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Abstract. Let M be an oriented smooth manifold, and Homeo(M,ω) the
group of measure preserving homeomorphisms of M , where ω is a finite mea-
sure induced by a volume form. In this paper, we define volume and Eu-
ler classes in bounded cohomology of an infinite dimensional transformation
group Homeo0(M,ω) and Homeo+(M,ω) respectively, and in several cases
prove their non-triviality. More precisely, we define:

• Volume classes in Hn
b (Homeo0(M,ω)) where M is a hyperbolic manifold

of dimension n.
• Euler classes in H2

b(Homeo+(S, ω)) where S is an oriented closed hyper-
bolic surface.

We show that Euler classes have positive norms for any closed hyperbolic
surface and volume classes have positive norms for all hyperbolic surfaces and
certain hyperbolic 3-manifolds; hence, they are non-trivial.

1. Introduction

Let M be an oriented connected smooth manifold. Suppose ω is a finite measure
induced by a volume form on M -. In [BM22] we defined a homomorphism

Γb : H•
b(π1(M)) → H•

b(Homeo0(M,ω)),

where H•
b(Homeo0(M,ω)) is the bounded cohomology of a discrete group. The map

Γb is a generalization of a map defined by Gambaudo and Ghys in the quasimor-
phism setting [GG04, Section 5].

Γb was used in [BM22] to show that the 3rd bounded cohomology of Homeo0(M,ω)
is infinite dimensional for many manifolds M . In [Nit] more results concerning
bounded cohomology, as well as standard cohomology, of Homeo0(M,ω) were ob-
tained. Variations of Γb were used in [Kim20] to prove similar results concerning
Diff0(S, area) where S is a disc, sphere or torus.

In this paper, we continue this line of research and focus on two important families
of cohomology classes described below. Moreover, we construct an extension of Γb

to a map
ΓM
b : H•

b(M(M, ∗)) → H•
b(Homeo(M,ω)),

where M(M, ∗) is the mapping class group of once punctured M , see Section 3.C.
This extension is used to define the Euler class on Homeo+(S, ω) for an oriented
closed hyperbolic surface S and we hope that it might be useful to study the
cohomology of Homeo(M,ω) for other manifolds M .
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The bounded volume class. Let M be an oriented hyperbolic manifold and let
ωh be the volume form induced by the hyperbolic metric. In this setting ωh defines
a class V olM ∈ Hn

b (π1(M)) ≃ Hn
b (M), see Section 2.B. If M is closed, V olM is a

natural bounded representative of [ωh] ∈ Hn
dR(M).

Our main result positively answers the question in Section 5 of [BM22] for degree
2 and partially for degree 3. Moreover, it may be seen as a successful attempt
to define a volume class in the bounded cohomology of an infinite dimensional
transformation group.

Theorem 1.1. Let M be an oriented manifold of dimension n such that it is either:

• A hyperbolic surface with a non-abelian fundamental group or

• A complete 3-dimensional hyperbolic manifold that fibers over the circle with
a non-compact fiber.

Suppose a measure ω is induced by a volume form on M and ω is finite. Then the
class Γb(V olM ) ∈ Hn

b (Homeo0(M,ω)) has positive norm and hence is non-trivial.

The class V olM ∈ Hn
b (M) was considered by Gromov and Thurston in the proof of

the proportionality principle [Gro82, Thu22a]. Moreover, it serves as a rich source
for classes in 3rd bounded cohomology of free and surface groups [Som97].

It is worth mentioning that it is not known if the bounded cohomology in degree n of
a non-abelian free group for n > 3 is non-trivial, hence our proof works in dimension
2 and sometimes in dimension 3 so far. The problem of non-triviality of Γb(V olM )
for higher dimensional hyperbolic manifolds or closed hyperbolic 3-manifolds is still
open.

The bounded Euler class. Let S be a closed oriented surface and ω a measure de-
fined by an area form on S. Denote by Homeo+(S, ω) the subgroup of Homeo(S, ω)
of orientation preserving homeomorphisms.

Let ∗ ∈ S be a point in S and M+(S, ∗) be the orientation preserving mapping class
group of S\∗. Recall that π1(S, ∗) <M+(S, ∗) due to the Birman exact sequence.
As we will see in Section 3.C, the map Γb can be extended to a map Γ

M+

b such that
the following diagram commutes:

H•
b(M+(S, ∗)) H•

b(Homeo+(S, ω))

H•
b(π1(S, ∗)) H•

b(Homeo0(S, ω))

Γ
M+
b

Γb

The vertical arrows are induced by inclusions. Thus at the cost of passing to
a bigger group M+(S, ∗), we can generate classes in the group of ω-preserving
homeomorphisms of S not necessarily isotopic to the identity.

Let Homeo+(S
1) be the group of orientation preserving homeomorphisms of the

circle and let eb ∈ H2
b(Homeo+(S

1)) be the bounded Euler class. There is a
natural map α : M+(S, ∗) → Homeo+(S

1) defined by the action of M+(S, ∗) ≃
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Aut+(π1(S)) on the Gromov boundary of π1(S). Let eM+

b and eSb be the pull-backs
of eb to M+(S, ∗) and π1(S).

Theorem 1.2. Let S be a closed oriented surface of genus ≥ 2, and ω a measure
induced by an area form on S. Then the classes Γb(e

S
b ) ∈ H2

b(Homeo0(S, ω)) and
Γ

M+

b (e
M+

b ) ∈ H2
b(Homeo+(S, ω)) have positive norms and hence are non-trivial.

We emphasise that in Theorem 1.1 and in Theorem 1.2 one can take instead of
Homeo0(M,ω) smaller groups like Diff0(M,ω), or Symp0(S, ω) or Ham(S) when-
ever S is a hyperbolic surface, and the same results hold.

On the proof and organization of the paper. The method of the proof is a
refinement (and at the same time a simplification) of the one from [BM22]. In the
case of bounded volume classes, it is based on mapping a non-abelian free group
F to π1(M) and to Homeo0(M,ω), restricting V olM and Γb(V olM ) to F and then
comparing these two classes. An identical method is used for Euler classes. This
technique is quite special, since we do not know many subgroups of Homeo0(M,ω).
See [MT19, Chapter 4] for a survey on realizations of groups by diffeomorphisms
and homeomorphisms.

The outline of the paper is as follows. In Section 2.A we give basic definitions of
bounded cohomology. In Section 2.B we define two versions of the volume class:
the topological V olM ∈ Hn

b (M) and its group version V olgpM ∈ Hn
b (π1(M)). The

topological version is well known and we use it in the proofs. We need the group
version because Γb takes classes from the group cohomology. As expected, V olM and
V olgpM define the same class under the canonical identification Hn

b (M) ≃ Hn
b (π1(M)).

We could not find a proof of this fact in the literature, thus for completeness we
provide a detailed argument in Lemma 2.2. In Section 2.C we define the Euler
class in the mapping class group of a punctured surface. In Section 3 we define the
maps Γb and ΓM

b . In Section 4 we show that for hyperbolic surfaces and certain
3-dimensional hyperbolic manifolds, the class V olM restricts non-trivially to a free
subgroup of π1(M). The same result holds for Euler classes and closed surfaces
of genus ≥ 2. In Section 5 we give a simpler and at the same time more general
version of a technical Lemma 3.1 from [BM22] and prove the main theorems. In
Section 6 we discuss the case when ω is the Dirac measure.

