Finite and p-adic polylogarithms

Amnon Besser

Overview

- Complex polylogarithms are interesting functions satisfying many functional equations
- Finite polylogarithms are certain polynomials that experimentally satisfy functional equations similar to those coming from derivatives of complex polylogarithms.
- The functional equations for the finite polylog can be derived from those of the complex polylog using the p-adic polylog.

The complex polylogarithm

$\operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} z^{k} / k^{n}$
Example: $\operatorname{Li}_{1}(z)=-\log (1-z)$
Can be continued to a multi-valued function. Satisfies the differential equation

$$
\begin{equation*}
\frac{d}{d z} \operatorname{Li}_{n}(z)=\frac{1}{z} \operatorname{Li}_{n-1}(z) \tag{1}
\end{equation*}
$$

The Bloch-Wigner-

 Ramakrishnan functionA single valued real valued version of Li_{n} :

$$
D_{n}(z)=R_{n}\left(\sum_{k=0}^{n-1} \frac{2^{k} B_{k}}{k!} \log ^{k}|z| \operatorname{Li}_{n-k}(z)\right)
$$

B_{k} are the Bernoulli numbers:

$$
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} t^{k}, \quad B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6} .
$$

and

$$
R_{n}= \begin{cases}\operatorname{Re} & 2 \mid n \\ \operatorname{Im} & 2 \nmid n\end{cases}
$$

Example:

$$
D(z)=D_{2}(z)=\operatorname{Im}\left(\operatorname{Li}_{2}(z)+\log (1-z) \log |z|\right)
$$

Functional equations

D_{n} satisfy many functional equations
Example: $\log (x y)=\log (x)+\log (y)$
Example: The 5-term relation:
$D(x)+D(y)+D\left(\frac{1-x}{1-x y}\right)+D(1-x y)+D\left(\frac{1-y}{1-x y}\right)=0$
and many others.

Functional equations of polylogarithms are very mysterious and are supposed to reflect very deep number theoretic facts.

Finite polylogarithms

$\operatorname{li}_{n}(z) \in \mathbb{Z} / p[z]$ defined (Elbaz-Vincent and Gangl) by

$$
\operatorname{li}_{n}(z):=\sum_{k=1}^{p-1} z^{k} / k^{n}
$$

Kontsevich introduced li_{1}, proved that it satisfied the 4-term relation

$$
\operatorname{li}_{1}(x+y)=\operatorname{li}_{1}(y)+(1-y) \operatorname{li}_{1}\left(\frac{x}{1-y}\right)+y \operatorname{li}_{1}\left(\frac{-x}{y}\right)
$$

and noticed that the same equation is satisfied by the (real valued) function
$D L_{2}(x):=x \log (x)+(1-x) \log (1-x)=x(1-x) \frac{d}{d x} D_{2}(x)$
The functional equation is known as the fundamental equation of information theory

Elbaz-Vincent and Gangl discovered similar relation between $\operatorname{li}_{2}(z)$ and $D L_{3}(x)$.

Kontsevich conjectured that these relations can be explained using the p-adic polylogarithm.

The problem of p-adic integna-

 tionColeman (82) developed a way of solving equations like (1) p-adically.

Example: How to solve $\frac{d}{d z} y=\frac{1}{z}$?
What is the problem and what is the solution?
\mathbb{Q}_{p} splits to a sum of circles $|z-\alpha|<1$

On $|z-\alpha|<1,|\alpha|=1$ the solution is

$$
\begin{aligned}
\log (z) & =\log \left(\alpha\left(1+\left(\frac{z}{\alpha}\right)-1\right)\right) \\
& =\log (\alpha)+\log \left(1+\left(\frac{z}{\alpha}\right)-1\right) \\
& =\log (\alpha)-\sum_{n=1}^{\infty} \frac{\left(1-\frac{z}{\alpha}\right)^{n}}{n}
\end{aligned}
$$

$|1-z / \alpha|<1$ so this series converges p-adically.

But what is $\log (\alpha)$? All we can really say is that the solution is

$$
C-\sum_{n=1}^{\infty} \frac{\left(1-\frac{z}{\alpha}\right)^{n}}{n}
$$

For some constant C and there is a different constant for each circle.

Coleman's solution - continua-

 tion along FrobeniusWe ask for "Frobenius equivariance" of the integral.

