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Abstract. A (non-commutative) Ulam quasimorphism is a map q
from a group Γ to a topological group G such that q(xy)q(y)−1q(x)−1

belongs to a fixed compact subset of G. Generalizing the construction
of Barge and Ghys, we build a family of quasimorphisms on a funda-
mental group of a closed manifold M of negative sectional curvature,
taking values in an arbitrary Lie group. This construction, which gen-
eralizes the Barge-Ghys quasimorphisms, associates a quasimorphism
to any principal G-bundle with connection on M .

Kapovich and Fujiwara have shown that all quasimorphisms taking
values in a discrete group can be constructed from group homomor-
phisms and quasimorphisms taking values in a commutative group.
We construct Barge-Ghys type quasimorphisms taking prescribed val-
ues on a given subset in Γ, producing counterexamples to the Kapovich
and Fujiwara theorem for quasimorphisms taking values in a Lie group.
Our construction also generalizes a result proven by D. Kazhdan in his
paper “On ε-representations”. Kazhdan has proved that for any ε > 0,
there exists an ε-representation of the fundamental group of a Riemann
surface of genus 2 which cannot be 1/10-approximated by a represen-
tation. We generalize his result by constructing an ε-representation
of the fundamental group of a closed manifold of negative sectional
curvature taking values in an arbitrary Lie group.
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1 Introduction

1.1 The main results

We start by citing the main results of this paper. We introduce the relevant
definitions and motivation for these notions later, and here we just give the
statements. The following theorem complements the main result of [FK] by
finding a counterexample to their theorem when the quasimorphism takes
values in a Lie group.

Theorem 4.31: Let G be a simply connected, connected, non-abelian
rational real nilpotent Lie group, and Γ := π1(M), where M is a closed
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manifold of strictly negative sectional curvature, dimRM > 1. Then there
exists a non-constructible HBG-quasimorphism q∇ : Γ−→G.

The HBG-quasimorphisms are defined in Definition 3.23 (see also Re-
mark 3.24), and constructibility in Definition 4.27, following [FK].

Another theorem generalizes one of the results of Kazhdan, [Kaz].

Theorem 5.2: Let M be a closed manifold of strictly negative sectional
curvature, G a positive-dimensional connected Lie group, and P a trivial
principal G-bundle. For any connection ∇ in P , let q∇ : π1(M)−→G
denote the corresponding HBG-quasimorphism (Definition 3.23). Choose a
left-invariant metric on G such that the diameter of any closed subgroup is
at least 1/3. Then for each ε > 0, there exists a connection ∇ such that q∇ is
an ε-representation which cannot be 1/3-approximated by a representation.

We explain the terms “ε-representation” and “δ-approximation” in Sub-
section 1.6, following [Kaz].

1.2 Ulam quasimorphisms

Throughout this paper, G means a Lie group of algebraic type; usually we
assume that G is connected, though this assumption is not always necessary.

Definition 1.1: Let G be a Lie group, and Γ any group. An Ulam quasi-
morphism q : Γ−→G is a map which satisfies q(x−1) = q(x)−1 and
q(x)q(y) ∈ K ·q(xy), where K ⊂ G is a fixed compact, independent from the
choice of x, y. Two Ulam quasimorphisms q1, q2 : Γ−→G are called equiv-
alent if there exists a compact subset K ⊂ G such that q1(x) ∈ K · q2(x),
for all x ∈ Γ.

In this paper, we give a versatile construction of Ulam quasimorphisms
associated with connections in vector bundles over a closed manifold M of
strictly negative sectional curvature. As a result, we obtain a quasimorphism
from π1(M) to a Lie group, called a Barge-Ghys quasimorphism. This allows
us to find quasimorphisms which are not constructible, in the sense of Fu-
jiwara and Kapovich [FK]. The Fujiwara-Kapovich constructible quasimor-
phisms are obtained from quasimorphisms taking values in abelian groups.
Unlike the constructible quasimorphisms, the Barge-Ghys quasimorphisms
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we construct cannot be obtained from ones taking values in abelian groups
(Theorem 4.31).

Interestingly enough, Fujiwara-Kapovich have proved that any Ulam
quasimorphism taking values in a discrete group is constructible. It turns
out that the Ulam quasimorphisms taking values in Lie groups are of entirely
different nature.

Ulam quasimorphisms from a free group to a Lie group G with bi-
invariant metric were explored by P. Rolli in [R]. Rolli has constructed
non-trivial quasimorphisms from a free group to G. It seems that Rolli’s
construction also can lead to non-constructible quasimorphisms.

As an application of our approach, we give a construction of ε-repre-
sentations which cannot be approximated by a representation (Theorem
5.2), generalizing a result of Kazhdan ([Kaz]).

Note that our definition of Ulam quasimorphism may not be the optimal
for some purposes. Fujiwara and Kapovich [FK] give several non-equivalent
(more relaxed) definitions of a quasimorphism taking values in a non-abelian
group G; for abelian G, all these definitions are equivalent. Another, even
more relaxed, definition was considered in [HS]. We give a more detailed
presentation of these notions in Subsection 4.4.

One of the results we obtain builds on the difference between these
notions. Recall that the geometric quasimorphism ([FK]) is a map
q : Γ−→G such that there exists a compact subset K ⊂ G such that
q(xy) ∈ Kq(x)Kq(y) for all x, y ∈ Γ.

Theorem 1.2: Let Γ be a fundamental group of a closed manifold of strictly
negative curvature, G a non-commutative, simply connected nilpotent Lie
group, and Λ a cocompact lattice in G.1 Then a non-constructible HBG-
quasimorphism q : Γ−→G obtained in Theorem 4.31 can be approximated
by a geometric quasimorphism q0 : Γ−→ Λ, which is also non-constructible.
Proof: Remark 4.33.

Notice that, by contrast, any Ulam quasimorphism q1 : Γ−→ Λ is by
[FK] constructible. This is where the difference between the Ulam quasi-
morphisms and the geometric quasimorphisms becomes apparent.

1By Maltsev’s theorem ([CG]), existence of a cocompact lattice is equivalent to G being
rational.

– 4 – version 3.1, March 3, 2023



M. Brandenbursky, M. Verbitsky Non-commutative Barge-Ghys quasimorphisms

1.3 Quasimorphisms, bounded cohomology and the commu-
tator length

In the literature, the quasimorphisms are usually considered as maps taking
values in R. In this context, a quasimorphism is defined as a map q :
G−→ R which satisfies |q(xy) − q(x) − q(y)| < C, where C is a constant
independent from x, y. We shall sometimes call such maps commutative
quasimorphisms.

In geometric context, this notion originates in the paper of Gromov
[G2]. Using the quasimorphisms, R. Brooks proved that the second bounded
cohomology H2

b (F2,R) of the free group F2 is infinite-dimensional ([Br, G2]).
Since then, quasimorphisms q : G−→ R became prevalent in topology ([C]),
symplectic geometry ([EP, Sh]) and dynamics ([BM, GG]).

Barge and Ghys ([BG]) generalized the observation of Brooks to prove
that the second bounded cohomology of π1(S) is infinite-dimensional for any
Riemann surface S with g(S) > 1.

We say that two quasimorphisms q, q1 : G−→ R are equivalent if
|q(x) − q1(x)| < C, where C is a constant independent from x. The group
Q of equivalence classes of quasimorphisms fits into an exact sequence

H1(G,R)−→ Q −→H2
b (G,R)−→H2(G,R), (1.1)

where H2
b (G,R) denotes the bounded cohomology. A quasimorphism q :

G−→ R is called homogeneous if it satisfies q(xn) = nq(x) for any x ∈ G
and n ∈ Z. It is possible to see that every quasimorphism q : G−→ R is
equivalent to a unique homogeneous quasimorphism ([C, Lemma 2.2.1]).

The commutator length of g ∈ [G,G] is the minimal number m such
that g can be represented as a product of m commutators. Recall that the
stable commutator length of an element g ∈ G is defined as

scl(g) := lim
n→∞

cl(gn)

n
,

where cl is the commutator length. The homogeneous quasimorphisms are
related with the stable commutator length, due to the celebrated theorem
of Bavard ([B]). This result is known as Bavard duality. In its simplest
version, Bavard duality can be stated as follows: for any g ∈ [G,G], g has
non-zero stable commutator length if and only if there exists a homogeneous
quasimorphism q : G−→ R such that q(g) 6= 0.
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1.4 Barge-Ghys construction and manifolds of strictly nega-
tive curvature

Further on, we are interested in vector bundles over closed manifolds of
strictly negative sectional curvature. Sometimes such manifolds are called
“hyperbolic”, but we don’t use this term to avoid confusion with manifolds
of constant strictly negative curvature.

We study the Ulam quasimorphisms associated with the holonomy of a
connection on vector bundles or on principal G-bundles, where G is a con-
nected Lie group. In the sequel, we use either the language of G-bundles
or the language of vector bundles with connection, whatever is more conve-
nient. However, all statements that we make can be easily translated from
one language to another, giving equivalent results in two parallel frameworks.

Remark 1.3: We tacitly assume that the base manifold of strictly negative
curvature has dimension at least 2.

Barge-Ghys quasimorphisms were introduced in [BG], who used them
to prove that the bounded cohomology of a Riemann surface is infinite-
dimensional. In the literature these quasimorphisms are variously called de
Rham quasimorphisms ([C]) or Barge-Ghys quasimorphisms [EP, PR]; we
follow the second convention.

The generalization of Barge-Ghys quasimorphisms to closed manifolds
of strictly negative curvature seems to be well known ([Mar]). However, the
infinite-dimensionality of the space of Barge-Ghys quasimorphisms, origi-
nally proven in [BG] for Riemann surface, is less straightforward. This
result was established in [BFMSS].

1.5 Barge-Ghys quasimorphisms associated with a connec-
tion

We feel compelled to make a few comments about the terminology used in
this paper.

Originally, the Barge-Ghys quasimorphisms were associated with a non-
closed 1-form θ on a closed manifold M of strictly negative sectional cur-
vature. Given γ ∈ π1(M,x), we represent γ by a geodesic loop γ (which is
unique, because M has negative curvature), and put q(γ) =

∫
γ θ.

Taking θ as a connection form in a trivial line bundle, the number
∫
γ θ

is interpreted as the holonomy of this connection along γ (Subsection 3.2).
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In Subsection 3.2, we generalize this construction to arbitrary vector
bundles and to principal G-bundles with connection. This gives a “non-
commutative quasimorphism” (Definition 1.1), which we call “a non-com-
mutative Barge-Ghys quasimorphism associated with a connection”.

