecture of Kim in special cases:

Conjecture (Kim et al., 2014)

The set of common zeroes of elements of \mathcal{I}^Z is precisely X(Z).

• Dan-Cohen–Wewers and C–Dan-Cohen have used these to verify a conjecture of Kim in special cases:

Conjecture (Kim et al., 2014)

The set of common zeroes of elements of \mathcal{I}^Z is precisely X(Z).

- Another arXiv preprint of C–Dan-Cohen presents an improved algorithm
- If the algorithm halts, then it provably gives the correct answer
- Kim's conjecture and some standard conjectures about mixed motives imply the algorithm halts

Next Goal: Chabauty-Kim for a Punctured Elliptic Curve

Let Z be an integer ring with a finite set of primes inverted $(= O_k[1/S])$ and $E' = E \setminus \{O\}$ for some elliptic curve E/\mathbb{Q} with good reduction outside S.

Theorem	
$ E'(Z) < \infty$	

Also proven by Siegel; re-proven when *E* is CM by Kim.

Next Goal: Chabauty-Kim for a Punctured Elliptic Curve

Let Z be an integer ring with a finite set of primes inverted $(= O_k[1/S])$ and $E' = E \setminus \{O\}$ for some elliptic curve E/\mathbb{Q} with good reduction outside S.

Theorem $|E'(Z)| < \infty$

Also proven by Siegel; re-proven when E is CM by Kim.

Problem

Extend the previous method from $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ to E' using mixed elliptic motives in place of mixed Tate motives (more on this later).

- Some of what we need in this case is conjectural, <u>but</u> we can still do computations.
- Eventual goal: show that standard conjectures about mixed motives plus Kim's conjecture imply an effective Faltings

• Let $p \notin S$. For any $z \in X(\mathbb{Z}_p)$ and $k \in \mathbb{Z}_{\geq 1}$, we have $\operatorname{Li}_k^p(z) \in \mathbb{Q}_p$

- Let $p \notin S$. For any $z \in X(\mathbb{Z}_p)$ and $k \in \mathbb{Z}_{\geq 1}$, we have $\operatorname{Li}_k^p(z) \in \mathbb{Q}_p$
- But, when $z \in X(Z)$, we can do better:

- Let $p \notin S$. For any $z \in X(\mathbb{Z}_p)$ and $k \in \mathbb{Z}_{\geq 1}$, we have $\operatorname{Li}_k^p(z) \in \mathbb{Q}_p$
- But, when $z \in X(Z)$, we can do better:
- There is a graded Hopf algebra A(Z) over \mathbb{Q} , finite-dimensional in each degree, with a (conjecturally injective) ring homomorphism

$$\operatorname{per}_{p} \colon A(Z) \to \mathbb{Q}_{p}$$

• Each $z \in X(Z)$ gives rise to an element $\operatorname{Li}_k^{\mathfrak{u}}(z) \in A(Z)$ such that

$$\mathrm{Li}_k^p(z) = \mathrm{per}_p(\mathrm{Li}_k^\mathfrak{u}(z))$$

- Let $p \notin S$. For any $z \in X(\mathbb{Z}_p)$ and $k \in \mathbb{Z}_{\geq 1}$, we have $\operatorname{Li}_k^p(z) \in \mathbb{Q}_p$
- But, when $z \in X(Z)$, we can do better:
- There is a graded Hopf algebra A(Z) over \mathbb{Q} , finite-dimensional in each degree, with a (conjecturally injective) ring homomorphism

$$\operatorname{per}_{\rho} \colon A(Z) \to \mathbb{Q}_{\rho}$$

• Each $z \in X(Z)$ gives rise to an element $\operatorname{Li}^{\operatorname{\mathfrak{u}}}_k(z) \in A(Z)$ such that

$$\operatorname{Li}_{k}^{p}(z) = \operatorname{per}_{p}(\operatorname{Li}_{k}^{u}(z))$$

- Furthermore, using deep results in arithmetic (about algebraic K-theory), we can describe A(Z) abstractly as a graded Hopf algebra
- This extra structure on A(Z) along with precise information about its size greatly limits which z ∈ X(Z_p) can actually be in X(Z)

Definition

Let $\pi_1^{\mathrm{PL}}(X) := \operatorname{Spec}(\mathbb{Q}[\log^{\mathfrak{u}}, \operatorname{Li}_1^{\mathfrak{u}}, \operatorname{Li}_2^{\mathfrak{u}}, \cdots]).$