Acknowledgements. MB acknowledges the support of the Israeli Science Founda-
tion grant 823/23. MB was partially supported by a Humboldt research fellowship.
MM was supported by grant Opus 2017/27/B/ST1/01467 funded by the Narodowe
Centrum Nauki. We thank the Center for Advanced Studies in Mathematics at
Ben Gurion University for supporting the visit of the second author at BGU. The
authors would like to thank Steve Farre for helpful discussions.

2. Preliminaries

2.A. Bounded cohomology. Let us give the definitions of bounded cohomology
of a group and a space.

Let G be a group. The space of bounded n-cochains is defined by

Cn
b (G) = {c : Gn+1 → R | c is bounded}.
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Let dn be the ordinary coboundary operator dn : Cn
b (G) → Cn+1

b (G). The group
G acts on Cn

b (G) by

h(c)(g0, . . . , gn) = c(h−1g0, . . . , h
−1gn) ∀c ∈ Cn

b (G), ∀h, g0, . . . , gn ∈ G.

Let Cn
b (G)

G be the space of G-invariant cochains. The bounded cohomology
of G, denoted by H•

b(G), is the homology of the cochain complex {Cn
b (G)

G, dn}.
Note that Cn

b (G)
G is a subcomplex of the space of all G-invariant cochains, hence

we have a map Hn
b (G) → Hn(G,R) called the comparison map.

On Cn
b (G) we have the supremum norm denoted by ||·||. This norm induces a semi-

norm on Hn
b (G), i.e., if C ∈ Hn

b (G), then

||C|| = min{||c|| | [c] = C}.

Let M be a topological space. A singular simplex is a continuous map from the
standard simplex to M . By Cn(M) we denote the space of singular chains and
by Sn(M) ⊂ Cn(M) the set of all singular simplices in M . Let Cn

b (M) be the set
of linear functions from Cn(M) to the reals that are bounded on Sn(M). Since
Sn(M) generates Cn(M) one can think of an element in Cb

n(M) as a bounded
function c : Sn(M) → R.

The bounded cohomology of M , denoted by H•
b(M), is the homology of the

cochain complex {Cn
b (M), dn}, where dn : Cn

b (M) → Cn+1
b (M) is the standard

coboundary operator. Like in the group case, we have the seminorm and the com-
parison map. Sometimes it is convenient to work in the universal cover of M . Let
us recall that on Cn

b (M̃) we have an action of G = π1(M) and Cn
b (M) is naturally

isomorphic to Cn
b (M̃)G.

We point out that bounded cohomology cannot be defined in terms of simplicial
cochains (given some triangulation ofM). For example, if the triangulation is finite,
then every simplicial cochain is bounded and we get the standard cohomology.

In this paper the manifold M is aspherical. In this case Hn
b (π1(M)) is canonically

isometric to Hn
b (M). See [Fri17, Chapter 5] for a relatively elementary proof of this

fact. It is based on an appropriate notion of resolution for bounded cohomology.
Note that by the remarkable Mapping Theorem of Gromov, the assumption on
asphericity of M can be dropped, but the proof of this fact is much harder [Gro82].

2.B. The bounded volume class. Let M be a connected, oriented, and aspher-
ical hyperbolic n-manifold. Below we recall the definition of V olM and give a
detailed description of its counterpart in the group cohomology Hn

b (π1(M)), which
seems to be less known. In Lemma 2.2 we show that both versions give the same
class under the canonical identification of Hn

b (M) and Hn
b (π1(M)).

We start with defining the volume class in the cohomology of a group. Let Iso+(Hn)
denote the group of orientation preserving isometries of the hyperbolic n-space
and let volh be the hyperbolic volume form on Hn. Fix ∗ ∈ Hn and for a tuple
of elements ḡ = (g0, . . . , gn) in Iso+(H) consider the geodesic simplex ∆ḡ ⊂ Hn

spanned by the points g0(∗), . . . , gn(∗). This simplex can be parametrized using
the barycentric coordinates [Thu22a, Chapter 6]. Therefore we regard ∆ḡ as a map
from the standard simplex to Hn. We define
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v(ḡ) =

∫
∆ḡ

volh.

Note that v(ḡ) is the signed volume of ∆ḡ. Moreover, v is an Iso+(Hn)-invariant
cocycle. Since volumes of geodesic simplices are bounded, v is bounded and we can
define:

V ol = [v] ∈ Hn
b (Iso+(Hn)).

For G < Iso+(Hn) we define vG to be the restriction of v to G and V olG = [vG] ∈
Hn

b (G).

Recall that M is a connected, oriented, and aspherical hyperbolic n-manifold. We
allow M to have cusps or a boundary that is not totally geodesic. Represent M as a
quotient M = X/π1(M) where X ⊂ Hn is simply connected and π1(M) acts on X
by deck transformations. Note that the action of π1(M) on X extends uniquely to
an action on Hn. Denote this action by ρ : π1(M) → Iso+(Hn). To M we associate
the class

V olρ(π1(M)) ∈ Hn
b (π1(M)),

and write V olgpM = V olρ(π1(M)). The action ρ is well defined up to conjugacy,
thus V olgpM does not depend on ρ. In what follows we usually do not mention the
representation ρ and regard π1(M) as a discrete subgroup of Iso+(Hn).

Let us now describe a singular cocycle that defines the class V olM in Hn
b (M). Let σ

be a singular simplex in X ⊂ Hn. The straightening str(σ) is the geodesic simplex
with the same vertices as σ and parameterized using the barycentric coordinates
(it is possible that str(σ) is not contained in X). We define

v′M (σ) =

∫
str(σ)

volh.

We have that v′M is a π1(M)-invariant cocycle on X. It defines the bounded class
[v′M ] ∈ Hn

b (M) which we denote by V olM .

Hence we associate two classes to M : V olM in the cohomology of the space M and
a class V olgpM in the group cohomology of π1(M).

Remark 2.1. The definition of V olM can be generalized by integrating, instead of
volh, the pull-back ω̃ of a closed k-form ω on Mn for k ≤ n, see [BG88, BFM+24].
For a surface and 2-forms such that ω̃ = fvolh for f > 0, Theorem 1.1 holds with
the same proof. As well, instead of a hyperbolic metric, one can take a pinched
negatively curved metric on M where one can straighten simplices. This should
generate even more V olM -like classes.

Lemma 2.2. Let M be a connected, oriented and aspherical hyperbolic n-dimensional
manifold and let r : Hn

b (π1(M)) → Hn
b (M) be the canonical isometric isomorphism.

Then we have r(V olgpM ) = V olM .
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Proof. Let M = X/π1(M) where X ⊂ Hn. First, we shall show that without loss
of generality, we can assume that X = Hn. Consider Mex = Hn/π1(M). Since
X ⊂ Hn, we have that M is a submanifold of Mex. Moreover, asphericity of
M implies that X is contractible and by the Whitehead theorem the inclusion
i : M →Mex is a homotopy equivalence. Hence

i∗ : Hn
b (M

ex) → Hn
b (M)

is an isometric isomorphism. Moreover, i∗(V olMex) = V olM . Thus instead of M ,
we can consider Mex. In other words, we can assume that X = Hn.

The explicit formula for r can be found in [Fri17, Lemma 5.2] (note that on the
standard cohomology, r is just the map induced by the classifying map). We shall
give a formula for the inverse of r.