This quasimorphism does not satisfy q(xn) = q(x)n, that is, it is not ho-
mogeneous (Definition 3.21). In the usual theory of quasimorphisms (which
we call throughout this paper “commutative quasimorphisms”) for every
quasimorphism there exists a unique homogeneous quasimorphism in the
same equivalence class. This construction is called “homogenization”; it is
obtained by the standard limit construction ([C, Lemma 2.2.1]).

Unfortunately, we were unable to generalize the homogenization con-
struction to the non-commutative case. Instead we use an ad hoc con-
struction, which works in the same generality, and gives a homogeneous
quasimorphism (Subsection 3.5). The quasimorphisms obtained this way
are called “the homogeneous Barge-Ghys quasimorphisms”. They are also
associated with a connection in a vector bundle or in a principal G-bundle.

There are disclaimers we need to make at this point. First of all, we could
not devise a general definition of “Barge-Ghys quasimorphisms”. These two
kinds of Barge-Ghys quasimorphisms are the only cases we could came up
with.

Second, the Barge-Ghys quasimorphisms associated with a connection
are distinct from the homogeneous Barge-Ghys quasimorphisms. These are
two distinct classes which rarely intersect, and we do not know if they can be
united in a meaningful class of more general quasimorphisms. However, each
Barge-Ghys quasimorphism associated with a G-bundle with connection is
equivalent to the homogeneous Barge-Ghys quasimorphism associated with
the same connection (Claim 3.29).

1.6 Ulam stability and Kazhdan’s ε-representations

The earliest mention of quasimorphisms is found in Ulam’s 1960 book “A
collection of mathematical problems”, Chapter 6 ([U]). Ulam defined an
ε-automorphism of a topological group as a map ρ : G−→G such that
ρ(xy)ρ(x)−1ρ(y)−1 belongs to an ε-neighborhood of the identity. Ulam asked
whether any such map admits an kε-approximation by an automorphism,
for some k > 0 which is independent from ε.

More recently, this problem was generalized to representations (see Defi-
nition 1.4 below). However, the notion of Ulam stability seems to be present,
implicitly, in earlier works of von Neumann ([vN]) and Turing ([Tu]).

A similar question was considered in 1982 by D. Kazhdan ([Kaz]). He
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defined an ε-representation of a group G as a map ρ : G−→ U(V ), where
V is a Hilbert space, finite dimensional or infinite dimensional, satisfying

‖ρ(xy)− ρ(x)ρ(y)‖ < ε,

where ‖ · ‖ is the operator norm. The distance between two maps ρ1, ρ2 :
G−→ U(V ) can be defined as

d(ρ1, ρ2) := sup
x∈G
‖ρ1(x)− ρ2(x)‖.

Following a suggestion of V. Milman, Kazhdan asked whether for any δ > 0
there exists ε > 0 such that any ε-representation can be δ-approximated by
a representation. He proved that this holds true for amenable groups. When
G = π1(S), where S is a genus 2 Riemann surface, Kazhdan has constructed
an ε-representation G−→ U(n), which cannot be 1/10-approximated by a
representation, for any given ε > 0.

Definition 1.4: The group Γ is called Ulam stable ([BOT]) if for any
δ > 0 there exists ε > 0 such that any finite-dimensional ε-representation
q : Γ−→ U(V ) can be δ-approximated by a representation ρ : Γ−→ U(V ).
It is called strongly Ulam stable if the same is true even for infinite-
dimensional Hilbert representations.

In [Kaz], D. Kazhdan has proven that all amenable groups are strongly
Ulam stable. Using the Barge-Ghys quasimorphisms, we were able to prove
this result for the fundamental group of any closed strictly negatively curved
manifold. In Theorem 5.2, we generalize [Kaz, Theorem 2] showing that a
fundamental group Γ of a complete Riemannian manifold with uniformly
bounded strictly negative sectional curvature admits an ε-representation
taking values in any given Lie group G, which cannot be 1/3-approximated
by a representation2. Kazhdan proves this for Γ = π1(S), where S is a genus
2 Riemann surface, and G = U(n).

In [BOT], Burger, Ozawa and Thom address the question of strong Ulam
stability, obtaining definite results for a large class of groups. Let Γ be
a group which contains a subgroup Λ admitting a homogeneous R-valued
quasimorphism which is not a homomorphism, that is, such that the map

H2
b (Λ,R)−→H2(Λ,R)

2Our norm conventions are different from Kazhdan’s, but the constants 1/3 and 1/10
depend on the choice of normalizations, and are not important in themselves.
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has non-trivial kernel. Then Γ has an infinite-dimensional Hilbert ε-repre-

sentation, for any given ε > 0, which cannot be
√

3
16 -approximated by a repre-

sentation. Also, they observe that any free group admits a finite-dimensional
ε-representation taking values in U(n) which cannot be 2-approximated by
a representation ([BOT, Proposition 3.3]).

In [GLMR], the Ulam stability was cast in a cohomological setting. Gleb-
sky, Lubotzky, Monod and Rangarajan defined an asymptotic version of
bounded cohomology, and proved that vanishing of asymptotic cohomol-
ogy implies Ulam stability. In the same paper, Ulam stability of U(1)-
representations is directly related to existence of quasimorphisms.

In this paper, we further generalize Kazhdan’s theorem, which is known
for ε-representations with values in U(n) ([BOT, Proposition 3.3]) to ε-
representations taking values in an arbitrary Lie group (Theorem 5.2).

1.7 Constructible quasimorphisms

The paper [FK] by Fujiwara and Kapovich is the fundamental treatment of
Ulam quasimorphisms taking values in a non-commutative group G. Fuji-
wara and Kapovich considered the case when G is discrete, and their result
is mostly negative. Fujiwara and Kapovich defined “constructible quasi-
morphisms”, which are up to equivalence and finite index quasimorphisms
which can be constructed in terms of homomorphisms, quasimorphisms with
abelian target, and sections of bounded central extensions.

Then they proved that any Ulam quasimorphism taking values in a dis-
crete group is always constructible ([FK, Theorem 1.2]).

In Theorem 4.31 we construct examples of quasimorphisms taking values
in a Lie group G, which do not satisfy conclusions of [FK, Theorem 1.2].
There is no contradiction because the group G is not discrete. We prove
that for any closed manifold M of strictly negative sectional curvature, there
exists an Ulam quasimorphism π1(M)−→G which is not constructible.

2 Principal bundles and vector bundles

Almost everything we say in this paper can be formulated for vector bundles
or for principal G-bundles, where G is a Lie group. Usually we state only
one of two versions, leaving the rest for the reader. In this section, we briefly
explain the passage from vector bundles with connection to G-bundles and
vice versa.
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Definition 2.1: Let G be a Lie group. A principal G-bundle is a smooth
manifold E equipped with a smooth, free G-action, such that the natural
map E → E/G is a locally trivial fibration.

Example 2.2: Consider the standard action of U(1) on 3-dimensional
sphere S3 ⊂ C2, with eit taking (ξ1, ξ2) to (eitξ1, e

itξ2). Then S3/U(1) = S2,
and this action defines a principal U(1)-bundle on a 2-dimensional sphere.
This fibration is known as Hopf fibration.

Definition 2.3: Let π : E −→M be a principal G-bundle and V a space
with G-action. Consider the quotient (E × V )/G, where G acts diagonally.
Since the action of G is free on fibers of π, the quotient (E×V )/G is a locally
trivial fibration on M with fiber V . It is called the associated fibration.

Example 2.4: Let V be a representation of a group G, and π : E −→M be
a principal G-bundle. Then the associated fibration (E × V )/G is a vector
bundle, called a vector bundle with a G-structure. We say that the
structure group of a vector bundle B is reduced to G if B is obtained
from a principal G-bundle this way.

Example 2.5: Consider a complex vector bundle B over M equipped with
a Hermitian structure, and let π : E −→M be the space of all orthonormal
complex frames in B. Since the group U(n) acts on orthonormal complex
frames freely and transitively, E is a principal U(n)-bundle. Consider the
standard Cn-representation V of U(n). By construction, the vector bundle
(E × V )/U(n) coincides with B, hence this construction gives a reduction
of the structure group of B to U(n).

We have described the correspondence between the vector bundles (with
appropriate reduction of the structure group) and the principal G-bundles.
It turns out that this construction is well compatible with connections; one
can define the holonomy and the curvature in both contexts, and these
notions are equivalent. This is a part of standard differential geometry
course, see e. g. [St, KN].

We will presently give a partial description of this correspondence.

Definition 2.6: Let π : E −→M be a smooth fibration, with TπE the
bundle of vertical tangent vectors (vectors tangent to the fibers of
π). An Ehresmann connection on π is a sub-bundle ThorE ⊂ TE such
that TE = ThorE ⊕ TπE. The parallel transport along the path γ :
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[0, a]−→ Z associated with the Ehresmann connection is a diffeomorphism
Vt : π−1(γ(0))−→ π−1(γ(t)) smoothly depending on t ∈ [0, a] and satisfying
dVt
dt ∈ ThorE.

Definition 2.7: Let B be a vector bundle on M and TotB
π−→ M its total

space. An Ehresmann connection on π is called linear if it is preserved by
the homothety map TotB −→ TotB mapping v to λv and by the addition
map Tot(B ⊕B)−→ TotB, that is, addition preserves horizontal vectors.

Proposition 2.8: A notion of a linear Ehresmann connection on a vector
bundle B coincide with the usual notion of a connection; the corresponding
parallel transport maps coincide as well.
Proof: [OV, Proposition 2.21].

Definition 2.9: Let now π : E −→M be a principal G-bundle. A G-
connection on π is a G-invariant Ehresmann connection.

Remark 2.10: Let π : E −→M be a principal G-bundle with G-connection
∇, and X a smooth manifold with G-action ρ. Then the associated bundle
EX := (E × X)/G inherits an Ehresmann connection: TEX = ThorE ⊕
(TX/ρ(g)), where g = Lie(G) is the Lie algebra of G.

Definition 2.11: Let B be a vector bundle on M with structure group
G, V representation of G, and E the corresponding principal G-bundle,
B = (E × V )/G. Then for any G-connection on E induces an Ehresmann
connection on B as in Remark 2.10. Clearly, this connection is linear, hence
induces a connection on B as on a vector bundle (Proposition 2.8). This
connection is called induced by the G-connection ∇E.

The holonomy of a G-connection and its induced connection are com-
patible, in the following sense:

Claim 2.12: Let E the a principal G-bundle on M , V a representation of
G, and B = (E × V )/G the corresponding vector bundle with the structure
group G. Let ∇E a G-connection on E, and ∇ the induced connection
on B. Denote the holonomy of ∇E along a loop γ based on m ∈ M by
gγ ∈ G. Then the holonomy of ∇ along γ is obtained from the action of gγ

on B
∣∣∣
m

=
(
E
∣∣∣
m
× V

)
/G.