Definition

Let $\pi_1^{\mathrm{PL}}(X) := \operatorname{Spec}(\mathbb{Q}[\log^{\mathfrak{u}}, \operatorname{Li}_1^{\mathfrak{u}}, \operatorname{Li}_2^{\mathfrak{u}}, \cdots]).$

- Each z ∈ X(Z) defines a homomorphism κ(z): O(π₁^{PL}(X)) → A(Z) sending Li^u_k to Li^u_k(z).
- There is furthermore a graded Hopf algebra structure on $\mathcal{O}(\pi_1^{\text{PL}}(X))$, in which $\text{Li}_k^{\mathfrak{u}}$ has degree k, $\log^{\mathfrak{u}}$ has degree 1, and the reduced coproduct Δ' is given by:

Definition

Let
$$\pi_1^{\operatorname{PL}}(X) := \operatorname{Spec}(\mathbb{Q}[\log^{\mathfrak{u}}, \operatorname{Li}_1^{\mathfrak{u}}, \operatorname{Li}_2^{\mathfrak{u}}, \cdots]).$$

- Each z ∈ X(Z) defines a homomorphism κ(z): O(π₁^{PL}(X)) → A(Z) sending Li^u_k to Li^u_k(z).
- There is furthermore a graded Hopf algebra structure on O(π₁^{PL}(X)), in which Li^u_k has degree k, log^u has degree 1, and the reduced coproduct Δ' is given by:

$$\Delta' \mathrm{Li}_{k}^{\mathfrak{u}} = \sum_{i=1}^{k-1} \mathrm{Li}_{k-i}^{\mathfrak{u}} \otimes \frac{(\log^{\mathfrak{u}})^{i}}{i!}$$

Definition

Let
$$\pi_1^{\operatorname{PL}}(X) := \operatorname{Spec}(\mathbb{Q}[\log^{\mathfrak{u}}, \operatorname{Li}_1^{\mathfrak{u}}, \operatorname{Li}_2^{\mathfrak{u}}, \cdots]).$$

- Each z ∈ X(Z) defines a homomorphism κ(z): O(π₁^{PL}(X)) → A(Z) sending Li^u_k to Li^u_k(z).
- There is furthermore a graded Hopf algebra structure on O(π₁^{PL}(X)), in which Li^u_k has degree k, log^u has degree 1, and the reduced coproduct Δ' is given by:

$$\Delta' \mathrm{Li}_{k}^{\mathfrak{u}} = \sum_{i=1}^{k-1} \mathrm{Li}_{k-i}^{\mathfrak{u}} \otimes \frac{(\log^{\mathfrak{u}})^{i}}{i!}.$$

Fact

For $z \in X(Z)$, the homomorphism $\kappa(z)$ is a homomorphism of graded Hopf algebras.

Corwin

$$\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_p) \\ & & & & \\ & & & \\ & & & \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \end{array}$$

$$\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_p) \\ & & & \\ & & & \\ & & \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \end{array}$$

• We recall the period map $\operatorname{per}_{\mathfrak{p}} \colon A(Z) \to \mathbb{Q}_p$ for $p \in \operatorname{Spec}(Z)$.

 $\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_p) \\ & & & \\ & & & \\ & & \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), A(Z)) \end{array}$

- We recall the period map $\operatorname{per}_{\mathfrak{p}} \colon A(Z) \to \mathbb{Q}_p$ for $p \in \operatorname{Spec}(Z)$.
- This induces $\operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \xrightarrow{\operatorname{per}_p} \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathbb{Q}_p).$

 $\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_{\rho}) \\ & & & \\ & & & \\ & & \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathcal{A}(Z)) & \xrightarrow{\operatorname{per}_{\mathfrak{p}}} & \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathbb{Q}_{\rho}) \end{array}$

- We recall the period map $\operatorname{per}_{\mathfrak{p}} \colon A(Z) o \mathbb{Q}_p$ for $p \in \operatorname{Spec}(Z)$.
- This induces $\operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \xrightarrow{\operatorname{per}_p} \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathbb{Q}_p).$

 $\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_{\rho}) \\ & & & \\ & & & \\ & & \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathcal{A}(Z)) & \stackrel{\operatorname{per}_{\mathfrak{p}}}{\longrightarrow} & \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathbb{Q}_{\rho}) \end{array}$

- We recall the period map $\operatorname{per}_{\mathfrak{p}} \colon A(Z) o \mathbb{Q}_p$ for $p \in \operatorname{Spec}(Z)$.
- This induces $\operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \xrightarrow{\operatorname{per}_p} \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathbb{Q}_p).$
- In addition, an arbitrary $z \in X(\mathbb{Z}_p)$ induces a homomorphism $\mathcal{O}(\pi_1^{\mathrm{PL}}(X)) \to \mathbb{Q}_p$ sending $\mathrm{Li}_k^{\mathfrak{u}}$ to $\mathrm{Li}_k^p(z)$.