Let G = π1(M) and ∗ ∈ Hn be a basepoint. Let ∆ be the map which to each tuple
ḡ = (g0, . . . , gn) ∈ Gn+1 associates ∆ḡ, the geodesic simplex spanned by the gi(∗)
and parametrized by barycentric coordinates.

Consider the augmented cochain complexes {C•
b(G), d} and {C•

b(Hn)), d}. It means
that C−1

b (G) = C−1
b (H) = R and in both cases d−1 maps a real number to a constant

function. The map ∆ commutes with taking facets. That is, if f̄ ⊂ ḡ is an n-tuple,
then ∆f̄ is just ∆ḡ restricted to the corresponding facet. Thus ∆ induces a map of
augmented cochain complexes

∆∗ : {C•
b(Hn)), d} → {C•

b(G), d}

given by ∆∗(c)(ḡ) = c(∆ḡ) and the identity on the augmentations. The map ∆∗

is G-invariant and since these resolutions are relatively injective strong resolutions
[Fri17, Lemma 4.12 and Lemma 5.4], ∆∗ induces a map

Hn
b (∆): Hn

b (M) → Hn
b (π1(M))

which is the inverse of r [Fri17, Theorem 4.15]. Since r is an isometric isomorphism,
the same holds for Hn

b (∆). Moreover, it follows directly from the definitions that
∆∗(v′M ) = vG. Thus r(V olgpM ) = V olM . □

Let ωh be the hyperbolic volume form on a closed hyperbolic manifold M . Let us
point out that [v′M ] ∈ Hn

b (M) goes to [ωh] ∈ HdR(M) ≃ Hn(M) after applying the
comparison map. This can be seen by the straightening of simplices homotopy, see
[Thu22a] or [Fri17, Lemma 8.12].

2.C. Euler class in the mapping class group. Let HomeoZ+(R) be the set
of orientation preserving homeomorphisms f of R that are lifts of maps from
Homeo+(S

1). That is, f(x+ 1) = f(x) + 1. It fits the central extension

Z −→ HomeoZ+(R)
p−→ Homeo+(S

1).

The Euler class eb ∈ H2
b(Homeo+(S

1)) is a particular bounded class representing the
Euler class of this extension [Fri17, Chapter 10]. Let S be a closed oriented surface
of genus ≥ 2. On S we fix a hyperbolic metric. Let M+(S, ∗) be the subgroup of
M(S, ∗) of mapping classes represented by orientation preserving homeomorphisms.
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By the Dehn-Nielsen theorem M+(S, ∗) ≃ Aut+(π1(S, ∗)), thus M+(S, ∗) acts on
the Gromov boundary ∂π1(S, ∗) ≃ S1. Hence we have a map

α : M+(S, ∗) → Homeo+(S
1).

In geometric terms, α is described as follows. Let f ∈ Homeo+(S, ∗) represent an
element ψ ∈ M+(S, ∗). Let ∗̃ ∈ H2 be a fixed preimage of ∗ and let f̃ be the lift of
f such that f̃(∗̃) = ∗̃. Now α(ψ) is the action of f̃ on ∂H2 and it does not depend
on the choice of f representing ψ. Note that α restricted to π1(S, ∗) <M+(S, ∗) is
just the standard action on ∂H2 by deck transformations [?].

Let eM+

b = α∗(eb) and eSb be the restriction of eM+

b to π1(S, ∗) < M+(S, ∗). The
class eM+

b was studied in [Che20, JR21].

3. Definitions of Γb and ΓM
b

Suppose M is a connected smooth manifold and ω is a finite measure induced
by a volume form. In this section, we define the maps Γb and ΓM

b (the latter for
compact M). We start with a geometrically motivated definition of Γb by a system
of paths. This definition naturally leads to the definition of ΓM

b by a system of
homeomorphisms. To show that definitions of Γb and ΓM

b do not depend on the
chosen systems, we use a result from [Nit]. To this end, we rephrase our definitions
in the language of couplings. In the case of Γb the obvious coupling is given by the
universal cover. For the convenience of the reader, we give the details in Section
3.B. It turns out that ΓM

b can be described in the language of couplings as well,
however, one needs to use a bigger (and therefore disconnected) cover of M , see
Section 3.D.

Fix a basepoint ∗ ∈ M . In this section, we assume that π1(M, ∗) is center free. It
holds for all manifolds we are interested in and with this assumption the construc-
tion of Γb and ΓM

b is slightly simpler.

Let p : M̃ → M be the universal cover of M . We view an element l ∈ p−1(x) as
a homotopy class relative to {∗, x} of a path connecting ∗ to x. The action of
π1(M, ∗) on M̃ is given by concatenating a loop representing γ ∈ π1(M, ∗) and a
path representing l ∈ M̃ .

Recall that Homeo(M) is the group of all homeomorphisms of M and Homeo0(M)
are these elements of Homeo(M) that are isotopic to the identity of M . Simi-
larly, Homeo(M,ω) is the group of all homeomorphims of M preserving ω and
Homeo0(M,ω) are these elements of Homeo(M,ω) that are isotopic to the identity
of M via ω-preserving maps.

In all of these transformation groups, we define the group action to be the compo-
sition of homeomorphisms with the left-most one applied first. More precisely, fg
is a homeomorphism defined by fg(x) = g(f(x)). We are forced to use this conven-
tion, since later in Section 3.C we relate elements of π1(M, ∗) to homeomorphisms
in Homeo(M) using a push map, and we want the multiplication in π1(M, ∗) to be
compatible with how we compose homeomorphisms.
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Recall that a left action of a group G on a set X is a homomorphism G→ Aut(X)
and the right action is an antihomomorphism G → Aut(X). On Aut(X) we com-
pose maps starting from the right-most. In this way the action of π1(M, ∗) on M̃
is a left action, and the action of Homeo(M) on M is a right action.

3.A. Description of Γb. In this paragraph, we give the simplest, in our opinion,
description of Γb. A more refined and general definition can be found in [BM22].
Another approach based on coupling of groups is given in [Nit]. Note that the
definition in [Nit] is much more general and works for measurable spaces and groups
of measurable transformations.

Let sx be a path connecting ∗ to x ∈M . By [sx] we denote the homotopy class of
sx relative to the endpoints {∗, x} and by s̄x we denote the reverse of sx. A system
of paths for M is a function on M of the form S(x) = [sx] where sx is any path
connecting ∗ to x.

Assume S is a system of paths. We shall define a map

γ : Homeo0(M,ω)×M → π1(M, ∗).

Let S(x) be represented by a path sx. Fix f ∈ Homeo0(M,ω) and ft an isotopy
connecting IdM to f . We define γ(f, x) ∈ π1(M, ∗) to be the homotopy class of
the loop based at ∗ which is the concatenation of sx, the trajectory ft(x) and
s̄f(x). The element γ(f, x) does not depend on the choice of paths representing
S(x). Moreover, γ(f, x) does not depend on the isotopy ft. Indeed, it follows from
[BM22, Proposition 3.1] that changing the isotopy ft to another isotopy connecting
IdM and f would change γ(f, x) by an element of the center of π1(M, ∗). Since we
assumed that the center of π1(M, ∗) is trivial, γ(f, x) is well defined. Note that γ
depends on the choice of the system of paths S.

It is a simple calculation, that γ satisfies a cocycle condition in the following form:

γ(fg, x) = γ(f, x)γ(g, f(x)).