Proof: [KN].
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Throughout this paper, we use one of these equivalent languages, and
assume tacitly an analogous statement for the other one. It is slightly more
convenient to speak of non-commutative Barge-Ghys quasimorphisms in the
language of vector bundles: this way, the correspondence with the usual,
commutative Barge-Ghys quasimorphism is more apparent. However, it is
more natural to state and prove the generalization of Kazhdan’s theorem in
the language of principal G-bundles. The translation from one of these lan-
guages to another is straightforward and is left to the reader as an exercise.

3 Barge-Ghys quasimorphisms on fundamental
groups of closed manifolds of strictly negative
curvature

3.1 Manifolds with strictly negative sectional curvature

In this preliminary section we list a few arguments of Riemannian geometry,
most of them either classical or due to M. Gromov, [G2]. For manifolds of
constant negative curvature, all the results we are going to obtain are clas-
sical and well known ([Fri, Chapter 8]); however, for arbitrary Riemannian
manifolds of strictly negative curvature, a more subtle approach is required.

Theorem 3.1: (Cartan-Hadamard)
LetM be a complete, simply connected Riemannian manifold of non-positive
sectional curvature. Then M is contractible.

Proof: We give a sketch of the proof, following [BBI]. In [BBI] this result
was stated and proven for CAT(0)-spaces, but the comparison inequalities
which are required by the CAT(0)-geometry easily follow from the non-
positivity of the sectional curvature.

By Hopf-Rinow theorem, every two points of M can be connected by
a geodesic. Let γ1 : [a, b]−→M and γ2 : [c, d]−→M be segments of
geodesics in M , parametrized by the arc length. As shown in [BBI], the
distance function D : [a, b] × [c, d]−→ R>0 taking x, y to d(γ1(x), γ2(y)) is
strictly convex, unless the geodesics γ1, γ2 are segments of the same geodesic
line. This implies, in particular, that any two points are connected by a
unique geodesic: indeed, if γ1 and γ2 have the same ends, γ1(a) = γ2(c) and
γ1(b) = γ2(d) the function D would be equal to 0 in (a, c) and (b, d), hence
it is zero on the diagonal, and the images of γ1 and γ2 coincide.
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Fix a reference point p ∈M and consider the function

H : M × [0, 1]−→M

taking x ∈ M and t ∈ [0, 1] to γ(t · d(p, x)), where γ : [0, d(p, x)] is the
geodesic connecting p to x. A similar argument implies that H is continuous;
clearly, H is a deformation retraction of M to p, hence M is contractible.

We will not use the Cartan-Hadamard theorem, but we use its corollary,
which is inherent in its proof.

Corollary 3.2: Let M be a simply connected, complete manifold of non-
positive sectional curvature. Fix a reference point p ∈ M and consider the
function Hp : M × [0, 1]−→M taking x ∈M and t ∈ [0, 1] to γ(t · d(p, x)),
where γ : [0, d(p, x)]−→M is the geodesic connecting p to x. Then Hp is
continuous.

We could use the map Hp to define a straight singular simplex,
following [G2]. Since we need only 2-dimensional simplices, we restrict our-
selves to the 2-dimensional case.

Definition 3.3: Let M be a simply connected, complete manifold of non-
positive sectional curvature. Let γ be the geodesic segment connecting b to c.
We obtain a triangle by connecting a to all points of γ by a unique geodesic.
The geodesic simplex ∆(a, b, c), associated with the points a, b, c ∈ M
is the union ∪t∈[0,1][Ha(t)(b), Ha(t)(c)], where Ha(t) : M −→M is the ho-
motopy along geodesics passing through a, defined in Corollary 3.2, and
[Ha(t)(b), Ha(t)(c)] the geodesic segment connecting Ha(t)(b) and Ha(t)(c).

Remark 3.4: The boundary of the simplex ∆(a, b, c) is the union of geodesics
connecting a to b, b to c and c to a. Indeed, the homothety Ha(t) moves
any point x ∈ M along the geodesic connecting x to a as t goes from 1
to 0, hence the segments of the boundary connecting b to a and c to a are
geodesics; the third segment is γ, which is also chosen geodesic.

Remark 3.5: Note that the order of the points a, b, c ∈M is important. In-
deed, unless M has constant sectional curvature, the simplex ∆(a, b, c) and
(say) ∆(b, a, c) are different: otherwise, if ∆(a, b, c) = ∆(b, a, c) = ∆(a, c, b),
this simplex is a segment of a completely geodesic 2-dimensional submani-
fod, and a general Riemannian manifold does not have completely geodesic
submanifolds ([MW]).
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The main technical result about manifolds of strictly negative sectional
curvature which we use is the following theorem of Gromov, which is proven
in [G2] for any straight singular simplex.

Theorem 3.6: Let M be a simply connected, complete manifold of strictly
negative sectional curvature K(M) < −ε < 0, and ∆(a, b, c) a geodesic
simplex defined above. Then the Riemannian area Area(∆(a, b, c)) satisfies
Area(∆(a, b, c)) 6 πε−2.
Proof: [G2, §I.3].

In the sequel, we will need two statements about uniqueness of geodesics
on manifolds of strictly negative sectional curvature. The first is a direct
consequence of the Cartan-Hadamard’s theorem (Theorem 3.1).

Claim 3.7: Let γ ∈ π1(M,p) be an element of a fundamental group of a
closed manifold of strictly negative sectional curvature. Then γ is repre-
sented by a unique geodesic loop based at p.

Another statement (slightly less trivial) deals with free geodesic loops.
Recall that a free geodesic loop is an immersed submanifold of dimension
1 which is locally geodesic.

Proposition 3.8: Let M be a closed manifold of strictly negative sectional
curvature, and ϕ : S1 −→M be a smooth map. Then there exists a unique
free geodesic loop ϕ1 which is free homotopic to ϕ. Moreover, ϕ1 strictly
minimizes the length of the loop.
Proof: [Kl, Theorem 3.8.14].

3.2 Non-commutative Barge-Ghys quasimorphisms

Throughout this section, G is a connected Lie group.

Definition 3.9: Let M be a closed manifold with non-positive sectional cur-
vature, and (P,∇) a principal G-bundle with connection. Fix x ∈ M . The
non-commutative Barge-Ghys map takes γ ∈ π1(M,x) to the holon-
omy of ∇ along the geodesic path starting and ending at x and homotopic
to γ.1

1Since M has non-positive curvature, this geodesic path is unique in its homotopy class,
Proposition 3.8.
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Remark 3.10: Throughout this paper, we consider the maps q : Γ−→G,
where Γ = π1(M) is the fundamental group of a closed manifold of strictly
negative curvature. Such groups are Gromov hyperbolic, however, it is not
clear yet whether our constructions can be generalized to all Gromov hy-
perbolic groups. Nevertheless, all results we prove remain valid whenever
each geodesic simplex in the universal cover of M can be filled by a disk
of bounded area, as in Theorem 3.6. Note that the homological version of
the bounded filling result is also true for hyperbolic groups which are not of
geometric origin ([M]).

Theorem 3.11: Let M be a closed manifold of strictly negative sectional
curvature, and Θ a geodesic n-polygon in M , that is, a contractible loop of n
geodesic segments. Consider a principal G-bundle (P,∇) with connection on
M , and let h(Θ) ∈ G be the holonomy along the boundary of Θ, considered
as a loop starting and ending at p ∈ Θ. Then h(Θ) belongs to a compact
Kn ⊂ G which is the same for all n-polygons Θ, but depends on n and
(P,∇) and the bound on the curvature of M .

Proof: By the effective version of the Ambrose-Singer theorem, the holon-
omy along a path is linearly expressed in terms of the integral of the curva-
ture over a disk filling this path ([RW, Theorem 1], [MO1], [Y]). Therefore,
for a left-invariant metric on G, the holonomy is bounded in terms of the
integral of the curvature. The area of any geodesic simplex is bounded
by Theorem 3.6. The absolute value of the curvature of ∇ is bounded from
above because M is compact, and the curvature form on the pullback bundle
(P̃ , ∇̃) is obtained as a pullback of the curvature of (P,∇).

This implies that h(Θ) belongs to a fixed compact K when n = 3 and
Θ is a simplex. When n > 3, we represent Θ as a boundary of the union of
n−2 geodesic simplexes D1, .., Dn−2 with common vertex p. Then the holon-
omy h(Θ) is obtained as a product h(Θ) = h(D1)h(D2)...h(Dn−2) ⊂ Kn−2.
Therefore, h(Θ) belongs to a fixed compact Kn := Kn−2, independent from
the choice of Θ.

Theorem 3.12: Let M be a closed manifold of strictly negative sectional
curvature, and (P,∇) a principal G-bundle with connection. Fix x ∈M , and
let q : π1(M)−→G be the non-commutative Barge-Ghys map associated
with (P,∇). Then q is an Ulam quasimorphism (Definition 1.1).

Proof: Denote by M̃
π−→ M the universal cover of M . Let a, b ∈ π1(M),
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and Pa, Pb ∈ Diff(M̃) the corresponding deck transformations. Fix a preim-

age x̃ ∈ π−1(x), and denote by (P̃ , ∇̃) the pullback of (P,∇) to M̃ . By
definition, the product q(ab)q(b)−1q(a)−1 is represented by the holonomy
of (P̃ , ∇̃) along the geodesic simplex connecting the points x̃, Pa(x̃), and

Pb(Pa(x̃)) in M̃ . By Theorem 3.11, this quantity belongs to a compact
subset independent from the choice of x ∈M and a, b ∈ π1(M).

Remark 3.13: The set of equivalence classes of non-commutative Barge-
Ghys quasimorphisms is very big. As follows from Proposition 3.17 below,
the usual (“commutative”) Barge-Ghys quasimorphism is a special case of
the quasimorphism taking values in a Lie group as defined in Definition 3.9.
By [BG], [C], the vector space spanned by commutative Barge-Ghys quasi-
morphisms up to equivalence is infinite-dimensional; in Theorem 4.31 we
construct non-commutative Barge-Ghys quasimorphisms which cannot be
obtained from the commutative ones.

Remark 3.14: Using the Riemann-Hilbert correspondence ([OV, §2.8]) one
can associate a flat principal G-bundle over M with each group homomor-
phism ρ : π1(M)−→G. By construction, the holonomy of this flat connec-
tion is equal to ρ ([OV, §2.50]). Therefore, the corresponding Barge-Ghys
quasimorphism is equal to ρ. In other words, all group homomorphisms to
a Lie group can be realized as Barge-Ghys quasimorphisms.