In the example this means: Since

$$
\frac{d\left(z^{p}\right)}{z^{p}}=p \frac{d z}{z}
$$

We should expect $y\left(z^{p}\right)=p y(z)$.
If $\alpha^{p}=\alpha$ this implies $y(\alpha)=0$. This suffices to determine y.

p-adic polylogarithms

Using this method Coleman defines

$$
\operatorname{Li}_{n}(z): \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}
$$

There exist functional equations.
Example:

$$
D_{2}(z)=\operatorname{Li}_{2}(z)+\frac{1}{2} \log (z) \log (1-z)
$$

D_{2} also satisfied the 5-term relation.

Wojtkoviac's general principle: Each functional equation of complex D_{n} gives the same equation for p-adic D_{n}.

The main theorem

Define

$$
\begin{gathered}
L_{n}(z)=\sum_{m=0}^{n-1} \frac{(-1)^{m}}{m!} \operatorname{Li}_{n-m}(z) \log ^{m}(z) \\
F_{n}(z)=-n L_{n}(z)-L_{n-1}(z) \log (z)
\end{gathered}
$$

and

$$
D F_{n}(z)=z(1-z) \frac{d}{d z} F_{n}(z)
$$

$$
\begin{aligned}
& \qquad X=\left\{z \in \mathbb{Z}_{p}: \quad|z|=|z-1|=1\right\} \\
& \text { Theorem (B.) for every } p>n+1,
\end{aligned}
$$

$$
D F_{n}(X) \subset p^{n-1} \mathbb{Z}_{p}
$$

and for $z \in X$

$$
p^{1-n} D F_{n}(z) \equiv \operatorname{li}_{n-1}(z) \quad(\bmod p)
$$

Distributions and measures

Definition: a distribution on \mathbb{Z}_{p} is a finite additive measure μ from the collection of subsets of the form $a+p^{n} \mathbb{Z}_{p}$ to \mathbb{Q}_{p}.

To define it suffices to define $\mu\left(a+p^{n} \mathbb{Z}_{p}\right)$ s.t.,

$$
\mu\left(a+p^{n} \mathbb{Z}_{p}\right)=\sum_{b \equiv a}{\left.\bmod p^{n}\right)} \mu\left(b+p^{n+1} \mathbb{Z}_{p}\right)
$$

A distribution is a measure if its set of values is bounded.

Integration with respect to a

measure

If μ is a measure one can define an integral

$$
\int_{\mathbb{Z}_{p}} f(x) d \mu(x), \quad f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p} \text { continuous }
$$

Example: $z \in \mathbb{Q}_{p}$ such that $z^{p^{n}} \neq 1$.
Define: $\mu_{z}\left(a+p^{n} \mathbb{Z}_{p}\right)=\frac{z^{a}}{1-z^{p^{n}}}$.

This is a distribution:

$$
\begin{aligned}
& \sum_{k=0}^{p-1} \frac{z^{a+k p^{n}}}{1-z p^{n+1}}=\frac{z^{a}}{1-z^{p^{n+1}}} \sum_{k=0}^{p-1}\left(z^{p^{n}}\right)^{k} \\
= & \frac{z^{a}}{1-z^{p^{n+1}}} \cdot \frac{1-z^{p^{n+1}}}{1-z p^{p^{n}}}=\frac{z^{a}}{1-z^{p^{n}}}
\end{aligned}
$$

The relation with the p-ad c polylogarithm
Let $\operatorname{Li}_{n}^{(p)}(z):=\operatorname{Li}_{n}(z)-\operatorname{Li}_{n}\left(z^{p}\right) / p^{n}$.
Notice:

$$
\mathrm{Li}_{n}^{(p)}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}-\sum_{k=1}^{\infty} \frac{z^{p k}}{(p k)^{n}}=\sum_{p \nmid k}^{\infty} \frac{z^{k}}{k^{n}}
$$

Theorem (Coleman) if $|z-1| \geq 1$, then

$$
\operatorname{Li}_{n}^{(p)}(z)=\int_{\mathbb{Z}_{p}^{\times}} x^{-n} d \mu_{z}(x)
$$

This implies that $\mathrm{Li}_{n}^{(p)}(z)$ is congruent modulo p to

$$
\sum_{a=1}^{p-1} a^{-n} \mu_{z}\left(a+p \mathbb{Z}_{p}\right)=\sum_{a=1}^{p-1} a^{-n} \frac{z^{a}}{1-z^{p}} .
$$

From knowing $\mathrm{Li}_{n}^{(p)}$ we get Li_{n} at α s.t. $\alpha^{p}=\alpha$. The rest is computation.