Define ω̃ to be the measure on M̃ induced by the pull-back of the volume form on M
that defines ω. Since elements of M̃ are homotopy classes relative to the endpoints
of paths in M starting at ∗, the image im(S) is a subset of M̃ . We say that S is
measurable if im(S) is ω̃-measurable. In Section 3.B we show that measurable
systems of paths exist.

Now assume S is a measurable system of paths. For each n we define

Γb : Hn
b (π1(M, ∗)) → Hn

b (Homeo0(M,ω))

to be the map induced by the following function defined on cochains (called again Γb):

Γb(c)(f0, . . . , fn) =

∫
M

c
(
γ(f0, x), . . . , γ(fn, x)

)
dω(x).

In Section 3.B we show that the function under the integral is measurable and
that Γb does not depend on the choice of a measurable system of paths.
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Remark 3.1. In [BM22] the group Homeo0(M,ω) is defined like in this paper
with an additional assumption that homeomorphisms have compact support. This
additional assumption was needed to define an analog of Γb for the ordinary co-
homology in [BM22, Section 3.4]. In this paper we deal only with the bounded
cohomology, therefore we do not assume that elements of Homeo0(M,ω) are com-
pactly supported. Moreover, contrary to [BM22], here we do not assume that M
carries a complete Riemannian metric.

Example 3.2. Now we explicitly describe a cocycle representing the element
Γb(V ol

gp
M ). Let M = X/π1(M) where X ⊂ Hn and let ω be any finite measure

induced by a volume form on M . Assume that π1(M) has trivial center (equiva-
lently, π1(M) is not abelian, for example M is not a quotient of Hn by Z-action).
Let ∗̃ ∈ X be a lift of the basepoint ∗ and f0, . . . , fn ∈ Homeo0(M,ω). For every
x ∈ M we get a tuple of elements γ(f0, x), . . . , γ(fn, x) in π1(M) which act on X.
Consider the points vi(x) = γ(fi, x)∗̃ and span a geodesic simplex ∆(x) in X with
vertices vi(x). Now Γb(V ol

gp
M ) is represented by a cocycle which to (f0, . . . , fn)

assigns the average signed volume of ∆(x) over M with respect to ω.

3.B. Γb via coupling. Let us describe the construction via couplings given in [Nit].
A coupling is a measured space (X,µ) together with a µ-preserving left action of a
group Γ and a commuting µ-preserving right action of a group Λ. Suppose F ⊂ X
is a strict measurable fundamental domain of an action of Γ. A map χ : X → Γ is
defined by the equation χ(γ.x) = γ for x ∈ F and γ ∈ Γ. Note that χ is measurable.
A function χ̄ : Λ × F → Γ given by χ̄(λ, x) = χ(x.λ) induces a homomorphism
trΛΓX : H•

b(Γ) → H•
b(Λ) by the formula [Nit, Section 3]

trΛΓ (c)(λ0, . . . , λn) =

∫
F

c
(
χ̄(λ0, x), . . . , χ̄(λn, x)

)
dµ(x).

The map χ(x.γ) is a composition of measurable functions, hence the function under
the integral is measurable. Moreover, trΓΛX does not depend on the choice of F
[Nit, Lemma 3.3].

Let f ∈ Homeo0(M,ω) and suppose ft is an isotopy connecting the identity of M
to f . Denote by f̃ the endpoint of the lift of ft to M̃ . Note that, again by [BM22,
Proposition 3.1], and by the assumption that π1(M, ∗) has a trivial center, f̃ does
not depend on the chosen isotopy ft. Therefore we have a right ω̃-preserving action
of Homeo0(M,ω) on M̃ , given by x.f = f̃(x), x ∈ M̃ . Note that x.f is represented
by a path connecting ∗ to x, and then following the trajectory from x to f(x) given
by ft(x).

Now we consider the following coupling: X = (M̃, ω̃) together with the left action
of Γ = π1(M, ∗) and the right action of Λ = Homeo0(M,ω). For this coupling,
we have Γb = trΛΓX. Indeed, if S is a measurable system of paths, im(S) is a
strict measurable fundamental domain of the π1(M, ∗)-action, and vice versa, every
measurable fundamental domain defines a measurable system of paths. Moreover,
let S be a measurable system of paths and F = im(S). Recall that p : M̃ → M is
the universal covering map. If γ and χ̄ are defined by S and F respectively, then
γ(f, p(x)) = χ̄(f, x) for every x ∈ F and f ∈ Homeo0(M,ω). Thus Γb and trΛΓX
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coincide. In particular, Γb does not depend on the choice of a measurable system
of paths.

To finish the construction of Γb, we shall show that measurable fundamental domains
exist. Suppose {Ui}i∈N is a cover of M by simply connected open sets. Let Ũi be
a homeomorphic lift of Ui to M̃ . Set Fi = Ũi\p−1(∪n

j=1Uj). Then F = ∪∞
j=1Fj is a

strict measurable fundamental domain.

3.C. Description of ΓM
b . We describe an extension of Γb to a map that ranges in

the bounded cohomology of Homeo(M,ω). It is done by modifying the notion of a
system of paths. In this and next subsection, we assume that M is compact.

Fix a point ∗ ∈ M . Let Homeo(M, ∗) be the group of homeomorphisms of M
fixing ∗ and Homeo0(M, ∗) the subgroup of homeomorphisms that are isotopic to
the identity by ∗-fixing homeomorphisms. It follows from [EK71, Corollary 1.1],
that for compact M , Homeo0(M, ∗) is the connected component of the identity
in Homeo(M, ∗) equipped with the compact-open topology. Recall, that in these
groups we compose homeomorphisms from left to right. Consider the mapping class
group

M(M, ∗) = Homeo(M, ∗)/Homeo0(M, ∗).
Let Homeo(M, ∗ → x) < Homeo(M) be the subset of homeomorphisms of M that
send ∗ to x. Suppose hx ∈ Homeo(M, ∗ → x). Denote by [hx] the connected
component of hx in Homeo(M, ∗ → x) with the open-compact topology. Note that
two elements hx and gx in Homeo(M, ∗ → x) are in the same connected component
if and only if there exists an isotopy ft connecting hx to gx such that ft(∗) = x
for all t. A system of homeomorphisms for M is a function on M of the form
P (x) = [hx], where hx ∈ Homeo(M, ∗ → x). For example, it can be a point-pushing
map along sx, where S(x) = [sx] is a system of paths.

Let P (x) = [hx] be a system of homeomorphisms. For every f ∈ Homeo(M,ω), we
have hx ◦ f ◦ h−1

f(x) ∈ Homeo(M, ∗). We define a cocycle

γM : Homeo(M,ω)×M → M(M, ∗)

by γM(f, x) = [hx ◦ f ◦ h−1
f(x)]. Note that γM does not depend on the homeomor-

phisms hx representing P (x) but depends on the choice of P . There is a notion of
a measurable system of homeomorphisms, we discuss it in Section 3.D.

Likewise in subection 3.A, any measurable system of homeomorphisms P induces
a map

ΓM
b : Hn

b (M(M, ∗)) → Hn
b (Homeo(M,ω)).

In Section 3.D we show that ΓM
b does not depend on the choice of P . Note that ΓM

b

generalizes the homomorphism GS,1 from [BM19] defined only for surfaces S and
ranging in quasimorphisms on Homeo(S, ω).

Remark 3.3. If M is oriented, we can consider the oriented version of ΓM
b .