3.3 Commutative and non-commutative Barge-Ghys quasi-
morphisms

Definition 3.15: Let M be a closed manifold of strictly negative sectional
curvature, and θ ∈ Λ1M a 1-form on M . The (commutative) Barge-
Ghys quasimorphism ([BG]) associated with θ takes γ ∈ π1(M) to the
integral of θ over the geodesic path starting and ending at x and homotopic
to γ.

Remark 3.16: Note that in all literature on quasimorphisms, one uses the
additive notation: |q(xy) − q(x) − q(y)| < C. For the non-commutative
quasimorphisms, we are forced to use the multiplicative notation,

q(xy)q(y)−1q(x)−1 ∈ K.

When we speak of commutative Barge-Ghys quasimorphisms in this wider
context, this might create a confusion.
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When B is an oriented real rank-1 vector bundle on M , the commuta-
tive Barge-Ghys quasimorphism is actually equal to the “non-commutative
Barge-Ghys quasimorphism” defined in Definition 3.9; we explain this equiv-
alence below.

Topologically, B is always trivial. To trivialize B, we choose a metric on
B using the partition of unity, and trivialize B by taking a positive length-1
section u. Fix the connection ∇0 on B in such a way that ∇0u = 0. Then
any connection ∇ on B can be written as ∇ = ∇0 + θ, where θ ∈ Λ1(M)
is a 1-form. The holonomy of this connection along a loop γ is given by

Holγ(∇) = e−
∫
γ θ. Indeed, for any section uf := f(t)u of B restricted to a

geodesic segment γ parametrized by t ∈ [a, b], the equation

∇(uf ) =
df

dt
u+ θfu = 0

is equivalent to f ′ = −fθ, equivalently, d log f
dt = −θ.

Proposition 3.17: Let (B,∇0) be a trivial real rank 1 vector bundle on a
closed manifold M of strictly negative sectional curvature and θ a 1-form on
M . Consider the connection ∇ := ∇0 − θ. Then the commutative Barge-
Ghys quasimorphism associated with θ can be obtained as the logarithm of
the “non-commutative” Barge-Ghys quasimorphism associated with (B,∇).

Proof: Indeed, for any loop in M , one has Holγ(∇) = e−
∫
γ θ.

Remark 3.18: For any trivialized real rank 1 vector bundle B on M , the
connections on B are in bijective correspondence with 1-forms on M . There-
fore, Proposition 3.17 defines a bijective correspondence between the set of
(non-commutative) Barge-Ghys quasimorphisms associated with B and the
set of commutative Barge-Ghys quasimorphisms.

3.4 Translation length in Gromov hyperbolic groups

We proceed with a few observations about Gromov hyperbolic groups, used
in the sequel.

Let Γ be a group generated by a finite set A, and CA(Γ) its Cayley graph.
Algebraic translation length τA(γ) of an element γ ∈ Γ is defined ([BH])
as

τA(γ) := lim
n→∞

1

n
d(1Γ, γ

n).

– 17 – version 3.1, March 3, 2023



M. Brandenbursky, M. Verbitsky Non-commutative Barge-Ghys quasimorphisms

The limit exists because the function n 7→ d(1Γ, γ
n) is subadditive. It is not

hard to see that the map γ −→ τA(γ) is conjugation invariant ([BH, Remark
Γ.3.14 (1)]). Further on, we shall use the following result, also found in [BH].

Proposition 3.19: Let Γ be a finitely generated Gromov hyperbolic group,
and SR the set of all conjugacy classes of all γ ∈ Γ satisfying τA(γ) < R,
where R > 0 is a real number. Then SR is finite.
Proof: [BH, Proposition Γ.3.15].

An element γ ∈ Γ is called primitive if it cannot be represented as a
power γ = ϕn, for any n > 1.

Corollary 3.20: Let Γ be a finitely generated Gromov hyperbolic group.
Then any non-torsion element of Γ is an integer power of a primitive element.

Proof: By [C, Corollary 3.3.5], τA(γ) > 0 for all non-torsion γ. Clearly,
τA(γk) = kτA(γ). By Proposition 3.19, there exists a number C ∈ R>0

such that for all non-torsion u ∈ Γ we have τA(u) > C. Then γ cannot
be represented as n-th power for any n > C−1τA(γ). Let m be a maximal
number such that γ is an m-th power of an element γ1 ∈ Γ. Then γ1 is
primitive.2

3.5 HBG-quasimorphism associated with a connection

Definition 3.21: A quasimorphism q : Γ−→G is called homogeneous if
its restriction to any cyclic subgroup of Γ is a group homomorphism.

Let M be a closed Riemannian manifold of strictly negative sectional cur-
vature, Γ := π1(M). By [P, Corollary 6.2.4], Γ is torsion-free. By Corollary
3.20, every non-torsion element of π1(M) is a power of a primitive element,
which is unique by [BB, Lemma 2.2].

Given a primitive γ ∈ π1(M), let Fγ be the shortest free geodesic loop
representing γ. By Proposition 3.8, Fγ is unique in its free homotopy class.
Clearly, the conjugate elements of π1(M) correspond to the same free homo-
topy class. For each conjugacy class of γ we fix a choice of a point x ∈ Fγ .
When γ = γd1 and γ1 is primitive, we denote by Fγ the loop Fγ1 iterated d
times.

2We are grateful to Yves Cornulier and Sam Nead (https://mathoverflow.net/
users/1650/sam-nead) who suggested a proof of this statement on Mathoverflow, [MO2].
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Let (B,∇) be a bundle with connection. Fix a point p ∈ M , and
γ ∈ π1(M). We are going to define a homogeneous quasimorphism q :
Γ−→GL(Bp), where Bp denotes the fiber of B in p, as follows.

Consider a point x ∈ Fγ , and let F̃γ := νx,γ ◦ Fγ ◦ ν−1
x,γ be the 3-segment

piecewise geodesic path obtained by connecting p to x, going around the
loop Fγ starting and ending in x, and going back to p along νx,γ in the
opposite direction. Clearly, this path represents γ in π1(M,p). Denote by
q(γ) ∈ GL(Bp) the holonomy along F̃γ . By construction, q restricted to a
cyclic subgroup is always a homomorphism.

Note that q depends on the choice of x ∈ Fγ , which has to be fixed for
each conjugacy class of γ ∈ Γ.

Theorem 3.22: Let M be a closed manifold with strictly negative sectional
curvature, p ∈ M a base point, Γ := π1(M), and q : Γ−→GL(Bp) the
map defined above. Then q : Γ−→GL(Bp) is an Ulam quasimorphism.
Moreover, q is homogeneous.

Proof: Let α, β, γ = (αβ)−1 be elements of Γ. Choose any points a ∈ Fα,
b ∈ Fβ, c ∈ Fγ . Then q(α)q(β)q(αβ)−1 is a holonomy along a contractible
geodesic polygon with 9 edges obtained by going along

νa,α, Fα, ν
−1
a,α, νb,β, Fβ, ν

−1
b,β , νc,γ , Fγ , ν

−1
c,γ ,

see Figure 1. However, the holonomy along any contractible geodesic poly-
gon is bounded by Theorem 3.11. Homogeneity of q is clear, because q(γn)
is the holonomy of ∇ along the loop νx,γ ◦ Fnγ ◦ ν−1

x,γ .

Definition 3.23: Let (B,∇) be a vector bundle with connection, and q the
Ulam quasimorphism defined in Theorem 3.22. Then q : Γ−→GL(Bp) is
called the HBG-quasimorphism associated with (B,∇).

Remark 3.24: Instead of vector bundles, Theorem 3.22 can be stated in the
setting of principal bundles. In Section 2 we explained how it is done. This
allows one to modify Definition 3.23 obtaining a HBG-quasimorphism asso-
ciated with a principal G-bundle with connection, for arbitrary Lie group
G.

Remark 3.25: A homogeneous quasimorphism q : Γ−→ R is unique in its
equivalence class ([C]). Clearly, this is false when G is compact or contains a
compact subgroup K ⊂ G: all homomorphisms from Z to K are equivalent
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Figure 1: Lift of the geodesic polygon to the universal cover.

and homogeneous. However, the uniqueness is true when G is a simply
connected nilpotent Lie group (Claim 3.31). We expect this to be true for
any simply connected Lie group which has no non-trivial compact subgroups.

Remark 3.26: For any homogeneous quasimorphism q : Γ−→G and
r ∈ G, the map rqr−1 is also a homogeneous quasimorphism. The HBG-
quasimorphism q : π1(M,p)−→G associated with a G-bundle depends
on the choice of the points xi ∈ Fγi on the shortest loop representing the
primitive element γi. However, this dependence is easy to describe: for any
pair xi, yi ∈ Fγi , consider the geodesic simplex with vertices xi, yi, p, with
the geodesic from xi to yi going in the same direction as in the loop Fγi . Let
ri denote the loop along this simplex, starting in p, going to x, then to y and
to p again. Then q(γi) is the holonomy along νxi,γiFγiν

−1
xi,γi , or, equivalently,

the holonomy along riνyi,γiFγiν
−1
yi,γir

−1
i . In other words, replacing the choice

of xi by yi is equivalent to the conjugation of q(γi) with the holonomy along
a geodesic simplex ri, which is bounded. These two quasimorphisms are
Ulam equivalent because they are equivalent to the original Barge-Ghys
quasimorphism (Claim 3.29). When G is a simply connected nilpotent Lie
group, these HBG quasimorphisms are actually equal (Claim 3.31).

In the commutative case, any homogeneous quasimorphism is conju-
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gation invariant ([C, §2.2.3]). The following result is a non-commutative
Barge-Ghys analogue of this statement.

Claim 3.27: Let q : Γ−→G be a HBG-quasimorphism, and α, β ∈ Γ
conjugate elements. Then q(α) is conjugate to q(β).3

Proof: Let Fγ be the free geodesic loop homotopy equivalent to α and β,
and x ∈ Fγ be the chosen point. Then q(α), which is equal to holonomy of
∇ along the loop νx,α◦Fγ ◦ν−1

x,α, is conjugate to q(β), obtained the same way

from the loop νx,β ◦ Fγ ◦ ν−1
x,β. It is easy to write this conjugation explicitly:

q(α) = Rq(β)R−1, where R is holonomy of ∇ along the loop νx,α ◦ ν−1
x,β.

When G ∼ Rn, q(α) = q(β) for α, β conjugate is true by [C, §2.2.3].
However, when G = S1 (or other compact group), it is easy to construct
a homogeneous Ulam quasimorphism q : Γ−→G which does not have
this property. For example, let Γ = F2 be a free group, and define an
arbitrary map q : P−→ S1, where P is the set of all primitive words
in F2. If q(W ) = q(W−1)−1, this map extends to a homogeneous Ulam
quasimorphism, and all homogeneous Ulam quasimorphisms q : F2 −→ S1,
are obtained this way. Clearly, this map is not necessarily invariant under
the conjugation. This implies, in particular, that Claim 3.27 is false for a
general Ulam quasimorphism, if G has a compact subgroup.

