Finite and p-adic polylogarithms

Amnon Besser

Overview

- Complex polylogarithms are interesting functions satisfying many functional equations
- Finite polylogarithms are certain polynomials that experimentally satisfy functional equations similar to those coming from derivatives of complex polylogarithms.
- The functional equations for the finite polylog can be derived from those of the complex polylog using the p-adic polylog.

The complex polylogarithm

$$\operatorname{Li}_n(z) = \sum_{k=1}^{\infty} z^k / k^n$$

Example: $\operatorname{Li}_1(z) = -\log(1-z)$

Can be continued to a multi-valued function.

Satisfies the differential equation

$$\frac{d}{dz}\operatorname{Li}_{n}(z) = \frac{1}{z}\operatorname{Li}_{n-1}(z) \tag{1}$$

The Bloch-Wigner-Ramakrishnan function

A single valued real valued version of Li_n :

$$D_n(z) = R_n \left(\sum_{k=0}^{n-1} \frac{2^k B_k}{k!} \log^k |z| \operatorname{Li}_{n-k}(z) \right)$$

 B_k are the Bernoulli numbers:

$$\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} B_k t^k, \quad B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}.$$

and

$$R_n = \begin{cases} \text{Re} & 2|n\\ \text{Im} & 2\nmid n \end{cases}$$

Example:

$$D(z) = D_2(z) = \text{Im}(\text{Li}_2(z) + \log(1-z)\log|z|)$$

Functional equations

 D_n satisfy many functional equations

Example: log(xy) = log(x) + log(y)

Example: The 5-term relation:

$$D(x) + D(y) + D(\frac{1-x}{1-xy}) + D(1-xy) + D(\frac{1-y}{1-xy}) = 0$$

and many others.

Functional equations of polylogarithms are very mysterious and are supposed to reflect very deep number theoretic facts.

Finite polylogarithms

 $\mathrm{li}_n(z) \in \mathbb{Z}/p[z]$ defined (Elbaz-Vincent and Gangl) by

$$li_n(z) := \sum_{k=1}^{p-1} z^k / k^n$$

Kontsevich introduced li_1 , proved that it satisfied the 4-term relation

$$li_1(x+y) = li_1(y) + (1-y)li_1(\frac{x}{1-y}) + yli_1(\frac{-x}{y})$$

and noticed that the same equation is satisfied by the (real valued) function

$$DL_2(x) := x \log(x) + (1-x) \log(1-x) = x(1-x) \frac{d}{dx} D_2(x)$$

The functional equation is known as the fundamental equation of information theory

Elbaz-Vincent and Gangl discovered similar relation between $li_2(z)$ and $DL_3(x)$.

Kontsevich conjectured that these relations can be explained using the p-adic polylogarithm.

The problem of p-adic integration

Coleman (82) developed a way of solving equations like (1) p-adically.

Example: How to solve
$$\frac{d}{dz}y = \frac{1}{z}$$
?

What is the problem and what is the solution?

\mathbb{Q}_p splits to a sum of circles $|z - \alpha| < 1$

On $|z - \alpha| < 1$, $|\alpha| = 1$ the solution is

$$\log(z) = \log(\alpha(1 + \left(\frac{z}{\alpha}\right) - 1))$$

$$= \log(\alpha) + \log(1 + \left(\frac{z}{\alpha}\right) - 1)$$

$$= \log(\alpha) - \sum_{n=1}^{\infty} \frac{(1 - \frac{z}{\alpha})^n}{n}$$

 $|1-z/\alpha|<1$ so this series converges p-adically.

But what is $log(\alpha)$? All we can really say is that the solution is

$$C - \sum_{n=1}^{\infty} \frac{\left(1 - \frac{z}{\alpha}\right)^n}{n}$$

For some constant *C* and there is a different constant for each circle.

Coleman's solution - continuation along Frobenius

We ask for "Frobenius equivariance" of the integral.

In the example this means: Since

$$\frac{d(z^p)}{z^p} = p\frac{dz}{z}$$

We should expect $y(z^p) = py(z)$.