Namely, let M+(M, ∗) be the subgroup of M(M, ∗) of mapping classes represented
by orientation preserving homeomorphisms and let Homeo+(M,ω) be homeomor-
phisms preserving ω and the orientation. Assuming that for every x ∈ M , P (x)
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is represented by an orientation preserving homeomorphism, we have γM(f, x) ∈
M+(M, ∗) for f ∈ Homeo+(M,ω). Thus we can define

Γ
M+

b : Hn
b (M+(M, ∗)) → Hn

b (Homeo+(M,ω)).

This map is used in Theorem 1.2. ♢

Let us now explain in what sense ΓM
b extends Γb. Note that M(M, ∗) = π0(Homeo(M, ∗))

and M(M) = π0(Homeo(M)). Consider the fiber bundle

Homeo(M, ∗) −→ Homeo(M)
ev−→M,

where ev(f) = f(∗). The long exact sequence of the homotopy groups gives

π1(Homeo(M))
ev1−−→ π1(M, ∗) Pu−−→ M(M, ∗) F−→ M(M).

For g ∈ π1(M, ∗), Pu(g) is the mapping class represented by the time-one map
f1 of a point-pushing isotopy {ft}t∈[0,1] along a loop representing g. By [BM22,
Proposition 3.1], im(ev1) lies in the center of π1(M, ∗), therefore ev1 is trivial and
Pu is an embedding.

Let [f ] ∈ im(Pu) = ker(F ) < M(M, ∗) and let ft be an isotopy connecting the
identity to f in Homeo0(M). Let Tr([f ]) be the element of π1(M, ∗) represented
by ft(∗). By the triviality of ev1, this map is well defined, and it is the inverse of
Pu on im(Pu).

Let S = [sx] be any measurable system of paths and P (x) = [hx] where hx is a
point-pushing map along sx. Cocycles γ and γM are defined with respect to these
systems. For every f ∈ Homeo0(M,ω) we have γ(f, x) = Tr(γM(f, x)). Thus
Pu(γ(f, x)) = γM(f, x) and we have a commutative diagram:

Homeo(M,ω)×M M(M, ∗)

Homeo0(M,ω)×M π1(M, ∗).

γM

γ

Pu

Thus the following diagram commute:

H•
b(M(M, ∗)) H•

b(Homeo(M,ω))

H•
b(π1(M, ∗)) H•

b(Homeo0(M,ω)).

Pu∗

ΓM
b

Γb

3.D. ΓM
b via couplings. We shall construct a cover of M on which M(M, ∗) acts

on the left and Homeo(M,ω) acts on the right.

Recall that ev∗ : Homeo(M) → M is a fibre bundle defined by ev∗(f) = f(∗).
Note that Homeo(M, ∗ → x) = ev−1

∗ (x). Denote by M̃M the set of connected
components of the fibers of ev∗, and by q : Homeo(M) → M̃M the quotient map.
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On M̃M we consider the quotient topology. Note that we have q(f) = q(g) if and
only if f can be connected with g via an isotopy preserving f(∗) = g(∗) at all times.

The map ev∗ factors via q:

Homeo(M) M

M̃M

q

ev∗

pM

where pM is the unique map making the above diagram commutative.

The evaluation map is a fiber bundle, thus every x ∈M has an open neighborhood
U such that ev−1

∗ (U) is homeomorphic to U × Homeo(M, ∗) by a fiber preserving
homeomorphism. Moreover, by the definition of q, we have that q(ev−1

∗ (U)) is the
disjoint union of copies of U . On each such a copy pM is a homeomorphism. Thus
pM is a covering map.

Denote by ω̃M the measure on M̃M defined by the pull-back of the volume form on
M that defines ω. We shall define the mentioned left and right actions.

Let [c] ∈ M̃M be a connected component of ev−1
∗ (c(∗)) represented by c ∈ Homeo(M),

and [h] ∈ M(M, ∗) be a mapping class group represented by h ∈ Homeo(M, ∗). The
left action of M(M, ∗) on M̃M is given by [h].[c] = [hc] ∈ M̃M (note that we com-
pose homeomorphisms starting from the left), where [hc] denotes the connected
component of ev−1

∗ (c(∗)) containing hc. This action is transitive on the fibers of
pM and permutes the components of q(ev−1

∗ (U)), where U is as above. Therefore
it is a deck-transformation group of M̃M and preserves ω̃M.

Let [c] ∈ M̃M and f ∈ Homeo(M,ω). The right action of Homeo(M,ω) on M̃M

is given by [c].f = [cf ], where [cf ] is the connected component of ev−1
∗ (f(c(∗))

containing cf . This action covers the Homeo(M,ω)-action on M and thus is ω̃M-
preserving.

The above actions define a coupling on M̃M. Moreover, by construction, if P is a
system of homeomorphisms, im(P ) is a subset of M̃M. We say that a system of
homeomorphisms P is measurable if im(P ) is ω̃M-measurable.

Every measurable system of homeomorphisms defines a strict fundamental domain
for the M(M, ∗)-action and vice versa. It follows directly from definitions (see
Section 3.B) that the constructions described in Section 3.C and [Nit] coincide. In
particular, ΓM

b does not depend on the choice of a measurable system of paths [Nit,
Lemma 3.3].

Note that M̃M is disconnected and contains the universal cover of M . Indeed, let
M̃0 be the subset of M̃M containing classes that are represented by homeomor-
phisms isotopic to the identity in Homeo(M). The subgroup π1(M, ∗) < M(M, ∗)
acts on M̃0 and the quotient is M , thus M̃0 is the universal cover of M . The explicit
isomorphism of covers is given by the map T : M̃0 → M̃ where T ([c]) is the homo-
topy class of the path ct(∗) traced by any isotopy ct connecting IdM to c. By the
triviality of ev1 : π1(Homeo(M)) → π1(M, ∗), this map is well defined. Therefore,
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M̃M consists of infinitely many copies of M̃ indexed by the right cosets of π1(M, ∗)
in M(M, ∗).

Finally, we show that measurable systems of homeomorphisms exist. It follows from
the existence of measurable systems of paths. Let S(x) = [sx] be a measurable
system of paths and let P (x) = [hx], where hx is a point-pushing map along sx.
Using the isomorphism T : M̃0 → M̃ we can regard im(S) as a ω̃M-measurable
subset of M̃0, and under this identification im(S) = im(P ). Thus P is a measurable
system of homeomorphisms.

Remark 3.4. Let π = π1(M, ∗). The cover M̃M is isomorphic to (M(M, ∗)×M̃)/π,
where π acts on M(M, ∗)× M̃ by γ.(h, x) = (hγ−1, γ.x).

4. Restriction to a free subgroup

In this section, we find a free subgroup F of π1(M, ∗) such that volume and Euler
classes restricted to F have positive norms.

4.A. Volume class in dimension 2. Let X be a topological space. The l1-
homology of X is denoted by Hl1

n (X) [Fri17, Chapter 6]. In l1-homology we allow
chains to be infinite sums c = Σ∞

i aiσi, where ||c|| = Σ∞
i |ai| < ∞. As usual, the

norm on chains induces the norm on Hl1
n (X). We have a Kronecker product between

l1-homology and bounded cohomology:

⟨·, ·⟩ : Hn
b (X)×Hl1

n (X) → R.

The Kronecker product is defined on the level of chains by ⟨b, a⟩ = Σ∞
i aib(σi) where

a = Σ∞
i aiσi and b is a bounded cochain. Moreover we have |⟨B,A⟩| ≤ ||B||||A||

where B ∈ Hn
b (X) and A ∈ Hl1

n (X). The following lemma is a variation of a result
obtained in [Mit84]. We do not assume that S is closed.