Question 3.28: Can Claim 3.27 be generalized to an arbitrary homogeneous
Ulam quasimorphism q : Γ−→G, when G is a Lie group which has no
compact subgroups?

Any commutative quasimorphism is equivalent to its homogenization,
which is unique in its equivalence class ([C, §2.2.3]). For Ulam quasimor-
phisms taking values in a non-commutative group, the homogenization pro-
cedure is not yet known. However, the Barge-Ghys quasimorphisms admit
a “homogenization”, which is unique in its equivalence class by Claim 3.31
below.

Claim 3.29: Let (B,∇) be a bundle (vector or a principal G-bundle)
with connection over a closed manifold of strictly negative sectional cur-
vature, Γ = π1(M,p), and q∇ : Γ−→G the corresponding Barge-Ghys
quasimorphism. After making the relevant choices, we obtain the HBG-

3Clearly, the conjugating element depends on α and β.
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quasimorphism q : Γ−→G. Then q is equivalent to q∇, and, moreover,
q(γ)q∇(γ)−1 ∈ K4, where K4 ⊂ G is the compact subset defined in Theo-
rem 3.11, which depends only on M , B and ∇.

Proof: Let γ ∈ Γ be any element, which is represented as γ = γn0 , where
γ0 is primitive, and let Fγ0 be the free geodesic representing the same free
homotopy class. Fix a geodesic segment νγ0,x connecting p ∈M to a point x
in Fγ0 , and let γ̃ the geodesic segment connecting p to itself and homotopic
to γ. Then q∇(γ) is a holonomy of ∇ along γ̃, and q(γ) is the holonomy of
∇ along the geodesic chain νγ0,x ◦ Fnγ0

◦ ν−1
γ0,x. Geometrically, the segment

Fnγ0
is one geodesic interval, and therefore the polygon νγ0,x ◦Fnγ0

◦ν−1
γ0,x ◦ γ̃

−1

has 4 geodesic sides. By Theorem 3.11, the holonomy along the sides this
polygon belongs to K4.

Remark 3.30: For homogeneous quasimorphisms taking value in R or Rn

(elsewhere, we call them “commutative”), equivalence implies equality: if
q1, q2 : Γ−→ Rn are equivalent homogeneous quasimorphisms, they satisfy
q1 = q2, because

q1(x)− q2(x) = lim
n→∞

q1(xn)− q2(xn)

n
= 0.

The same is true for all homogeneous Ulam quasimorphisms q : Γ−→G, if
G is nilpotent and simply connected:

Claim 3.31: Let q1, q2 : Γ−→G be homogeneous quasimorphisms which
are equivalent. Assume that G is a simply connected nilpotent Lie group.
Then q1 = q2.4

Proof. Step 1: LetK ⊂ G be a compact subset such that q1(x)q2(x)−1 ∈ K
for all x ∈ Γ. Since qi(x

n) = qi(x)n, this gives q1(x)nq2(x)−n ∈ K. Then
Claim 3.31 would follow if we prove that for any distinct a, b ∈ G, the
sequence anb−n is unbounded, that is, does not belong to a compact set.

Step 2: Let Gi be the lower central series for G. Applying induction
and using the long exact sequence

−→ π2(Gi/Gi−1)−→ π1(Gi−1)−→ π1(Gi)−→ π1(Gi/Gi−1)−→ 0

4We expect that this statement is true whenever G is a Lie group such that the expo-
nential map exp : g−→G is a homeomorphism.
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for the Serre’s fibration Gi−1 −→Gi −→Gi/Gi−1, we immediately obtain
that the groups Gi and Gi/Gi−1 are simply connected for all i. Since
Gi/Gi−1 is abelian, this group is isomorphic to Rn.

Step 3: We use the induction on dimG. When G is 1-dimensional, this
group is commutative, giving G = R; if the sequence anb−n ∈ R is bounded,
we have a = b.

Let Z ⊂ G be the center; it is non-trivial, because G is nilpotent. Since
anb−n is bounded modulo Z, we may apply the induction hypothesis to the
representatives of a, b in G/Z and obtain that a = b modulo Z. Then az = b,
where z ∈ Z, hence the sequence anb−n = zn is bounded. Since Z = Rn

(Step 2), this may happen only if z is trivial. Then a = b.

Remark 3.32: Let E be a principal G-bundle with connection with G =
R>0, and B the associated line bundle with induced connection. Then the
usual (commutative) Barge-Ghys quasimorphism q, taking values in the ad-
ditive group R, is obtained from our Barge-Ghys quasimorphism q∇ by tak-
ing the logarithm. Let q0 be the the corresponding HBG-quasimorphism.
Then the logarithm log q0 is homogeneous and equivalent to q by Claim
3.29. Since a homogeneous commutative quasimorphism is unique in its
equivalence class ([C, Lemma 2.2.1]), this implies that log q0 is equal to the
homogenization of q.

4 Constructible Ulam quasimorphisms

In the sequel, when we speak of nilpotent Lie groups, we always mean con-
nected, simply connected, algebraic nilpotent Lie groups over R. Sometimes
we emphasize “algebraic”, but this is not that necessary: every connected
simply connected nilpotent Lie group admits a unique algebraic structure
by [Ho, Theorem on page 12].

4.1 Zariski closure of discrete subgroups

Definition 4.1: Let Y be a real algebraic variety, and X ⊂ Y a subset.
The Zariski closure of X in Y is the intersection of all real algebraic
subvarieties Xi ⊂ Y containing X. A subset X ⊂ Y is Zariski dense if its
Zariski closure is Y .

Remark 4.2: Let Γ ⊂ G be a subgroup of a real algebraic group. Then
its Zariski closure Γ is an algebraic subgroup of G. Indeed, the group laws
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put algebraic constraints on Γ, hence the smallest algebraic subvariety of G
containing Γ is closed under the group operations.

The following notion is going to be used in the proof of Theorem 4.31
below. For the readers’ convenience, we recall the definition of Hausdorff
distance ([G1]).

Definition 4.3: Let Z1, Z2 be subsets of a metric space M . Denote by Zi(ε)
the ε-neighborhood of Zi, and let

dH(Z1, Z2) := inf{ε ∈ R>0 ∪∞ | Z1(ε) ⊃ Z2 and Z2(ε) ⊃ Z1}.

The number dH(Z1, Z2) is called the Hausdorff distance between Z1 and
Z2. It is not hard to see that dH defines a metric, taking values in R>0 ∪∞,
on the set of all closed subsets of M .

Definition 4.4: Two subsets X,Y of a metric space M are coarse equiv-
alent if the Hausdorff distance dH(X,Y ) is finite. When M is a Lie group,
and d a left-invariant Riemannian distance, this is equivalent to K ·X ⊃ Y
and K · Y ⊃ X for a compact subset K ⊂ G.

Example 4.5: Any two rank 2 discrete lattices in R2 with the usual Eu-
clidean metric are coarse equivalent. However, R2 is not coarse equivalent
to a point.

Example 4.6: More generally, Rk taken with the standard Euclidean metric
is not coarse equivalent to any subspace Rn ( Rk.

We need to relax the notion of coarse equivalence slightly to accommo-
date the metrics which are not bi-invariant.

Definition 4.7: Let G be a Lie group. We say that X ⊂ G is bi-coarse
equivalent to Y ⊂ G if there exists a compact subset K ⊂ G such that
K ·X ·K ⊃ Y and K · Y ·K ⊃ X.

Definition 4.8: Let G be a real algebraic Lie group, and Λ ⊂ G a Zariski
dense subgroup. We say that Λ is bi-coarse Zariski dense in G if the
following property holds. If a subset Λ′ ⊂ G is bi-coarse equivalent to Λ,
then Λ′ is also Zariski dense in G.
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We prove that a lattice in a nilpotent Lie group is bi-coarse Zariski
dense. Note that simply connected nilpotent Lie groups are algebraic, with
the algebraic structure induced by the standard algebraic structure on its Lie
algebra. Indeed, for a simply connected nilpotent Lie group, the exponential
map from its Lie algebra to the Lie group is polynomial and invertible, and
the inverse map, called the logarithm, is also polynomial ([CG, Proposition
1.2.8]).

Definition 4.9: A subset Λ ⊂ G of a Lie group is called bi-cocompact if
there exists a compact subset K ⊂ G such that K · Λ ·K = G.

Remark 4.10: Further on, we use the following elementary observation.
Clearly, the subgroup [G,G] ⊂ G is normal, and for any H ⊂ G the group
H · [G,G] generated by H and [G,G] is also normal. Indeed, any subgroup
G1 ⊂ G which contains [G,G] is normal, because x−1yxy−1 ∈ [G,G] ⊂ G1

for any x ∈ G1 and y ∈ G, and therefore yxy−1 also belongs to G1.

Claim 4.11: Let G be a connected, simply connected algebraic nilpotent
Lie group, and H ⊂ G a proper algebraic subgroup. Consider the minimal
Lie subgroup H · [G,G] containing H and [G,G]. Then G/(H · [G,G]) ∼= Rn

for some n > 0.

Proof: A quotient of a connected, simply connected nilpotent Lie group by
an algebraic subgroup is connected, simply connected, because this algebraic
subgroup is connected and simply connected ([CG, Proposition 1.2.8]). Since
G/(H ·[G,G]) is commutative, it is isomorphic to Rn. It remains to show that
n > 0. Otherwise the projection of h to g

[g,g] is surjective, where g = Lie(G)

and h = Lie(H). However, any set of elements generating g
[g,g] also generates

g ([Ko]), hence in this case G = H, which is a contradiction because H ⊂ G
is a proper subgroup.

Remark 4.12: Let H ⊂ G be a Zariski closed subgroup in a connected,
simply connected nilpotent algebraic Lie group. Then H is also connected
and simply connected ([CG, Proposition 1.2.2]).

We need the following trivial sublemma.

Sublemma 4.13: Consider vector spaces Rk ( Rn, and let K ⊂ Rn be a
compact subset. Then K + Rk 6= Rn.
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Lemma 4.14: Let Λ ⊂ G be a bi-cocompact subset in a simply connected
nilpotent Lie group G. Then the group generated by Λ is Zariski dense.