10 / 27

- We recall the period map $\operatorname{per}_{\mathfrak{p}} \colon A(Z) o \mathbb{Q}_p$ for $p \in \operatorname{Spec}(Z)$.
- This induces $\operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathcal{A}(Z)) \xrightarrow{\operatorname{per}_p} \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), \mathbb{Q}_p).$
- In addition, an arbitrary $z \in X(\mathbb{Z}_p)$ induces a homomorphism $\mathcal{O}(\pi_1^{\mathrm{PL}}(X)) \to \mathbb{Q}_p$ sending Li_k^u to $\mathrm{Li}_k^p(z)$.

10 / 27

• The above diagram is known as Kim's Cutter.

- The above diagram is known as *Kim's Cutter*.
- We may upgrade the bottom horizontal morphism to a map of schemes, as follows:

 $\begin{array}{ccc} X(Z) & \longrightarrow & X(\mathbb{Z}_{p}) \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathcal{A}(Z)) & \xrightarrow{\operatorname{per}_{\mathfrak{p}}} & \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{O}(\pi_{1}^{\operatorname{PL}}(X)), \mathbb{Q}_{p}) \end{array}$

- The above diagram is known as *Kim's Cutter*.
- We may upgrade the bottom horizontal morphism to a map of schemes, as follows:
- We define a scheme Z_{PL}^{1,\mathbb{G}_m} over \mathbb{Q} by $Z_{PL}^{1,\mathbb{G}_m}(R) = \operatorname{Hom}_{\operatorname{GrHopf}}(\mathcal{O}(\pi_1^{\operatorname{PL}}(X)), A(Z)) \otimes R)$ for a \mathbb{Q} -algebra R.
- The bottom arrow may then be viewed as a map of \mathbb{Q}_p -schemes

$$Z^{1,\mathbb{G}_m}_{\mathrm{PL}}\otimes \mathbb{Q}_p o \pi^{\mathrm{PL}}_1(X)\otimes \mathbb{Q}_p$$

3

< 🗗 🕨 🔸

• Dimension counts show that the bottom horizontal arrow is non-dominant, which is what proves Siegel's theorem.

- Dimension counts show that the bottom horizontal arrow is non-dominant, which is what proves Siegel's theorem.
- Therefore, there is a nonzero ideal $\mathcal{I}_{PL}^Z \subseteq \mathcal{O}(\pi_1^{PL}(X)) \otimes \mathbb{Q}_p$ vanishing on the image of the bottom arrow, known as the *(polylogarithmic) Chabauty-Kim ideal*.
- The right-hand vertical map is Coleman analytic, so elements of \mathcal{I}_{PL}^{Z} pull back to Coleman functions on $X(\mathbb{Z}_p)$ that vanish on X(Z); these are elements of \mathcal{I}^{Z}

Where does A(Z) come from?

- There is a Q-linear Tannakian category $\mathcal{MT}(Z)$ of *mixed Tate motives* over Z
- $\mathcal{MT}(Z)$ is the category of representations of the pro-algebraic group $\pi_1^{\text{MT}}(Z)$ over \mathbb{Q} .

Where does A(Z) come from?

- There is a Q-linear Tannakian category MT(Z) of mixed Tate motives over Z
- $\mathcal{MT}(Z)$ is the category of representations of the pro-algebraic group $\pi_1^{\text{MT}}(Z)$ over \mathbb{Q} .
- This group has a semidirect product decomposition

$$\pi_1^{\mathrm{MT}}(Z) = \pi_1^{\mathrm{un}}(Z) \rtimes \mathbb{G}_m,$$

where $\pi_1^{\text{un}}(Z)$ is pro-unipotent.

• Then $A(Z) := \mathcal{O}(\pi_1^{\mathrm{un}}(Z))$, with grading coming from the \mathbb{G}_m -action.

Where does A(Z) come from?

- There is a Q-linear Tannakian category MT(Z) of mixed Tate motives over Z
- $\mathcal{MT}(Z)$ is the category of representations of the pro-algebraic group $\pi_1^{MT}(Z)$ over \mathbb{Q} .
- This group has a semidirect product decomposition

$$\pi_1^{\mathrm{MT}}(Z) = \pi_1^{\mathrm{un}}(Z) \rtimes \mathbb{G}_m,$$

where $\pi_1^{\text{un}}(Z)$ is pro-unipotent.