Lemma 4.1. Let S be an oriented hyperbolic surface with non-abelian fundamental
group. Then V olS has a positive norm.

Proof. We shall find C ∈ Hl1
2 (S) such that ⟨V olS , C⟩ ̸= 0. We can assume that S

is a quotient of H2, as in the beginning of the proof of Lemma 2.2. Let p : H2 → S
be the covering map and let G = π1(S). Since G is a surface group or is free,
the commutator subgroup [G,G] is non-abelian and hence contains a hyperbolic
element γ ∈ [G,G] [Kat92, Theorem 2.4.4]. Let Aγ ⊂ H2 be the axis of γ. The
conjugacy class of γ is represented by the closed geodesic Lγ = p(Aγ) ⊂ S. We
regard Lγ as a map from [0, 1] to S. Since γ ∈ [G,G], γ is homologically trivial.
Hence there exists a triangulated subsurface S0 ⊂ S such that ∂S0 = Lγ .

The loop Lγ is the boundary of an l1-chain c0 whose simplices are contained in the
image of Lγ [Mit84, Section 3]. Thus c = S0− c0 is an l1-cycle. Recall that V olS =
[v′S ]. The straightening of every simplex in c0 is degenerate (Lγ is a geodesic),
thus we have ⟨v′S , c0⟩ = 0. We can assume that the triangulation of S0 consists of
geodesic simplices, hence ⟨v′S , S0⟩ equals the hyperbolic volume of S0. Hence if we
set C = [c], we obtain ⟨V olS , C⟩ > 0. The inequality ⟨V olS , C⟩ ≤ ||V olS ||||C||
implies that the norm of V olS is positive. □
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The following corollary is stated in the group version terms of the volume class.

Corollary 4.2. Let S be an oriented hyperbolic surface with non-abelian fundamen-
tal group. There exists an embedding i : F → π1(S) of a free non-abelian group F
such that i∗(V olgpS ) has a positive norm.

Proof. Let F be any free non-abelian subgroup of S (which can be equal to π1(S)
if S is not closed). We have i∗(V olgpS ) = V oli(F ). By Lemma 2.2 we know that the
norm of V oli(F ) is equal to the norm of V olS′ where S′ = H2/i(F ) and by Lemma
4.1 the norm of V olS′ is positive. □

4.B. Volume class in dimension 3. For some Kleinian groups, i.e. the discrete
subgroups of Iso+(H3), the volume class was studied in [Som97]. Note that if G
is a torsion-free Kleinian group, then it acts freely and properly discontinuously on
H3. Thus H3/G is a manifold.

Theorem 4.3. [Som97, Theorem 1] Let G < Iso+(H3) be a torsion-free topolog-
ically tame Kleinian group such that the volume of M = H3/G is infinite. Then
V olM has a positive norm if and only if G is not elementary and geometrically
infinite.

A Kleinian group G is geometrically finite if Nϵ(H(LG)/G) has finite volume for
some ϵ > 0, where Nϵ is an ϵ neighborhood and H(LG) is the convex closure of the
limit set of G [Thu22a, Chapter 8, Definition 8.4.1]. A torsion-free Kleinian group
G is topologically tame, if H3/G is homeomorphic to the interior of a compact
manifold.

Note that every discrete finitely generated non-abelian free subgroup F of Iso+(H3)
is topologically tame [Ago04, CG06], not elementary and H3/F has infinite volume
(otherwise, by the thick-thin decomposition, H3/F would have a cusp and Z2 would
embed in F ). Let M be an oriented 3-dimensional hyperbolic manifold. Then for
every free group F in π1(M) < Iso+(H3) which is geometrically infinite, V olF
has positive norm. Below we describe our main example of such a situation, i.e.,
manifolds that fiber over the circle with non-compact fiber.

Example 4.4. Suppose S is a connected oriented surface without boundary and
free fundamental group F = π1(S). Let f ∈ Diff+(S). The mapping torus of f is
a 3-dimensional manifold Mf = S × [0, 1]/ ∼ where (x, 0) ∼ (f(x), 1). That is, the
boundary components of S × [0, 1] are glued together via f . Note that Mf fibers
over the circle with fiber S, and conversely, every 3-manifold that fibers over a circle
with fiber S can be constructed in this way. The mapping torus Mf is hyperbolic if
and only if f is isotopic to a pseudo-Anosov map [Thu22b]. If Mf is hyperbolic, the
hyperbolic structure is unique and we have a unique class V olgpMf

∈ H3
b(π1(Mf )).

Now the inclusion of the fiber S into Mf gives an embedding i : F → π1(Mf ) and
i(F ) is a normal subgroup of π1(M). It follows that the limit set of i(F ) is equal
to the limit set of π1(M) [Thu22a, Chapter 8, Corollary 8.1.3], thus it is the entire
sphere at infinity. Hence i(F ) is geometrically infinite. By Theorem 4.3 we have
that i∗(V olgpMf

) = V oli(F ) has positive norm.
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4.C. Euler class. We briefly recall basic definitions concerning quasimorphisms
[Fri17, Chapter 2]. Let G be a group. A real function q : G → R is called a
quasimorphism if there exists some D ∈ R such that

|q(ab)− q(a)− q(b)| ≤ D

for any a, b ∈ G. The minimal such D is called the defect of q. A quasimorphism
is homogeneous if q(an) = nq(a) for any a ∈ G and n ∈ Z. The non-homogeneous
coboundary dq(a, b) = q(a) − q(ab) + q(b) of q is interpreted as a second bounded
cohomology class [dq] ∈ H2

b(G). If q is homogeneous and not a homomorphism,
then [dq] is non-trivial and has a positive norm [Fri17, Corollary 6.7].

Lemma 4.5. Let S be an oriented closed surface of genus ≥ 2. There exists an
embedding i : F → π1(S) of a free non-abelian group F such that i∗(eSb ) has a
positive norm.

Proof. Let T 1S be the unit tangent bundle of S and denote by q : π1(T 1S) → π1(S)
the map induced by the projection T 1S → S. We will use the rotation quasi-
morphism Rot : π1(T

1S) → R defined in [Hub12]. It is a homogeneous quasi-
morphism of defect 1 which trivialises the pull-back q∗(eSb ) ∈ H2

b(π1(T
1S)), i.e.,

q∗(eSb ) = [dRot] [Hub12, Theorem 5.9].

Let a, b ∈ π1(T
1S) be such that Rot(ab) ̸= Rot(a) +Rot(b). Let F = ⟨q(a), q(b)⟩ <

π1(S). Denote this inclusion by i : F → π1(S) and set F ′ = q−1(F ). It follows from
the definition of a and b, that Rot|F ′ is a homogeneous quasimorphism that is not
a homomorphism. Thus q∗(eSb )|F ′ has positive norm and i∗(eSb ) must have positive
norm, since q∗i∗(eSb ) = q∗(eSb )|F ′ . Finally, F must be free of rank 2. Indeed, every
subgroup of π1(S) is free non-abelian, abelian, or is a surface group. But surface
groups are not generated by 2 elements and abelian groups do not carry a non-
trivial class in their second bounded cohomology. Thus F is free non-abelian of
rank 2. □

5. Proof of the theorem

Let M be a manifold with a volume form ω. As usual, ω denotes as well the induced
measure and we assume that this measure is finite. Suppose i : F → π1(M) is an
embedding and consider i∗ : H•

b(π1(M)) → H•
b(F ). Let ρ : F → Homeo0(M,ω) be

a representation of F by homeomorphisms. Let ρ∗ : H•
b(Homeo0(M,ω)) → H•

b(F ).
Thus we have a not necessarily commutative diagram:

H•
b(π1(M)) H•

b(Homeo0(M,ω))

H•
b(F )

Γb

i∗

ρ∗

Let Λ, ϵ ∈ R. We say that ρ is an (F,Λ, ϵ)-inverse of Γb if for every C ∈ H•
b(π1(M))

we have
||ρ∗Γb(C)− Λi∗(C)|| ≤ ϵ||C||.