Proof: Let H ⊂ G be the Zariski closure of the group generated by Λ. We
need to show that H = G. Since H is bi-cocompact, K ·H ·K = G for some
compact subset K ⊂ G. Consider the projection map π : G−→G/[G,G].
Let K1 := π(K); this set is compact because K is compact and π is con-
tinuous. The group π(H), which is a commutative nilpotent Lie group, is
isomorphic to Rn. Assume, on contrary, that H 6= G. By Claim 4.11, the
image of H in G/[G,G] is strictly smaller than π(G), which is also home-
omorphic to Rm, for some m > n. Now, K1π(H)K1 6= π(G) follows from
Sublemma 4.13. This gives a contradiction with K ·H ·K = G.

Corollary 4.15: Let G be a simply connected nilpotent Lie group, and
Γ ⊂ G a lattice, which is cocompact ([W, Theorem 2.2.6]). Then Γ is
bi-coarse Zariski dense.

Proof: Since Γ is cocompact, it is bi-cocompact. Any subset S ⊂ G which
is bi-coarse equivalent to a bi-cocompact set is bi-cocompact. Therefore, S
is Zariski dense by Lemma 4.14. This implies that Γ is bi-coarse Zariski
dense.

4.2 Virtually conjugation equivalent cyclic subgroups

In the sequel, we need the following notion.

Definition 4.16: Let A,B ⊂ G be infinite cyclic subgroups of a group G.
We say that A is virtually conjugation equivalent (VCE equivalent)
to B, denoted A ∼vce B, if there exist u ∈ G such that the intersection
A ∩ Bu is infinite, where Bu denotes the subgroup obtained from B by
conjugation with u. We also write x ∼vce y for elements x, y ∈ G when x, y
generate infinite cyclic subgroups which are VCE equivalent.

Remark 4.17: In [DGO], two elements of a group are called commensu-
rable if non-zero powers of these elements are conjugate. This is equivalent
to VCE equivalence of cyclic subgroups generated by these elements.

Claim 4.18: The relation ∼vce is, indeed, an equivalence relation.
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Proof: Let A,B,C be three cyclic subgroups which satisfy A ∼vce B and
B ∼vce C. Then A is commensurable with Bu and B is commensurable
with Cv, that is, the intersections A∩Bu and B∩Cv are infinite. Note that
any infinite subgroup in a cyclic group has finite index, hence to show that
A ∼vce C it would suffice to show that A ∩ Cvu is infinite.

By definition, Cvu ∩ Bu is a finite index subgroup in Bu. On the other
hand, Bu contains A ∩Bu as a finite index subgroup. Since an intersection
of two infinite subgroups in Z is always infinite, A ∩ Bu ∩ Cvu is infinite,
proving the claim.

Remark 4.19: If rkH1(Γ,Q) > 2, it is easy to find infinitely many cyclic
subgroups which are pairwise VCE non-equivalent. Indeed, if the line in
H1(Γ,Q) generated by a cyclic subgroup A is not collinear with the line
generated by B, this implies that A 6∼vce B. To extend this statement to
more general hyperbolic groups, we need the following argument.

The notion of hyperbolic embedding was defined in [DGO]. The following
result is one of the applications of hyperbolic embeddings

Claim 4.20: Let H be hyperbolically embedded subgroup of Γ, then every
(commutative) quasimorphism on H extends to a quasimorphism on Γ.
Proof: The quasimorphisms from H to R are controlled by kernel of the
map H2

b (H,R)−→H2(H,R), called the exact reduced bounded coho-
mology, which is clear from (1.1). Every class in second exact reduced
bounded cohomology of H can be extended to H2

b (Γ,R), as follows from
[HO]. This result was generalized to all cohomology groups in [FPS].

In [O], D. Osin defined acylindrically hyperbolic groups, which includes
all hyperbolic groups which are not virtually cyclic. The fundamental group
of a closed manifold of strictly negative sectional curvature, which is by con-
vention assumed of dimension > 1, is hyperbolic and not virtually cyclic,
hence it is acylindrically hyperbolic. In [O, Theorem 1.2] and [DGO, Theo-
rem 2.24], it was shown that any acylindrically hyperbolic group Γ contains
a hyperbolically embedded subgroup H = F2 ×K, where K is some finite
group. This brings the following theorem.

Theorem 4.21: Let Γ be an acylindrically hyperbolic group (this includes
fundamental groups of a closed manifold of strictly negative sectional cur-
vature.) Then there exists a free subgroup H = F2 ⊂ Γ such that any
quasimorphism on H can be extended to a quasimorphism on Γ.
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Remark 4.22: Brooks quasimorphisms are quasimorphisms on a free group,
defined in [Br]; see [C] for more details. We use Theorem 4.21 only Brooks
quasimorphisms; however, for Brooks quasimorphisms this result is implicit
already in Bestvina-Fujiwara [BF], where the free group is a Schottky sub-
group.

The following result immediately follows from the definition of Brooks
quasimorphism.

Claim 4.23: Let W1 and W2 be two reduced words, considered as elements
of F2. Denote by q1 : F2 −→ R the homogenization of the Brooks quasimor-
phism associated with W1. Assume that W1 is not a subword of W i

2, for all
i ∈ Z. Then q1(W2) = 0.
Proof: The proof is left as an exercise to the reader.

This implies the following proposition which will be used in the sequel.

Proposition 4.24: Let Γ be an acylindrically hyperbolic group.1 Let
k, k1, l, l1 be non-negative integers such that neither k = 0, k1 = 0 nor
l = 0, l1 = 0, nor k = k1, l = l1 holds. Then there exists a free sub-
group H = F2 ⊂ Γ generated by a, b ∈ Γ such that akbl 6∼vce a

k1bl1 , where
the relation 6∼vce is taken in Γ.

Proof: By Theorem 4.21, there exists a subgroup F2 ⊂ Γ such that any
quasimorphism is extended from F2 to Γ. Let W1 = ak1bl1 and W2 = akbl.
The negation of the condition “k = 0, k1 = 0 or l = 0, l1 = 0, or k = k1, l =
l1” is equivalent to “W1 is not a subword of W i

2, and W2 is not a subword
of W i

1, for all i ∈ Z.” Let q1, q2 : F2 −→ R be the homogenizations of the
corresponding Brooks quasimorphisms. By construction, qi can be extended
to quasimorphisms q1, q2 : Γ−→ R. Since homogeneous quasimorphisms
are conjugate invariant, and qi(Wj) = δij , the cyclic group 〈W1〉 intersects
trivially with any conjugate to 〈W2〉.

As an immediate corollary, we obtain the following assertion, which is
also implied by [BF].2

1This includes fundamental groups of a closed manifold of strictly negative sectional
curvature.

2For non-elementary hyperbolic groups, this result also follows from [EF].
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Corollary 4.25: Let Γ be an acylindrical hyperbolic group. Then there
exists infinitely many cyclic subgroups Ui which satisfy Ui 6∼vce Uj for any
i 6= j.

Remark 4.26: In [DGO, Corollary 6.12], a similar result is shown: the
authors construct an arbitrarily large collection of elements in a hyperbolic
group which are non-commensurable in the sense of Remark 4.17.

4.3 Non-constructible Ulam quasimorphisms

In [FK], Kapovich and Fujiwara define a constructible quasimorphism taking
values in a discrete group. We extend their definition to any Lie group.

Definition 4.27: Let q : Γ−→G be an Ulam quasimorphism. Consider
a finite index subgroup Γ0 ⊂ Γ, and let H ⊃ q(Γ0) be a subgroup of G
containing q(Γ0). Assume that H contains a normal subgroup A, abelian

and central in H, such that the composition Γ0
q−→ H −→H/A is equiv-

alent to a homomorphism Γ0 −→H/A. Then q is called a constructible
quasimorphism.

An element a ∈ Γ of a group is called primitive if for any n ∈ Z and
b ∈ Γ such that bn = a, one has n = ±1. A quasimorphism q : Γ−→G
is called homogeneous if its restriction to any cyclic subgroup is a ho-
momorphism (Definition 3.21). We gave a detailed treatment of homo-
geneous quasimorphisms in Subsection 3.5, where we defined a new type
of quasimorphisms, called HBG-quasimorphism, for “homogeneous Barge-
Ghys”. We use the acronym HBG to avoid the confusion, because the HBG-
quasimorphisms are not, in fact, “Barge-Ghys quasimorphisms”, in the sense
of Definition 3.9. One should think of a HBG-quasimorphism as of a “ho-
mogenization” of a Barge-Ghys quasimorphism. However, the notion of ho-
mogenization, which is well known for the usual (R-valued) quasimorphisms,
is not defined (yet) for the quasimorphisms taking values in a Lie group.

In Subsection 5.2, we prove the following theorem.

Theorem 4.28: LetM be a closed manifold of strictly negative curvature, G
a connected non-abelian Lie group, and x1, ..., xn ∈ Γ := π1(M) a collection
of primitive elements satisfying xi 6∼vce xj for i 6= j.3 Take any collection of

3Since dimM > 1, there exist infinitely many such subgroups, see Corollary 4.25.
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elements gi ∈ G, with i = 1, ..., n. Then

(i) There exists a connection ∇ on a trivial principal bundle P such that
the corresponding HBG-quasimorphism q∇ : Γ−→G takes xi to gi,
i = 1, 2, ..., n.

(ii) Moreover, for any countable family of elements zi such that zi 6∼vce xj
for all zi, xj , the connection ∇ can be chosen such that q∇(zi) is not
central in G.

Proof: See Subsection 5.2 below.

We use this result to prove Theorem 4.31 below.

Definition 4.29: A real nilpotent Lie group is called rational if its Lie
algebra g contains a rational Lie subalgebra gQ such that g = gQ ⊗Q R. By
Maltsev’s theorem, this property is equivalent to existence of cocompact
lattices ([CG]).

Example 4.30: Consider the Heisenberg group H, that is, the group of
upper triangular matrices 3×3. This is a 3-dimensional nilpotent Lie group.
The subgroup HZ of integer upper triangular matrices is cocompact in H,
which is an exercise left to the reader. This implies, in particular, that H is
rational.

Theorem 4.31: Let G be a simply connected, connected, non-abelian ratio-
nal real nilpotent Lie group, and Γ := π1(M), where M is a closed manifold
of strictly negative sectional curvature, dimRM > 1. Then there exists a
non-constructible HBG-quasimorphism q∇ : Γ−→G.

Proof. Step 1: By Maltsev’s theorem, G contains a lattice Λ ([CG, The-
orem 5.8.1]), which is a posteriori cocompact ([CG, Corollary 5.4.6]). This
lattice is finitely generated ([CG, Corollary 5.1.7]). Denote its generators by
gi. By Corollary 4.25, Γ contains infinitely many xi which satisfy xi 6∼vce xj
for all i 6= j. Using Theorem 4.28, we find x1, ..., xn ∈ Γ and a HBG-
quasimorphism q∇ : Γ−→G taking each xi to gi. We choose, in addition,
elements a, b ∈ Γ such that albm 6∼vce a

l1bm1 unless l = l1,m = m1 or
l = l1 = 0 or m = m1 = 0 (Proposition 4.24). Since the choice of xi is
arbitrary, we may assume also that xi 6∼vce a and xi 6∼vce b for all i.