- Then $A(Z) := \mathcal{O}(\pi_1^{\mathrm{un}}(Z))$, with grading coming from the \mathbb{G}_m -action.
- A(Z) is known as the ring of mixed Tate motivic periods over Z
- Its elements are formal versions of numbers that arise from (p-adic) integrals of algebraic differential forms

Polylogarithms as Motivic Periods

• How do polylogarithms relate to A(Z)?

- How do polylogarithms relate to A(Z)?
- The differential equation shows that polylogarithms can be expressed via interated integration on $\mathbb{P}^1 \setminus \{0, 1, \infty\}$
- These integrals show up in relative cohomology of powers $(\mathbb{P}^1\setminus\{0,1,\infty\})^n$
- The relevant relative cohomology groups give objects in $\mathcal{MT}(Z)$

- How do polylogarithms relate to A(Z)?
- The differential equation shows that polylogarithms can be expressed via interated integration on $\mathbb{P}^1 \setminus \{0, 1, \infty\}$
- These integrals show up in relative cohomology of powers $(\mathbb{P}^1\setminus\{0,1,\infty\})^n$
- The relevant relative cohomology groups give objects in $\mathcal{MT}(Z)$
- One can abstractly describe the graded Hopf algebra A(Z) using our knowledge of

$$\operatorname{Ext}^{1}_{\mathcal{MT}(Z)}(\mathbb{Q}(-n),\mathbb{Q}(0))\cong K_{2n-1}(Z)_{\mathbb{Q}}$$

• This is given in more detail on the next slide:

 As a graded vector space, A(Z[1/S]) is the free vector space over Q on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.

- As a graded vector space, A(Z[1/S]) is the free vector space over Q on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.
- For words w_1, w_2 , the product is given as follows:

- As a graded vector space, A(Z[1/S]) is the free vector space over Q on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.
- For words w_1, w_2 , the product is given as follows:

$$f_{w_1}f_{w_2} := \sum_{\sigma \in \operatorname{III}(\ell(w_1), \ell(w_2))} f_{\sigma(w_1w_2)},$$

- As a graded vector space, A(ℤ[1/S]) is the free vector space over ℚ on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.
- For words w_1, w_2 , the product is given as follows:

$$f_{w_1}f_{w_2} := \sum_{\sigma \in \mathrm{III}(\ell(w_1), \ell(w_2))} f_{\sigma(w_1w_2)},$$

where ℓ denotes the length of a word, $\operatorname{III}(\ell(w_1), \ell(w_2)) \subseteq S_{\ell(w_1)+\ell(w_2)}$ denotes the group of shuffle permutations of type $(\ell(w_1), \ell(w_2))$, and w_1w_2 denotes concatenation.

- As a graded vector space, A(Z[1/S]) is the free vector space over Q on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.
- For words w_1, w_2 , the product is given as follows:

$$f_{w_1}f_{w_2} := \sum_{\sigma \in \mathrm{III}(\ell(w_1), \ell(w_2))} f_{\sigma(w_1w_2)},$$

where ℓ denotes the length of a word, $\operatorname{III}(\ell(w_1), \ell(w_2)) \subseteq S_{\ell(w_1)+\ell(w_2)}$ denotes the group of shuffle permutations of type $(\ell(w_1), \ell(w_2))$, and w_1w_2 denotes concatenation.

• E.g., $f_{\tau_2\sigma_3}f_{\tau_2} = 2f_{\tau_2\tau_2\sigma_3} + f_{\tau_2\sigma_3\tau_2}$.

- As a graded vector space, A(ℤ[1/S]) is the free vector space over ℚ on symbols f_w, where w is a word in the set {τ_ℓ}_{ℓ∈S} ∪ {σ_{2n+1}}_{n≥1}, with τ_ℓ in degree 1 and σ_{2n+1} in degree 2n + 1.
- For words w_1, w_2 , the product is given as follows:

$$f_{w_1}f_{w_2} := \sum_{\sigma \in \mathrm{III}(\ell(w_1), \ell(w_2))} f_{\sigma(w_1w_2)},$$

where ℓ denotes the length of a word, $\operatorname{III}(\ell(w_1), \ell(w_2)) \subseteq S_{\ell(w_1)+\ell(w_2)}$ denotes the group of shuffle permutations of type $(\ell(w_1), \ell(w_2))$, and w_1w_2 denotes concatenation.