If $\alpha^p = \alpha$ this implies $y(\alpha) = 0$. This suffices to determine y.

p-adic polylogarithms

Using this method Coleman defines

$$\operatorname{Li}_n(z):\mathbb{Q}_p\to\mathbb{Q}_p$$

There exist functional equations.

Example:

$$D_2(z) = \text{Li}_2(z) + \frac{1}{2}\log(z)\log(1-z)$$

 D_2 also satisfied the 5-term relation.

Wojtkoviac's general principle: Each functional equation of complex D_n gives the same equation for p-adic D_n .

The main theorem

Define

$$L_n(z) = \sum_{m=0}^{n-1} \frac{(-1)^m}{m!} \operatorname{Li}_{n-m}(z) \log^m(z)$$

$$F_n(z) = -nL_n(z) - L_{n-1}(z)\log(z)$$

and

$$DF_n(z) = z(1-z)\frac{d}{dz}F_n(z)$$

$$X = \{ z \in \mathbb{Z}_p : |z| = |z - 1| = 1 \}$$

Theorem (B.) for every p > n + 1,

$$DF_n(X) \subset p^{n-1}\mathbb{Z}_p$$

and for $z \in X$

$$p^{1-n}DF_n(z) \equiv \text{li}_{n-1}(z) \pmod{p}$$

Distributions and measures

Definition: a distribution on \mathbb{Z}_p is a finite additive measure μ from the collection of subsets of the form $a + p^n \mathbb{Z}_p$ to \mathbb{Q}_p .

To define it suffices to define $\mu(a+p^n\mathbb{Z}_p)$ s.t.,

$$\mu(a+p^n\mathbb{Z}_p) = \sum_{b \equiv a \pmod{p^n}} \mu(b+p^{n+1}\mathbb{Z}_p)$$

A distribution is a measure if its set of values is bounded.

Integration with respect to a measure

If μ is a measure one can define an integral

$$\int_{\mathbb{Z}_p} f(x) d\mu(x), \quad f: \mathbb{Z}_p \to \mathbb{Q}_p \text{ continuous}$$

Example: $z \in \mathbb{Q}_p$ such that $z^{p^n} \neq 1$.

Define:
$$\mu_z(a+p^n\mathbb{Z}_p)=\frac{z^a}{1-z^{p^n}}$$
.

This is a distribution:

$$\sum_{k=0}^{p-1} \frac{z^{a+kp^n}}{1-z^{p^{n+1}}} = \frac{z^a}{1-z^{p^{n+1}}} \sum_{k=0}^{p-1} (z^{p^n})^k$$

$$= \frac{z^a}{1-z^{p^{n+1}}} \cdot \frac{1-z^{p^{n+1}}}{1-z^{p^n}} = \frac{z^a}{1-z^{p^n}}$$

The relation with the p-adic polylogarithm

Let
$$\operatorname{Li}_n^{(p)}(z) := \operatorname{Li}_n(z) - \operatorname{Li}_n(z^p)/p^n$$
.

Notice:

$$\operatorname{Li}_{n}^{(p)}(z) = \sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}} - \sum_{k=1}^{\infty} \frac{z^{pk}}{(pk)^{n}} = \sum_{p \nmid k}^{\infty} \frac{z^{k}}{k^{n}}$$

Theorem (Coleman) if $|z-1| \ge 1$, then

$$\operatorname{Li}_{n}^{(p)}(z) = \int_{\mathbb{Z}_{p}^{\times}} x^{-n} d\mu_{z}(x) .$$

This implies that $\operatorname{Li}_n^{(p)}(z)$ is congruent modulo p to

$$\sum_{a=1}^{p-1} a^{-n} \mu_z(a + p \mathbb{Z}_p) = \sum_{a=1}^{p-1} a^{-n} \frac{z^a}{1 - z^p}.$$

From knowing $\operatorname{Li}_n^{(p)}$ we get Li_n at α s.t. $\alpha^p = \alpha$. The rest is computation.