Lemma 5.1. Let M be a manifold and ω a finite measure induced by a volume form
on M . Suppose that i : F → π1(M) is an embedding of a non-abelian free group F .
There exists Λ ∈ R such that for every ϵ > 0 there exists an (F,Λ, ϵ)-inverse of Γb.
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Proof. Let dim(M) = m. Denote by Bm−1 ⊂ Rm−1 the m − 1 dimensional
closed unit ball, and let S1 = R/Z. Let us fix η ∈ (0, 1) and define an isotopy
P t
η ∈ Diff(S1 ×Bm−1) by

P t
η(ψ, x) = (ψ + tf(||x||), x) ∀(ψ, x) ∈ S1 ×Bm−1,

where t ∈ [0, 1], and f : [0, 1] → R is a smooth function such that f(y) = 1 for
y ≤ 1 − η and f(1) = 0. We call P t

η the finger-pushing isotopy and P 1
η the finger-

pushing map. Note that P 0
η = Id and that P 1

η fixes point-wise the boundary of
S1 × Bm−1 and fixes all points (ψ, x) for which ||x|| ≤ 1 − η. Moreover, P t

η fixes
the boundary of S1 ×Bm−1 for all t. Denote by g0 be the product of the standard
Euclidean Riemannian metrics on Bm−1 and S1. By the theorem of Fubini, the
measure induced by g0 is preserved by the map P t

η for every t ∈ [0, 1]. Let a1, . . . , ak
be generators of F := Fk, where k > 1. We represent i(ai) by a loop αi which is
based at ∗ ∈M .

Let B be a closed ball inM containing ∗ and let Ai be closed small tubular neighbor-
hoods of αi. Then Ni = B∪Ai is a closed neighborhood of αi which is diffeomorphic
to S1 × Bm−1. Let P t

η(αi) be the isotopy defined by pulling-back P t
η via a diffeo-

morphism nαi
: Ni → S1×Bm−1 and extending it by the identity outside Ni. Note

that the Moser trick [Mos65] allows us to choose nαi
such that P t

η(αi) preserves ω.
Let Si be the support of P 1

η (αi). It is a small thickening of the boundary of Ni.

The homomorphism ρ : F → Homeo0(M,ω) is given by:

ρ(ai) = P 1
η (αi).

To simplify the notation, we identify F with its image i(F ). Now we consider the
values of γ on elements of the form (ρ(w), x), where w ∈ F, x ∈M .

From the description of γ in Section 3.A we have:

γ(ρ(w), x) =


e x ∈M −

⋃k
i=1Ni,

w x ∈ B −
⋃k

i=1 Si,

? x ∈ (
⋃k

i=1Ai −B) ∪
⋃k

i=1 Si.

Let C ∈ Hn
b (M) and let c be a bounded cochain representing C. Without loss of

generality, we assume that c(e, . . . , e) = 0. Let

f̄ = (f0, f1, . . . , fn) ∈ Homeo0(M,ω)n+1,

and denote

γ(f̄ , x) = (γ(f0, x), γ(f1, x), . . . , γ(fn, x)).

Let w ∈ Fn+1. We have:

ρ∗Γb(c)(w) = Γb(c)(ρ(w)) =

∫
M

c(γ(ρ(w), x))dω(x).

Denote E := (
⋃k

i=1Ai −B) ∪
⋃k

i=1 Si. We obtain
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ρ∗Γb(c)(w) =

∫
B−

⋃k
i=1 Si

c(w)dω(x) +

∫
E

c(γ(ρ(w), x))dω(x)

= ω

(
B −

k⋃
i=1

Si

)
i∗(c)(w) +

∫
E

c(γ(ρ(w), x))dω(x).

Let
cres(w) :=

∫
E

c(γ(ρ(w), x))dω(x).

Note that cres represents a class in Hn
b (F ) and we can write

ρ∗Γb(c) = ω(B −
k⋃

i=1

Si)i
∗(c) + cres,

and
||cres|| ≤ ω(E)||c||.

Moreover:

||ρ∗Γb(c)− ω(B)i∗(c)|| ≤

≤ ω(

k⋃
i=1

Si)||i∗(c)||+ ω(E)||c|| ≤

≤
[
ω(

k⋃
i=1

Si) + ω(E)
]
||c|| .

Now ω(Si) and ω(E) can be taken to be arbitrarily small by taking small η and
small neighborhoods Ai. The cochain c was any cochain representing C. Thus for
any chosen ϵ we can have:

||ρ∗Γb(C)− Λi∗(C)|| ≤ ϵ||C||,
where Λ = ω(B). □

Theorem 5.2. Let M be an oriented manifold of dimension n such that it is either:

• A hyperbolic surface with a non-abelian fundamental group or

• A complete hyperbolic 3-manifold whose fundamental group contains a geo-
metrically infinite finitely generated free group (e.g. M fibers over the circle
with non-compact fiber).

Let ω be a volume form on M such that the induced measure is finite. Then
Γb(V ol

gp
M ) ∈ Hn

b (Homeo0(M,ω)) has positive norm.

Proof. By Corollary 4.2 and Theorem 4.3 in both cases we have a free group F
and an embedding i : F → π1(M) such that i∗(V olgpM ) has positive norm. Let
ρ : F → Homeo0(M,ωh) be an (F,Λ, ϵ)-inverse of Γb with ϵ satisfying

0 < Λ||i∗(V olgpM )|| − ϵ||V olgpM ||.
We have

Λ||i∗(V olgpM )|| − ||ρ∗Γb(V ol
gp
M )|| ≤ ||Λi∗(V olgpM )− ρ∗Γb(V ol

gp
M )|| ≤ ϵ||V olgpM ||.
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Thus
0 < Λ||i∗(V olgpM )|| − ϵ||V olgpM || ≤ ||ρ∗Γb(V ol

gp
M )||.

Since ρ∗ is a contraction, Γb(V ol
gp
M ) must have positive norm. □

Theorem 5.3. Let S be an oriented closed surface of genus ≥ 2 and ω a measure
induced by an area form on S. Then the classes Γb(e

S
b ) ∈ H2

b(Homeo0(S, ω)) and
Γ

M+

b (e
M+

b ) ∈ H2
b(Homeo(S, ω)) have positive norms.