- E.g., $f_{\tau_2\sigma_3}f_{\tau_2} = 2f_{\tau_2\tau_2\sigma_3} + f_{\tau_2\sigma_3\tau_2}$.
- The coproduct Δ is given by

$$\Delta f_{\mathsf{w}} := \sum_{\mathsf{w}_1 \mathsf{w}_2 = \mathsf{w}} f_{\mathsf{w}_1} \otimes f_{\mathsf{w}_2} = f_{\mathsf{w}} \otimes 1 + \Delta' f_{\mathsf{w}} + 1 \otimes f_{\mathsf{w}}$$

• E.g., $\Delta f_{\tau_2 \sigma_3} = 1 \otimes f_{\tau_2 \sigma_3} + f_{\tau_2} \otimes f_{\sigma_3} + f_{\tau_2 \sigma_3} \otimes 1$, so $\Delta' f_{\tau_2 \sigma_3} = f_{\tau_2} \otimes f_{\sigma_3}$.

Computing Explicit Generators for A(Z)

- To compute the functions, we need to write the elements f_w explicitly in the form Li^u_n(z).
- One may choose:

$$egin{aligned} &f_{ au_\ell} = \log^{\mathfrak{u}}(\ell) \ &f_{\sigma_{2n+1}} = \zeta^{\mathfrak{u}}(2n+1) = \operatorname{Li}^{\mathfrak{u}}_{2n+1}(1), \end{aligned}$$

where $f_{\sigma_{2n+1}}$ corresponds to a generator of $K_{4n+1}(Z)$.

Computing Explicit Generators for A(Z)

- To compute the functions, we need to write the elements f_w explicitly in the form Li^u_n(z).
- One may choose:

$$egin{aligned} &f_{ au_\ell} = \log^\mathfrak{u}(\ell) \ &f_{\sigma_{2n+1}} = \zeta^\mathfrak{u}(2n+1) = \mathrm{Li}^\mathfrak{u}_{2n+1}(1), \end{aligned}$$

where $f_{\sigma_{2n+1}}$ corresponds to a generator of $K_{4n+1}(Z)$.

• Up to degree 4, $A(\mathbb{Z}[1/\ell])$ has the basis

$$\{1, f_{\tau_{\ell}}, f_{\tau_{\ell}^2}, f_{\tau_{\ell}^3}, f_{\sigma_3}, f_{\tau_{\ell}^4}, f_{\tau_{\ell}\sigma_3}, f_{\sigma_3\tau_{\ell}}\}.$$

- As fⁿ_{τ_ℓ} = n!f_{τⁿ_ℓ}, we explicitly understand everything except the last two basis elements.
- As $f_{\tau_{\ell}}f_{\sigma_3} = f_{\tau_{\ell}\sigma_3} + f_{\sigma_3\tau_{\ell}}$, we need to understand only the last element.

• Finding $f_{\sigma_3\tau_\ell}$ depends on ℓ . We start with $\ell = 2$.

3

- Finding $f_{\sigma_{3}\tau_{\ell}}$ depends on ℓ . We start with $\ell = 2$.
- The structure tells us that $f_{\sigma_{3}\tau_{\ell}}$ is the unique element whose reduced coproduct

 $f_{\sigma_3} \otimes f_{\tau_\ell} = \zeta^{\mathfrak{u}}(3) \otimes \log^{\mathfrak{u}}(\ell).$

- Finding $f_{\sigma_{3}\tau_{\ell}}$ depends on ℓ . We start with $\ell = 2$.
- The structure tells us that $f_{\sigma_{3}\tau_{\ell}}$ is the unique element whose reduced coproduct

$$f_{\sigma_3}\otimes f_{\tau_\ell}=\zeta^{\mathfrak{u}}(3)\otimes \log^{\mathfrak{u}}(\ell).$$

• As $1/2 \in X(Z)$, a natural element to try is $\operatorname{Li}_{4}^{\mathfrak{u}}(1/2)$.