Denote the identity element in G by 1G. We apply Theorem 4.28 to
xi as above, zi equal to albm such that l,m 6= 0. Then we obtain a HBG-
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quasimorphism such that q∇(xi) = gi, q∇(a) = 1G, q∇(b) = 1G, and q∇(aibj)
is not central for infinitely many i, j > 0.

We are going to show that q∇ is not constructible.

Step 2: By contradiction, suppose that q∇ is constructible, that is, there

exists a finite index subgroup Γ0 ⊂ Γ and q∇

∣∣∣
Γ0

satisfies the assumptions of

Definition 4.27.
Since Γ0 is of finite index in Γ, it contains powers xnii of each xi, for some

ni ∈ Z>0. Using the central series for the lattice Λ ⊂ G, we can easily see
that the elements q∇(xnii ) = gnii generate a finite index sublattice Λ0 ⊂ Λ,
which is bi-coarse equivalent to G because it is cocompact.

Since Λ0 is bi-coarse Zariski dense (Corollary 4.15), any map Γ0 −→G
which is equivalent to q∇ has a Zariski dense image.

Since q∇ is constructible, there exists a homomorphism h : Γ0 −→H/A,
where H ⊂ G is a subgroup and A its central subgroup, which can be lifted

to a homomorphism h1 : Γ0 −→H which is Ulam equivalent to q∇

∣∣∣
Γ0

. Then

imh is Zariski dense in G, as indicated above. Therefore the group H is also
Zariski dense in G, and A belongs to the center Z ⊂ G.

Clearly, the composition of h : Γ0 −→G/A and π : G/A−→G/Z is

a homomorphism. It remains to show that the composition of q∇

∣∣∣
Γ0

and

π : G−→G/Z is not equivalent to any homomorphism, which will give a
contradiction.

Step 3: A sequence {xi ∈ G} is called bounded if it belongs to a
compact subset of G. For any compact subset K ⊂ G in a topological group
G, and any sequences {xi}, {yi ∈ KxiK}, the sequence {xi} is bounded if
and only if {yi} is bounded. Indeed, yi ∈ KxiK ⇔ xi ∈ K−1yiK

−1, and
for any bounded {xi ∈ K1}, the sequence yi ∈ KxiK ⊂ KK1K is clearly
bounded.

Step 4: A simply connected nilpotent Lie group G does not contain
a bounded subgroup. Indeed, the closure of a bounded group is compact,
because a closed bounded set is compact. By Cartan’s theorem, its closure is
a Lie subgroup K ⊂ G. Let G ⊃ G1 ⊃ G2 ⊃ ... be the lower central series for
G, with Gi+1 = [Gi, G], and i the smallest number such that K ⊂ Gi. Then
the projection of K to Gi

[Gi,Gi]
is a non-trivial compact subgroup. However,

Gi
[Gi,Gi]

= Rn, and Rn does not have non-trivial compact subgroups.
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Step 5: Let q1 : Γ−→G/Z denote the composition of q∇ : Γ−→G
and the projection to G/Z. Arguing by contradiction, suppose that h :
Γ0 −→G/Z is a homomorphism which is equivalent to q1, where Γ0 ⊂ Γ is
a finite index subgroup. Then there exists a compact K ⊂ G such that

h(z) ∈ Kq1(z)K (4.1)

for all z ∈ Γ0. Since Γ0 has finite index in Γ, there exist i, j > 0 such
that ai, bj ∈ Γ0. Since q1(aki) = q1(bkj) = 1G for all k ∈ Z, this gives
h(aik) = h(ai)k ∈ K · K and h(bjk) = h(bj)k ∈ K · K. However, for any
element x in a simply connected nilpotent Lie group, a sequence {xn, n ∈ Z}
can be bounded only if x = 1G, hence h(ai) = 1G and h(bj) = 1G. Since
h is a homomorphism, this implies that h(aibj) = 1G. By construction,
the HBG-homomorphisms are “homogeneous”, that is, satisfy q∇(xn) =
(q∇(x))n. This implies that q1 is also homogeneous. Since q1(aibj) 6= 1G,
the sequence q1((aibj)n), n ∈ Z is not bounded (Step 4), which implies that
the sequence h((aibj)n) ∈ Kq1((aibj)n)K is also unbounded (Step 3), giving
a contradiction.

Remark 4.32: In Theorem 4.31, we construct a HBG-quasimorphism which
is not equivalent to a constructible one. However, the proof we use brings
a more powerful result, which was the chief aim of an earlier version of
this paper. Let q, q′ : Γ−→G be Ulam quasimorphisms. We say that
q, q′ are algebraically equivalent if there exists a compact subset K ⊂ G
such that for all x ∈ Γ, one has q(x) ∈ Kq′(x)K. In Theorem 4.31, we
construct a HBG-quasimorphism q∇ which is not algebraically equivalent to
a constructible quasimorphism.

4.4 Different notions of quasimorphisms: geometric, alge-
braic and Ulam

The notion of Ulam quasimorphism is not the only notion of a quasimor-
phism considered in the literature. In [HS], Hartnick and Schweizer define
an alternative notion of “a quasimorphism” ϕ : G−→H as a map such
that for any quasimorphism q : H −→ R its composition with ϕ is a quasi-
morphism q ◦ ϕ : G−→ R. When H is a hyperbolic group, it has many
quasimorphisms to R ([EF]), and this condition is quite restrictive. However,
when H is a lattice of high rank, such as SL(n,Z), n > 2, ([BM1, BM2]),
all quasimorphisms to R are equivalent to homomorphisms. However, the
lattices of finite rank satisfy property T ([BHV]), hence they have finite
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abelinization. Therefore, all quasimorphisms on H are bounded; for such H
the Hartnick-Schweizer condition is quite weak.

In [FK], Fujiwara and Kapovich considered other versions of the no-
tion of quasimorphism, taking values in a non-commutative group H; when
H is commutative, all these notions are equivalent to the notion of Ulam
quasimorphism. They define the algebraic quasimorphisms as maps q :
G−→H such that there exists a compact set K and q(xy) ∈ Kq(x)Kq(y)K
for all x, y ∈ G, and geometric quasimorphisms as ones such that
q(xy) ∈ Kq(x)Kq(y).

For comparison, Ulam quasimorphisms are maps q : G−→H which
satisfy q(xy) ∈ Kq(x)q(y); this notion is stronger than the notion of a
geometric quasimorphism.

In [He, Definition 2.2], N. Heuer introduced a version of this definition.
Given a map q : G−→H, he defines the defect of q as a subgroup gener-
ated by q(xy)q(y)−1q(y)−1. In [He, Proposition 2.3], Heuer proves that q is
an Ulam quasimorphism if and only if the defect is finite.

Since q(x−1) = q(x)−1, the condition q(xy) ∈ Kq(x)q(y) is equiva-
lent to q(xy) ∈ q(x)q(y)K. Indeed, q((xy)−1) ∈ Kq(y−1)q(x−1) implies
q(xy) ∈ (Kq(y−1)q(x−1))−1 = q(x)q(y)K−1. The same argument works for
the geometric quasimorphisms if we also assume that q(x−1) = q(x)−1.

Earlier, we defined an equivalence of quasimorphisms: q ∼ q′ if there
exists a compact K ⊂ H such that q(x) ∈ Kq′(x) for all x ∈ G. Interestingly
enough, a map which is equivalent to an Ulam quasimorphism is no longer
an Ulam quasimorphism (see Remark 4.33 below). However, a map q′ :
G−→H which is equivalent to a geometric quasimorphism q : G−→H is
again a geometric quasimorphism:

q(xy) ∈ Kq(x)Kq(y)⇒
q′(xy) ∈ K1q(xy) ⊂ K1Kq(x)Kq(y) ⊂ K1KK

−1
1 q′(x)KK−1

1 q′(y).

Here the “equivalence” is understood as q′(x) ∈ K1q(x), and the “geometric
quasimorphism” condition as q(xy) ∈ Kq(x)Kq(y).

The reason why the “geometric quasimorphism” condition is sometimes
more appropriate stems from the following observation. Let q : G−→H
be an Ulam quasimorphism, and d : H ×H −→ R>0 a left-invariant metric
such that all closed balls in H are compact. Then the condition

d(q(xy), q(x)q(y)) 6 C
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is equivalent to being an Ulam quasimorphism. However, a map q′ : G−→H
such that d(q(x), q′(x)) 6 C1 is no longer an Ulam quasimorphism, but only
a geometric one. This leads to the following observation.

Remark 4.33: Let q : Γ−→G be a non-constructible quasimorphism (The-
orem 4.31) taking values in a nilpotent Lie group G containing a cocompact
lattice Λ. A notion of constructible quasimorphisms is defined only for Ulam
quasimorphisms, but we can generalize it to geometric quasimorphisms as
follows: a geometric quasimorphism is constructible if it is equivalent, in
the sense of Definition 1.1, to a constructible Ulam quasimorphism. Pick a
right-invariant metric d on G, and let R be the diameter of the fundamental
domain of Λ acting on G. For each q(x) ∈ G, let us choose a closest element
q′(x) ∈ Λ. Then d(q(x), q′(x)) < R, hence the map q′ : Γ−→ Λ is equiv-
alent to q, and q′ is a non-constructible geometric quasimorphism. This
gives an example of a geometric quasimorphism which is non-constructible,
even when the target group is discrete. By [FK], any Ulam quasimorphism
q′′ : Γ−→ Λ into a discrete group is constructible, hence q′ is not equivalent
to any Ulam quasimorphism.

5 HBG-quasimorphisms with prescribed values

5.1 Connections with prescribed holonomy

We prove the following preliminary lemma, which will be used later in this
section.

Lemma 5.1: Let G be a connected Lie group, g its Lie algebra, and P
a trivial G-bundle on an interval [0, 1]. Fix an element g ∈ G. Denote
by ∇0 the trivial connection on P . Then there exists a g-valued 1-form A
with compact support, such that the holonomy Hol(∇) of the connection
∇ := ∇0 +A is equal to g.