Proof. The proof for eSb is the same as in Theorem 5.2 using Lemma 4.5. Note that
elements of Homeo(S, ω) automatically preserve the orientation of S. Positivity of
the norm of eM+

b follows from the commutative diagram

H2
b(M+(S, ∗)) H2

b(Homeo(S, ω))

H2
b(π1(S, ∗)) H2

b(Homeo0(S, ω)),

P∗

Γ
M+
b

Γb

where P : π1(S, ∗) → M+(S, ∗) is the injection from the Birman exact sequence. □

6. Dirac measure

The constructions of Γb and ΓM
b are flexible and admit more variants. First of all,

one does not need to restrict to measures coming from a volume form. What is
needed, is a measure with a cocycle for which the integral in the definition is well-
defined. Moreover, one can relax the definition of an isotopy. For example, it is
not necessary to assume that isotopy preservers the measure at all times. Isotopy
might be as well substituted by homotopy.

In this short section, we discuss the (somewhat degenerate) case where the measure
is the Dirac measure and isotopies do not preserve the measure. In this case, Γb
is induced by a homomorphism. Let M be a manifold and ∗ ∈ M a basepoint.
We assume that the center of π1(M, ∗) is trivial (what we need to assume is the
triviality of ev1. And even in the case if it is not, one could substitute π1(M, ∗)
with the quotient π1(M, ∗)/im(ev1)). By ∗ we denote as well the Dirac measure
centered on ∗.

Let G be the subgroup of Homeo0(M) of all homeomorphisms f preserving ∗. Thus
an element of G is isotopic to the identity by an isotopy that can move ∗. Suppose
S is a system of paths. As in Section 3.A, we get a cocycle:

γ : G×M → π1(M, ∗)

and a map
Γb : H•

b(π1(M, ∗)) → H•
b(G).

Note that on M̃ we can consider the counting measure on the orbit p−1(∗). With
such a measure M̃ defines a coupling and every S is measurable. Moreover, Γb does
not depend on S [Nit, Lemma 3.3].
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Recall that we have a homomorphism

Tr : G→ π1(M, ∗)

defined in the following way: Tr(f) is the homotopy class of the loop ft(∗), where
ft is any isotopy between IdM and f .

It is straightforward to see that Γb = Tr∗, the map induced on bounded cohomology
by Tr. Note that if we would start with the group Homeo0(M, ∗) (isotopies preserve
∗ at all times), instead of G, then Γb : H•

b(π1(M, ∗)) → H•
b(Homeo0(M, ∗)) would

be trivial.

Suppose that a non-abelian free group F embeds in π1(M, ∗). The representa-
tions ρ constructed in Lemma 5.1 are homomorphisms and the following diagram
commutes:

H•
b(π1(M, ∗)) H•

b(G)

H•
b(F )

Γb

i∗
ρ∗

Thus ρ is a (F, 1, 0)-inverse of Γb. It follows that Theorem 5.2 and Theorem 5.3 hold
as well for the Dirac measure. Similarly, Theorem A and Theorem B from [BM22]
hold with TM = G, i.e., Tr∗ has the image of dimension continuum in degree 2 and
3 (if M satisfies the assumptions of Theorem A and B).

References

[Ago04] Ian Agol. Tameness of hyperbolic 3-manifolds, 2004. 14
[BFM+24] Ludovico Battista, Stefano Francaviglia, Marco Moraschini, Filippo Sarti, and

Alessio Savini. Bounded cohomology classes of exact forms. Proc. Amer. Math. Soc.,
152(1):71–80, 2024. 5

[BG88] Jean Barge and Étienne Ghys. Surfaces et cohomologie bornée. Invent. Math.,
92(3):509–526, 1988. 5

[BM19] Michael Brandenbursky and Michał Marcinkowski. Entropy and quasimorphisms. J.
Mod. Dyn., 15:143–163, 2019. 10

[BM22] Michael Brandenbursky and Michał Marcinkowski. Bounded cohomology of transfor-
mation groups. Math. Ann., 382(3-4):1181–1197, 2022. 1, 2, 3, 8, 9, 11, 19

[CG06] Danny Calegari and David Gabai. Shrinkwrapping and the taming of hyperbolic 3-
manifolds. J. Amer. Math. Soc., 19(2):385–446, 2006. 14

[Che20] Lei Chen. Vanishing of the Euler class in Power subgroups of the punctured mapping
class group. arXiv:2002.06729, 2020. 7

[EK71] Robert D. Edwards and Robion C. Kirby. Deformations of spaces of imbeddings. Ann.
of Math. (2), 93:63–88, 1971. 10

[Fri17] Roberto Frigerio. Bounded cohomology of discrete groups, volume 227 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2017. 4, 6,
13, 15

[GG04] Jean-Marc Gambaudo and Étienne Ghys. Commutators and diffeomorphisms of sur-
faces. Ergodic Theory Dynam. Systems, 24(5):1591–1617, 2004. 1

[Gro82] Michael Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ.
Math., (56):5–99 (1983), 1982. 2, 4

[Hub12] Thomas Huber. Rotation quasimorphisms for surfaces. Ph.D thesis, ETH, 2012. 15
[JR21] Solomon Jekel and Rita Jiménez Rolland. On the Non-vanishing of the Powers of the

Euler Class for Mapping Class Groups. Arnold Math J., 7:159–168, 2021. 7
[Kat92] Svetlana Katok. Fuchsian groups. Chicago Lectures in Mathematics. University of

Chicago Press, Chicago, IL, 1992. 13



20 MICHAEL BRANDENBURSKYa AND MICHAŁ MARCINKOWSKIb

[Kim20] Mitsuaki Kimura. Gambaudo–Ghys construction on bounded cohomology.
arXiv:2009.00124, 2020. 1

[Mit84] Yoshihiko Mitsumatsu. Bounded cohomology and l1-homology of surfaces. Topology,
23(4):465–471, 1984. 13

[Mos65] Jürgen Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc.,
120:286–294, 1965. 16

[MT19] Kathryn Mann and Bena Tshishiku. Realization problems for diffeomorphism groups.
In Breadth in contemporary topology, volume 102 of Proc. Sympos. Pure Math., pages
131–156. Amer. Math. Soc., Providence, RI, 2019. 3

[Nit] Martin Nitsche. Higher-degree bounded cohomology of transformation groups.
arXiv:2105.08698. 1, 7, 8, 9, 12, 18

[Som97] Teruhiko Soma. Bounded cohomology and topologically tame Kleinian groups. Duke
Math. J., 88(2):357–370, 1997. 2, 14

[Thu22a] William P. Thurston. The Geometry and Topology of Three-Manifolds. Vol. IV. Amer-
ican Mathematical Society, Providence, RI, [2022] ©2022. Edited and with a preface
by Steven P. Kerckhoff and a chapter by J. W. Milnor. 2, 4, 6, 14

[Thu22b] William P. Thurston. Hyperbolic structures on 3-manifolds, II: surface groups and
3-manifolds which fiber over the circle. pages 79–110. Amer. Math. Soc., Providence,
RI, [2022] ©2022. August 1986 preprint, January 1998 eprint. 14

Department of Mathematics, Ben Gurion University, Israel

Email address: brandens@bgu.ac.il

Institute of Mathematics, Wrocław University, Poland

Email address: marcinkow@math.uni.wroc.pl


	1. Introduction
	2. Preliminaries
	2.A. Bounded cohomology.
	2.B. The bounded volume class.
	2.C. Euler class in the mapping class group

	3. Definitions of b and bM
	3.A. Description of b
	3.B. b via coupling
	3.C. Description of bM.
	3.D. bM via couplings

	4. Restriction to a free subgroup
	4.A. Volume class in dimension 2
	4.B. Volume class in dimension 3
	4.C. Euler class

	5. Proof of the theorem
	6. Dirac measure
	References