- Finding $f_{\sigma_3\tau_\ell}$ depends on ℓ . We start with $\ell = 2$.
- The structure tells us that $f_{\sigma_{3}\tau_{\ell}}$ is the unique element whose reduced coproduct

$$f_{\sigma_3} \otimes f_{\tau_\ell} = \zeta^{\mathfrak{u}}(3) \otimes \log^{\mathfrak{u}}(\ell).$$

- As $1/2 \in X(Z)$, a natural element to try is $\operatorname{Li}_4^{\mathfrak{u}}(1/2)$.
- The coproduct formula expresses $\Delta' \text{Li}_4^{\mathfrak{u}}(1/2)$ in terms of $\text{Li}_3^{\mathfrak{u}}(1/2)$, which one must then write in terms of $f_{\sigma_3} = \zeta^{\mathfrak{u}}(3)$ and $f_{\tau_\ell^3} = \log^{\mathfrak{u}}(2)^3/6$.
- Using the coproduct formula and the fact that $\log^{\rm u}(1/2)=-\log^{\rm u}(2),$ one may check that

$$\Delta'\left(\operatorname{Li}_{3}^{\mathfrak{u}}(1/2)-\frac{(\log^{\mathfrak{u}}(2))^{3}}{6}
ight)=0.$$

• This implies that $\text{Li}_{3}^{\mathfrak{u}}(1/2) - \frac{(\log^{\mathfrak{u}}(2))^{3}}{6}$ is a rational multiple of $f_{\sigma_{3}} = \zeta^{\mathfrak{u}}(3)$.

October 30, 2019

17 / 27

Finding $f_{\sigma_3\tau_2}$, cont.

• By *p*-adically approximating

$$\frac{{\rm Li}_3^p(1/2)-\frac{(\log^p(2))^3}{6}}{\zeta^p(3)}$$

in SAGE for various small p, one seems to get the value 7/8.

Finding $f_{\sigma_3\tau_2}$, cont.

• By *p*-adically approximating

$$\frac{{\rm Li}_3^p(1/2)-\frac{(\log^p(2))^3}{6}}{\zeta^p(3)}$$

in SAGE for various small p, one seems to get the value 7/8.

- The identity $\text{Li}_{3}^{\mathfrak{u}}(1/2) = \frac{(\log^{\mathfrak{u}}(2))^{3}}{6} + \frac{7}{8}\zeta^{\mathfrak{u}}(3)$ is verified in the appendices of Dan-Cohen–Wewers using identities for polylogarithms.
- Using this identity, one may check that

$$\Delta'\left(-\frac{8}{7}\left(\frac{\log^{\mathfrak{u}}(2)^4}{24}+\mathrm{Li}_4^{\mathfrak{u}}(1/2)\right)\right)=\zeta^{\mathfrak{u}}(3)\otimes\log^{\mathfrak{u}}(2),$$

as desired.

 $\bullet\,$ In C–Dan-Cohen, we show that for $\ell=$ 3, we have

$$f_{\sigma_{3}\tau_{\ell}} = \frac{18}{13} \text{Li}_{4}^{\mathfrak{u}}(3) - \frac{3}{52} \text{Li}_{4}^{\mathfrak{u}}(9).$$

3

• In C–Dan-Cohen, we show that for $\ell =$ 3, we have

$$f_{\sigma_{3}\tau_{\ell}} = \frac{18}{13} \text{Li}_{4}^{\mathfrak{u}}(3) - \frac{3}{52} \text{Li}_{4}^{\mathfrak{u}}(9).$$

The difficulty here is that X(ℤ[1/3]) = Ø, so we cannot easily write elements of A(ℤ[1/3]) other than log^u(3) and ζ^u(n).

• In C–Dan-Cohen, we show that for $\ell =$ 3, we have

$$f_{\sigma_{3}\tau_{\ell}} = \frac{18}{13} \text{Li}_{4}^{\mathfrak{u}}(3) - \frac{3}{52} \text{Li}_{4}^{\mathfrak{u}}(9).$$

- The difficulty here is that $X(\mathbb{Z}[1/3]) = \emptyset$, so we cannot easily write elements of $A(\mathbb{Z}[1/3])$ other than $\log^{u}(3)$ and $\zeta^{u}(n)$.
- To deal with this, we must consider the larger Hopf algebra $A(\mathbb{Z}[1/6])$.
- The abstract coordinates tell us how $A(\mathbb{Z}[1/3])$ sits inside $A(\mathbb{Z}[1/6])$. Indeed, $\operatorname{Li}_{4}^{\mathfrak{u}}(3), \operatorname{Li}_{4}^{\mathfrak{u}}(9) \in A(\mathbb{Z}[1/6]) \setminus A(\mathbb{Z}[1/3])$.