Proof: Write A as a(t)dt, where a ∈ g and dt is the standard 1-form on
[0, 1]. Then Hol(∇) =

∫ 1
0 a(t)dt. Since G is connected, we can connect the

unit 1G to g by a path γ : [0, 1]−→G. Reparametrizing γ, we may assume
that γ is constant in a small neighborhood of 0 and of 1. By Newton-
Leibniz formula,

∫ 1
0 (γ(t)−1)∗γ̇dt = g. Setting a(t) := (γ(t)−1)∗γ̇, we obtain

a connection form which satisfies Hol(∇) =
∫ 1

0 (γ(t)−1)∗γ̇dt = g. Since γ
is constant in a neighborhood of 0 and of 1, the form a(t)dt has compact
support.
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5.2 Constructing the HBG-quasimorphisms

In this section, we prove Theorem 4.28. We repeat its statement for conve-
nience.

Theorem 4.28: Let M be a closed manifold of strictly negative curva-
ture, G a non-abelian connected Lie group, and x1, ..., xn ∈ Γ := π1(M) a
collection of primitive elements satisfying xi 6∼vce xj for all i 6= j. Take any
collection of elements gi ∈ G, with i = 1, ..., n. Then

(i) There exists a connection ∇ on a trivial principal bundle P such that
the corresponding HBG-quasimorphism q∇ : Γ−→G takes xi to gi,
i = 1, 2, ..., n.

(ii) Moreover, for any countable family of elements zj ∈ Γ satisfying zj 6∼vce

xi for all i, j, the connection ∇ can be chosen in such a way that q∇(zj)
is not central in G for all zj .

Proof. Step 1: For each primitive element x ∈ π1(M), denote by Fx the
minimal free geodesic loop representing x (Proposition 3.8). This geodesic
loop is unique and determines x up to conjugation. Fix a point p on M , and
a point pi on each Fxi . Let γxi be the piecewise smooth loop connecting p
to pi by a geodesic segment νpi,Fxi , going around Fxi , and back from pi to
p by the same geodesic segment νpi,Fxi reversed. For each connection ∇ on
P , the corresponding HBG-quasimorphism takes xi to the holonomy of ∇
along γxi .

We are going to choose a connection ∇ on P such that the holonomy of
∇ along γxi is equal to gi.

Step 2: Since xi 6∼vce xj , none of the loops Fx1 , ..., Fxn is contained
in another of these loops. This is actually the only reason why we care
about the VCE equivalence. Fix an open set Bxi containing a segment of
Fxi and not intersecting the rest of the loops. We can choose Bxi in such a
way that it does not intersect the geodesic segment connecting p to pi (Step
1). Denote by ∇0 the trivial connection on P . Using Lemma 5.1, we can
construct a connection 1-form on each open set Bxi in such a way that the
holonomy of the corresponding connection along γi ∩ Bxi is equal to any
given element of G.

This gives a new connection on P , equal to the old one outside of Bxi ,
with prescribed holonomy H on Fxi . The holonomy of this connection along

νpi,Fxi ◦ Fxi ◦ ν
−1
pi,Fxi

is SHS−1, where S : P
∣∣∣
p
−→ P

∣∣∣
pi

is the holonomy of
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this connection along νpi,Fxi . Since the map H 7→ SHS−1 is bijective, by an
appropriate choice of the connection on Bxi , we can obtain any element of
G as holonomy of the connection along νpi,Fxi ◦ Fxi ◦ ν

−1
pi,Fxi

.

Using a partition of unity, we can glue this 1-form to the connection
form in ∇0, obtaining another connection which is equal to ∇0 outside of
Bxi , and has prescribed holonomy on γi ∩Bxi . This allows us to modify ∇0

on each open set Bxi in such a way that the holonomy of ∇ along γi ∩ Bxi
is equal to gi.

We built a connection ∇ which satisfies Theorem 4.28 (i). To finish the
proof of Theorem 4.28, it remains to show that ∇ can be chosen in such a
way that (ii) is satisfied.

Step 3: Suppose that∇ is chosen in such a way that it satisfies Theorem
4.28 (i). We modify the connection ∇ on a sequence of small open sets
D1, ..., Dk with each Dl intersecting γzl and not intersecting γx1 , γx2 , ..., γxn .
The result of these successive modifications is a connection denoted ∇k.

We choose ∇k in such a way that q∇k(zi) is not central for i = 1, ..., k.
The passage from ∇k−1 to ∇k is expressed by ∇k = ∇k−1 + θk, where θk is
a g-valued 1-form with support in Dk.

We chose the 1-form θk very small, in such a way that the series ∇+
∑
θi

converges to a connection ∇̃. By construction, the holonomy of ∇̃ along
γzk is equal to the holonomy of ∇k, hence q∇̃(zk) is not central whenever
q∇k(zk) = q∇̃(zk) is not central.

The g-valued 1-form θk is chosen, on each step, using the same argument
as in the proof of Lemma 5.1. Using this lemma, the 1-form θk is determined
by the value of q∇k(zk), which can be chosen arbitrarily small, provided that
q∇k(zk) is not central. Then the series ∇+

∑∞
i=1 θi converges to a connection

∇̃ which satisfies Theorem 4.28 (ii). Since the support of the form
∑∞

i=1 θi
does not intersect the paths γx1 , ..., γxn , we have q∇(xi) = q∇̃(xi) = gi, hence

∇̃ satisfies both Theorem 4.28 (i) and Theorem 4.28 (ii).

5.3 ε-representations

As an application of the construction given in Subsection 5.2, we generalize
Kazhdan’s theorem [Kaz, Theorem 2] to the fundamental group of an ar-
bitrary closed manifold of strictly negative sectional curvature. We define
the notion of an ε-representation and a δ-approximated ε-representation as
follows (compare with [Kaz] and Subsection 1.6).

Let G be a topological group. Recall that Chabauty topology on the
set of closed subgroups C(G) is defined by the base of neighborhoods, WU (Γ)
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given for each open subset U ⊂ G and a subgroup Γ ⊂ G

WU (Γ) = {Γ′ ∈ C(G) | U · Γ′ ⊃ Γ and U · Γ ⊃ Γ′}.

If the topology of G is induced by a left-invariant metric, the Chabauty
topology is induced by the Hausdorff metric on the space of subsets of G
(Definition 4.3).

By [F, p. 474], or [dH, Proposition 2 (vi)], the space C(G) is compact.
Recall that a group G has no small subgroups ([Tao, Exercise 1.5.6,

Corollary 1.5.8]) if there exists a neighborhood of identity which does not
contain a non-trivial subgroup; this property is clearly satisfied by any Lie
group. When G has no small subgroups, the space of C0(G) closed non-
trivial subgroups is also compact.

Clearly, the diameter of a subset of a metric space M is a continuous
function in the topology on 2M induced by the Hausdorff metric. Since
C0(G) is compact, the diameter of non-trivial subgroups in G is bounded
from below for any metric on G.

Fix a left-invariant metric on G such that any non-trivial subgroup has
diameter at least 1/3. We motivate the choice of the constant 1/3 as fol-
lows. For compact group G, we can always choose a bi-invariant metric; its
geodesics are translations of one-parametric subgroups. We normalize the
metric such that the diameter of any compact one-parametric subgroup is
bounded from below by 1/2.

For a bi-invariant Riemannian metric on a Lie group, the geodesics are
obtained by translation of one-parametric group: the Lie-theoretic exponen-
tial map coincides with the Riemannian. Every compact Lie group admits
a bi-invariant Riemannian metric.

Since every two points are connected by a geodesic, every element of a
compact group is an exponent of an element of the Lie algebra, and every
finite cyclic subgroup belongs to a circle subgroup. If we normalize the
metric such that the diameter of each circle subgroup is bounded from below
by 1/2, then the diameter of each finite subgroup is at least 1/3, which is
realized by Z/3Z. In particular, of we choose the bi-invariant metric on the
group SU(2) = S3 such that diam(SU(2)) = 1/2 (this is equivalent to each
meridian circle being of length 1), the bound 1/3 is realized.

An ε-representation of a group Γ is a map q : Γ−→G such that
d(q(x)q(y), q(xy)) < ε for any x, y ∈ Γ. An ε-representation can be δ-
approximated by a representation if there exists a representation ρ :
Γ−→G such that d(ρ(x), q(x)) < δ for all x ∈ Γ.
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Theorem 5.2: Let M be a closed manifold of strictly negative sectional
curvature, G a positive-dimensional connected Lie group, and P a trivial
principal G-bundle. For any connection ∇ in P , let q∇ : π1(M)−→G
denote the corresponding HBG-quasimorphism (Subsection 3.5). Choose a
left-invariant metric on G such that the diameter of any closed subgroup is
at least 1/3. Then for each ε > 0, there exists a connection ∇ such that q∇ is
an ε-representation which cannot be 1/3-approximated by a representation.

Proof. Step 1: Let a1, ..., an be the generators of π1(M). Using Corollary
4.25, we find b ∈ π1(M) such that b 6∼vce ai. Choose an open set Ub which
intersects Fb and does not intersect Fa1 , Fa2 , ..., ν(p, pi), i = 1, ..., n, where
ν(p, pi) are geodesics connecting the marked point p with Fai . Let pb be
the chosen fixed point on Fb, and ∇0 be the trivial connection on a trivial
G-bundle P . Choose a connection ∇0 + θ which is trivial outside of Ub.
Consider the path γ = ν(p, pb)Fbν(p, pb)

−1 as a map from [0, 1] to M . Then
the holonomy of ∇ + θ along γ is equal to

∫ 1
0 γ
∗(θ). For any non-trivial

g = eu ∈ G in the image of the exponential map Lie(G)→ G, we can choose
a 1-form θ on M such that γ∗(θ) = f(t)udt, for some function f : [0, 1]−→ R
with compact support. Choosing f such that g =

∫ 1
0 f(t)udt, we obtain a

1-form θ with values in the Lie algebra of G such that the holonomy of
∇0 + θ along γ is equal to g. Moreover, replacing θ with 1

mθ, we obtain a

connection with holonomy e
1
m
u = g1/m.

For m sufficiently large, this would give an ε-representation q∇ such that
q∇(ai) = 1G, and q∇(b)m = g.

Step 2: It remains to show that the ε-representation q∇ cannot be 1/3-
approximated by a representation ρ. By contradiction, assume that q∇ is
1/3-approximated by a representation ρ : π1(M)−→G. Since

d(ρ(ani ), q∇(ai)
n) < 1/3,

the closure of a subgroup of G generated by ρ(ai) has diameter less than
1/3. Since the diameter of non-trivial subgroups of G is > 1/3, this implies
that ρ(ai) = 1G, and ρ is trivial. Therefore, ρ(b) = 1G. However, for all
n ∈ Z, we have

d(ρ(b)n, q∇(b)n) < 1/3,

because q∇ is 1/3-approximated by ρ. Then the diameter of the subgroup of
G generated by g = q∇(b) is less than 1/3, which again implies that g = 1G,
leading to contradiction.
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