• In C–Dan-Cohen, we show that for $\ell =$ 3, we have

$$f_{\sigma_{3}\tau_{\ell}} = \frac{18}{13} \text{Li}_{4}^{u}(3) - \frac{3}{52} \text{Li}_{4}^{u}(9).$$

- The difficulty here is that $X(\mathbb{Z}[1/3]) = \emptyset$, so we cannot easily write elements of $A(\mathbb{Z}[1/3])$ other than $\log^{u}(3)$ and $\zeta^{u}(n)$.
- To deal with this, we must consider the larger Hopf algebra $A(\mathbb{Z}[1/6])$.
- The abstract coordinates tell us how $A(\mathbb{Z}[1/3])$ sits inside $A(\mathbb{Z}[1/6])$. Indeed, $\operatorname{Li}_{4}^{\mathfrak{u}}(3), \operatorname{Li}_{4}^{\mathfrak{u}}(9) \in A(\mathbb{Z}[1/6]) \setminus A(\mathbb{Z}[1/3])$.
- $A(\mathbb{Z}[1/6])$ is already more complicated in weight 2, as $\log^{\mathfrak{u}}(2)^2, \log^{\mathfrak{u}}(3)^2, \log^{\mathfrak{u}}(2)\log^{\mathfrak{u}}(3)$ do not span the weight 2 part. By computing its coproduct, one may show that $\operatorname{Li}_2^{\mathfrak{u}}(-2) = -f_{\tau_3\tau_2}$.
- Similar to the $\ell = 2$ case, one must figure out the rational number $\frac{\text{Li}_{3}^{u}(9)-12\text{Li}_{3}^{u}(3)}{\zeta^{u}(3)}$ by *p*-adic approximation; we have found that it is about $-\frac{26}{3}$.

In order to see how one might generalize to the elliptic case, let's review some key ingredients:

 We have π₁^{PL}(Z), whose coordinate ring lives in a Tannakian category of motives MT(Z);

In order to see how one might generalize to the elliptic case, let's review some key ingredients:

We have π₁^{PL}(Z), whose coordinate ring lives in a Tannakian category of motives MT(Z); more generally we can consider the de Rham fundamental group O(π₁^{un}(X_Q)), which contains Li^u_{k1},...,k_r for r > 1

In order to see how one might generalize to the elliptic case, let's review some key ingredients:

- We have π₁^{PL}(Z), whose coordinate ring lives in a Tannakian category of motives MT(Z); more generally we can consider the de Rham fundamental group O(π₁^{un}(X_Q)), which contains Li^u_{k1},...,k_r for r > 1
- We understand the abstract structure of its fundamental group $\pi_1^{\mathcal{MT}}(Z)$ as a pro-algebraic group (via the graded Hopf algebra A(Z)); this comes from our knowledge of algebraic K-theory of integer rings
- ³ We know how to write down explicit elements of $\mathcal{O}(\pi_1^{\mathrm{un}}(X_{\mathbb{Q}}))$ and have a formula for their coproducts; these are our $\mathrm{Li}_k^{\mathrm{u}}$ (or more generally, $\mathrm{Li}_{k_1,\cdots,k_r}^{\mathrm{u}}$)

In order to see how one might generalize to the elliptic case, let's review some key ingredients:

- **(**) We have $\pi_1^{\text{PL}}(Z)$, whose coordinate ring lives in a Tannakian category of motives $\mathcal{MT}(Z)$; more generally we can consider the de Rham fundamental group $\mathcal{O}(\pi_1^{\mathrm{un}}(X_{\mathbb{O}}))$, which contains $\mathrm{Li}_{k_1,\dots,k_r}^{\mathrm{u}}$ for r>1
- We understand the abstract structure of its fundamental group $\pi_1^{\mathcal{MT}}(Z)$ as a pro-algebraic group (via the graded Hopf algebra A(Z)); this comes from our knowledge of algebraic K-theory of integer rings
- **③** We know how to write down explicit elements of $\mathcal{O}(\pi_1^{\mathrm{un}}(X_{\mathbb{O}}))$ and have a formula for their coproducts; these are our Li_k^u (or more generally, $\operatorname{Li}_{k_1,\ldots,k_r}^{\mathfrak{u}}$
- We know how to write down explicit elements of $\mathcal{O}(\pi_1^{\mathcal{MT}}(Z))$ and have a formula for their coproducts; these are our $Li_{\nu}^{u}(z)$ for $z \in X(Z)$ (or more generally, $\operatorname{Li}_{k_1, \dots, k_r}^{\mathfrak{u}}(z)$)

We know how to compute (up to *p*-adic approximation) *p*-adic periods of these elements and *p*-adic power series for the corresponding functions

Corwin

October 30, 2019

20 / 27

1. Motives for Elliptic Curves

- The de Rham fundamental group of E' lies not in MT(Z), but in a larger category ME_{E'}(Z) of mixed motives generated by Tate motives and the Tate module H₁(E') of E'
- We know this category to exist only by assuming the Beilinson-Soulé Vanishing Conjecture; but we may still use candidate categories constructed by Owen Patashnick and others

- The de Rham fundamental group of E' lies not in MT(Z), but in a larger category ME_{E'}(Z) of mixed motives generated by Tate motives and the Tate module H₁(E') of E'
- We know this category to exist only by assuming the Beilinson-Soulé Vanishing Conjecture; but we may still use candidate categories constructed by Owen Patashnick and others
- For a non-CM elliptic curve, the Tannakian fundamental group $\pi_1^{ME,E'}(Z)$ of $\mathcal{ME}_{E'}(Z)$ is an extension of GL_2 by a pro-unipotent group
- In particular, the coordinate ring $A^{E'}(Z)$ of this pro-unipotent group is "graded" by a GL₂-action
- To understand the pro-unipotent part, we must compute dimensions of motivic Ext groups, or equivalently, of algebraic K-theory, as described on the next slide

2. Algebraic K-Theory for Elliptic Curves

- For each irreducible representation V of GL₂, we need to know the dimension of Ext¹_{ME_{F'}(Z)}(V, Q(0))
- For this, we must use the Bloch-Kato conjecture for powers of the elliptic curve *E* along with Euler characteristic formulas in Galois cohomology.

Conjecture (Bloch-Kato)

For a smooth projective variety Z/\mathbb{Q} , n>0, and $2r \neq n+1$, the natural map

$$\mathcal{K}_{2r-1-n}(Z)^{(r)}_{\mathbb{Q}_p} \to H^1_f(G_{\mathbb{Q}}, H^n_{\acute{e}t}(Z_{\overline{\mathbb{Q}}}, \mathbb{Q}_p(r)))$$

is bijective.

- Note that Ext_{ME_{E'}(Z)}(H¹(E), Q(0)) has dimension the rank of the Mordell-Weil group E(Q).
- In particular, it is an arithmetic invariant that depends heavily on which elliptic curve E we choose

22 / 27

3. Functions on the de Rham Fundamental Group

- We need a way to explicitly write down regular functions on $\pi_1^{\rm un}(E_{\mathbb Q}',O)$
- The story is much more complicated than for $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ because there is no canonical de Rham path (because unipotent vector bundles can be non-trivial)
- Therefore, we must restrict a quotient of $\pi_1^{\rm un}(E_{\mathbb Q}',O)$ defined using the Hodge filtration
- Such a function should correspond to a function on E' defined by a (homotopy-invariant) iterated integral based at O
- The analogous object for $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ is $\operatorname{Li}^{\mathfrak{u}}_{k_1, \cdots, k_r}(z)$, where z is viewed as a variable endpoint for the iterated integral (aka $\operatorname{Li}^{\mathfrak{u}}_{k_1, \cdots, k_r}$)
- We need to write them down in such a way that we can compute their coproducts and know which GL₂-isotypic component they lie in.

- Once one has functions on the appropriate quotient of π₁^{un}(E'_Q, O), we can input specific values of z ∈ E'(Z) to get elements of A^{E'}(Z)
- We need a coproduct formula for these elements, analogous to the Ihara-Goncharov coproduct formula
- Patashnick's category of mixed elliptic motives is defined using a bar construction on Bloch's cycle complexes (similar to the approach of Bloch-Kriz for mixed Tate motives)
- Bloch-Kriz express multiple zeta values in terms of cycles, so one might also be able to write such elements down in terms of cycles on powers of *E*

• Given an iterated integral on *E*', there are methods due to Balakrishnan for computing its *p*-adic version

Useful References/Credits

The following are on arXiv:

- Mixed Tate Motives and the Unit Equation, Ishai Dan-Cohen and Stefan Wewers
- Mixed Tate Motives and the Unit Equation II, Ishai Dan-Cohen
- Single-Valued Motivic Periods, Francis Brown
- Motivic Periods and $\mathbb{P}^1 \setminus \{0,1,\infty\}$, Francis Brown
- Notes on Motivic Periods, Francis Brown
- Integral Points on Curves, the Unit Equation, and Motivic Periods, Francis Brown.
- The polylog quotient and the Goncharov quotient in computational Chabauty-Kim theory I, David Corwin and Ishai Dan-Cohen
- The polylog quotient and the Goncharov quotient in computational Chabauty-Kim theory II, David Corwin and Ishai Dan-Cohen

The elliptic case involves ongoing discussions with Ishai Dan-Cohen, Stefan Wewers, Owen Patashnick, and others.

Thank You!

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト