Mahler measures, complex and p-adic
 Joint work with Christopher Deninger from the University of Münster. Crelle's journal 517 (1999)

Amnon Besser

Ben-Gurion University of the Negev

Contents

- Definition of the complex Mahler measure
- Various occurrences in mathematics
- Rodriguez-Villegas's work on variation of Mahler measures
- Evidence for relations with special values of L-functions
- Deninger's interpretation in terms of regulators
- p-adic analogues

Definition of Mahler's measure

For a Laurent polynomial

$$
P\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\sum a_{I} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}} \in \mathbb{C}\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right]
$$

The Mahler measure of P is given by

$$
m(P)=(2 \pi i)^{-n} \int_{\mathbb{T}^{n}} \log \left|P\left(z_{1}, \ldots, z_{n}\right)\right| \frac{d z_{1}}{z_{1}} \cdots \frac{d z_{n}}{z_{n}}
$$

where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$

Change of variables \Longrightarrow

$$
m(P)=\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}
$$

Case $n=1$

$$
\begin{aligned}
& \tilde{P}(z)=\frac{P}{z^{\text {ordd }}(P)} \\
& m(P)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \log |P(z)| \frac{d z}{z}=\log |\tilde{P}(0)|-\sum_{\substack{0 \leq|l| l \leq 1 \\
P(0)=0}} \log |b|
\end{aligned}
$$

Jensen's formula

History - Lehmer's work

Case $n=1$ - Lehmer (Annals of Math. 1933).
Motivation - Finding large prime numbers:
Suppose $P(x)=\prod\left(x-\alpha_{i}\right) \in \mathbb{Z}[x],\left|\alpha_{i}\right| \neq 1$.
Set $\Delta_{n}(P)=\prod\left(\alpha_{i}^{n}-1\right) \in \mathbb{Z}$
Example: $P(x)=x-2$,
$\Delta_{n}(P)=2^{n}-1$ (Mersenne primes)
Measure for growth of $\Delta_{n}(P)$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\Delta_{n+1}(P)}{\Delta_{n}(P)}\right|=\prod \max \left\{1,\left|\alpha_{i}\right|\right\} \\
& =M(P):=\exp (m(P)) .
\end{aligned}
$$

Slower growth implies a larger chance for finding primes.
Lehmer's best example:

$$
\begin{aligned}
G(x) & =x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1, \\
M(G) & =1.176 \ldots
\end{aligned}
$$

This is still the smallest value >1 known today
Lehmer's conjecture: 0 is not an accumulation point for Mahler measures of integral polynomials in one variable.

History - Mahler's work

Mahler (1960's) compared $m(P)$ with other measures on polynomials, e.g., L^{1} and L^{∞} norms, and also provided the integral formula.

Account of history and elementary properties:
Everest and Ward, Height of Polynomials and Entropy in Algebraic Dynamics, Springer (1999)

Ties with Dynamical systems

To $P \in \mathbb{Z}\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right]$we associate

$$
X_{P}=\operatorname{Hom}\left(\mathbb{Z}\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right] / P, \mathbb{T}\right)
$$

X_{P} has a \mathbb{Z}^{n}-action: $\left(k_{1}, \ldots, k_{n}\right)$ acts via multiplication by $z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}$.
Example: $P(z)=a_{d} z^{d}+\cdots a_{0} \in \mathbb{Z}[z]$.

$$
\begin{gathered}
X_{P}=\left\{\left(x_{k}\right) \in \mathbb{T}^{\mathbb{Z}}: a_{0} z_{k}+a_{1} z_{k+1}+\cdots+a_{d} z_{k+d}=0,\right. \\
\text { all } k\}
\end{gathered}
$$

\mathbb{Z}-action via shift.

Ties with Dynamical systems

Theorem (Lind, Schmidt and Ward 1990) The topological entropy of X_{P} is exactly $m(P)$.
Recall Topological Entropy
X - compact topological space.
$T: X \rightarrow X$ - continuous map.
\mathcal{U} - open cover of X.
$N(\mathcal{U})=\min \{|\mathcal{V}|: \mathcal{V}$ is a subcover of $\mathcal{U}\}$.
$\mathcal{U} \vee \mathcal{V}:=\{U \cap V: U \in \mathcal{U}, V \in \mathcal{V}\}$ - join of \mathcal{U} and ν.
Definition: The topological entropy of T is

$$
\sup _{\mathcal{U}} \lim _{n \rightarrow \infty} \frac{1}{n} \log N\left(\mathcal{U} \vee T^{-1} \mathcal{U} \vee \cdots \vee T^{-(n-1)} \mathcal{U}\right) .
$$

Theorem (Lind, Schmidt, Ward 1990) The set of all possible entropies of \mathbb{Z}^{n}-actions via automorphisms on compact groups is either $[0, \infty]$ or equal to the set of Mahler measures of polynomials in n variables, depending on Lehmer's conjecture.

Essential spanning forests

Γ - graph with vertex set \mathbb{Z}^{n}, invariant under shifts.
$k(y)$ - number of edges connecting y and 0 .
D - number of edges coming out of a vertex (assumed finite).
$P\left(z_{1}, \ldots z_{n}\right)=D-\sum k(y) z^{y}$.
Definition: An essential spanning forest is a subgraph on all the vertices, with no cycles and having only infinite connected components.

The essential spanning forest dynamical system:

X - set of all essential spanning forests.
\mathbb{Z}^{n}-action - via shifts.
Theorem (Burton \& Pemantle 1993, Solomyak 1998) The entropy of X is $m(P)$.

Variation of Mahler measures

Rodriguez-Villegas 1998

Consider $P(x, y) \in \mathbb{C}\left[x^{ \pm}, y^{ \pm}\right]$.
Set $P_{k}(x, y)=k-P(x, y), \lambda=\frac{1}{k}$ $P_{k}=\frac{1}{\lambda}(1-\lambda P)$

$$
m\left(P_{k}\right)=(2 \pi i)^{-2} \int_{\mathbb{T}^{2}} \log \left|\frac{1}{\lambda}(1-\lambda P(x, y))\right| \frac{d x}{x} \frac{d y}{y}
$$

$$
\int_{\mathbb{T}^{2}} x^{k} y^{m} \frac{d x}{x} \frac{d y}{y}= \begin{cases}(2 \pi i)^{2} & \text { if } k=m=0 \\ 0 & \text { otherwise }\end{cases}
$$

so $m\left(P_{k}\right)=\operatorname{Re} \tilde{m}(\lambda)$

$$
\tilde{m}(\lambda)=-\log \lambda-\sum_{n=1}^{\infty} \frac{a_{n}}{n} \lambda^{n},
$$

where a_{n} is the constant coefficient of $P(x, y)^{n}$.
E.g., if $P(x, y)=x+y+x^{-1}+y^{-1}$, then

$$
\tilde{m}(\lambda)=-\log (\lambda)-\sum_{n=1}^{\infty} \frac{1}{2 n}\binom{2 n}{n}^{2} \lambda^{2 n}
$$

Set $a_{0}=1$. Then

$-\lambda \frac{d}{d \lambda} \tilde{m}(\lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}=\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}} \frac{1}{1-\lambda P(x, y)} \frac{d x}{x} \frac{d y}{y}$

This is a period for the family of curves
$C_{\lambda}:=\left\{(x, y) \in \mathbb{C}^{2}: 1-\lambda P(x, y)=0\right\}$

It satisfies a differential equation with algebraic coefficients, the Picard-Fuchs equation.
In the example: $u_{0}(\lambda)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{2} \lambda^{2 n}$.
Under substitution $\lambda^{2}=\mu$ we get the equation

$$
\mu(16 \mu-1) \frac{d^{2} u_{0}}{d \mu^{2}}+(32 \mu-1) \frac{d u_{0}}{d \mu}+4 u_{0}=0 .
$$

L-functions

Arithmetic Geometric objects $X \Longrightarrow L$-function $L(X, s):\{s \in \mathbb{C}: \operatorname{Re} s>\alpha\} \rightarrow \mathbb{C}$.
Examples:

- a Dirichlet character is a function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$, multiplicative, periodic of period N (N is called the conductor of χ)

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} .
$$

E.g., if $\chi=1$ we get Riemann's zeta function.

It is easy to see that

$$
L(\chi, s)=\prod_{p \text { prime }}\left(1-\chi(p) p^{-s}\right)^{-1}
$$

L-functions of elliptic curves

- For an elliptic curve $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{Z}$, set

$$
\begin{aligned}
& a_{p}=p+1-\text { number of solutions of } \\
& \qquad y^{2}=x^{3}+a x+b \text { modulo } p
\end{aligned}
$$

$$
L(E, s)=\prod_{p \text { prime }}\left(1-a_{p} p^{-s}+p^{-2 s}\right)^{-1}
$$

Taniyama-Shimura conjecture (implies Fermat) says $L(E, s)$ has analytic continuation to all of \mathbb{C}.

Mahler and L-functions

Let χ_{3} be the Dirichlet character of conductor 3 with $\chi_{3}(1)=1$ and $\chi_{3}(2)=-1$.
Theorem (Smyth 1981)

$$
\begin{aligned}
m(1+x+y) & =\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{3}, 2\right), \\
m(1+x+y+z) & =\frac{7}{2 \pi^{2}} \zeta(3) .
\end{aligned}
$$

Theorem (Schmidt)

$$
m\left((x+y)^{2}+3\right)=\frac{2}{3} \log (3)+\frac{\sqrt{3}}{\pi} L\left(\chi_{3}, 2\right) .
$$

Deninger's Explanation

consider X an algebraic variety over \mathbb{Q}. This roughly means: X is a set in \mathbb{C}^{n} defined by polynomial equations and inequations with coefficients in \mathbb{Q}.
$K_{n}(X)$ - algebraic K-theory groups of $X=$?

Beilinson's "regulator"

$$
r_{\mathcal{D}}: K_{n}(X) \rightarrow H_{\mathcal{D}}^{i}(X, \mathbb{R}(2 i-n)) .
$$

We are interested in the case:
$\operatorname{dim} X=n$,
$r_{\mathcal{D}}: K_{n+1}(X) \rightarrow H_{\mathcal{D}}^{n+1}(X, \mathbb{R}(n+1))$.
In $K_{n+1}(X)$ we have symbols $\left\{f_{0}, \ldots, f_{n}\right\}$, where f_{i} are invertible algebraic functions on X.

$$
\begin{aligned}
& r_{\mathcal{D}}\left(\left\{f_{0}, \ldots, f_{n}\right\}\right)=\sum_{i=0}^{n} \frac{(-1)^{i}}{(n+1)!} \sum_{\sigma \in \mathbb{S}_{n+1}} \operatorname{sgn}(\sigma) \\
& \log \left|f_{\sigma(0)}\right| \frac{d \bar{f}_{\sigma(1)}}{\bar{f}_{\sigma(1)}} \wedge \cdots \wedge \frac{d \bar{f}_{\sigma(i)}}{\bar{f}_{\sigma(i)}} \wedge \frac{d f_{\sigma(i+1)}}{f_{\sigma(i+1)}} \wedge \cdots \wedge \frac{d f_{\sigma(n)}}{f_{\sigma(n)}}
\end{aligned}
$$

Suppose P does not vanish on \mathbb{T}^{n}. Let

$$
\begin{aligned}
X & =(\mathbb{C}-\{0\})^{n} \\
& -\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: P\left(z_{1}, \ldots, z_{n}\right)=0\right\}
\end{aligned}
$$

Then $\mathbb{T}^{n} \subset X$. The functions z_{1}, \ldots, z_{n}, P are invertible on X, hence $\left\{z_{1}, \ldots, z_{n}, P\right\} \in K_{n+1}(X)$

Deninger's theorem 1997

Note that on \mathbb{T} :

- $\log \left|z_{i}\right|=0$,

$$
\text { - } \bar{z}_{i}=\frac{1}{z_{i}} \text { so } \frac{d \bar{z}_{i}}{\bar{z}_{i}}=-\frac{d z_{i}}{z_{i}} \text {. }
$$

Theorem (Deninger 1997)

$$
\int_{\mathbb{T}^{n}} r_{\mathcal{D}}\left(\left\{P, z_{1}, \ldots, z_{n}\right\}\right)=(2 \pi i)^{n} m(P)
$$

A better formula is obtained as follows:
$Z=(\mathbb{C}-\{0\})^{n}-X$
$A=Z \cap \mathbb{T}^{n-1} \times\left\{\left|z_{n}\right| \leq 1\right\}$.
$\left\{z_{1}, \ldots, z_{n}\right\} \in K_{n}(Z)$.
$P^{*}\left(z_{1}, \ldots z_{n-1}\right):=P\left(z_{1}, \ldots, z_{n-1}, 0\right)$
Theorem (Deninger 1997) Under certain assumptions

$$
\begin{equation*}
m\left(P^{*}\right)-m(P)=\left(\frac{(-1)}{2 \pi i}\right)^{n-1} \int_{A} r_{\mathcal{D}}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right) \tag{1}
\end{equation*}
$$

Beilinson's conjecture

Beilinson's conjecture: "A determinant with entries

 like (1) is related to a special value of an L-function" Consequence: If- $\left\{z_{1}, \ldots, z_{n}\right\}$ extends to a "compactification" Y of Z,
- The determinant happens to be 1×1,

Then we get a relation with the L-function of Y.

p-adic Mahler measures

- Analogue of Beilinson regulator $=$ Syntomic regulator (Fontaine, Messing, Gros, Nizioł, B.)
- Analogue of integration on the complex torus = One of
- Multidimensional Shnirelman integration;
- Integration on the complex torus imported via the theory of p-adic periods

p-adic numbers

$\mathbb{Q}_{p}=$ completion of \mathbb{Q} with respect to the absolute value

$$
\left|p^{n} \frac{r}{s}\right|_{p}=p^{-n} \quad r, s \text { prime to } p
$$

$\mathbb{C}_{p}=$ completion of the algebraic closure of \mathbb{Q}_{p}.

Shnirelman integration

$$
\begin{aligned}
& \mathbb{T}_{p}=\left\{x \in \mathbb{C}_{p}:|x|_{p}=1\right\} \\
& f: \mathbb{T}_{p}^{n} \rightarrow \mathbb{C}_{p} .
\end{aligned}
$$

Definition of Shnirelman's integral:

$$
\int_{\mathbb{T}_{p}^{n}} f(z) \frac{d z_{1}}{z_{1}} \ldots \frac{d z_{n}}{z_{n}}:=\lim _{\substack{N \rightarrow \infty \\(N, p)=1}} \frac{1}{N^{n}} \sum_{\zeta \in \mu_{N}^{n}} f(\zeta) .
$$

Similarity with usual integration:

- Looks like Riemann sums;
- Residue theorem:

$$
f(z)=\sum_{I \in \mathbb{Z}^{n}} a_{I} z_{1}^{i_{1}} \ldots z_{n}^{i_{n}} \Rightarrow \int_{\mathbb{T}_{p}^{n}} f(z) \frac{d z_{1}}{z_{1}} \ldots \frac{d z_{n}}{z_{n}}=a_{0} .
$$

p-adic Mahler measure I

Assume $P \in \mathbb{C}_{p}\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right]$does not vanish on \mathbb{T}_{p}^{n}

$$
m_{p}(P)=\int_{\mathbb{T}_{p}^{n}} \log _{p} P(z) \frac{d z_{1}}{z_{1}} \ldots \frac{d z_{n}}{z_{n}}
$$

$\log _{p}: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}=p$-adic version of the logarithm.
For $n=1$

$$
m_{p}(P)=\log _{p} \tilde{P}(0)-\sum_{\substack{0<|b| p<1 \\ P(b)=0}} \log _{p} b
$$

p-adic L-functions

They are p-adic functions interpolating special values of complex L-functions.
Example: Kubota-Leopoldt p-adic L-function Interpolating special values of Riemann's ζ :
$\zeta(1-k)=-\frac{B_{k}}{k}$
B_{k} - Bernoulli numbers, $\frac{t}{e^{t}-1}=\sum \frac{B_{k}}{k!} t^{k}$
Set $\zeta^{*}(s)=\left(1-p^{-s}\right) \zeta(s)$.
Kummer congruences:

$$
\begin{aligned}
k_{1} & \equiv k_{2} \quad\left(\bmod (p-1) p^{n}\right) \Longrightarrow \\
\zeta^{*}\left(1-k_{1}\right) & \equiv \zeta^{*}\left(1-k_{2}\right) \quad\left(\bmod p^{n+1}\right)
\end{aligned}
$$

Consequence: Existence of p-adic L-function L_{p} It satisfies for example: $L_{p}(1-n)=\zeta^{*}(1-n)$ if $p-1 \mid n$.

Importing the complex torus to the p-adic world.

 For X a variety over \mathbb{Q} :$$
H_{i}(X(\mathbb{C}), \mathbb{Q}) \rightarrow H_{i}^{e t}\left(\bar{X}, \mathbb{Q}_{p}\right) \rightarrow H_{i}^{d R}(X / \mathbb{Q}) \otimes B_{d R}
$$

$B_{d R}=$ "field of p-adic periods"- a mysterious field containing \mathbb{C}_{p}.
These maps depend on σ - a choice of embeddings

$$
\mathbb{C} \hookleftarrow \bar{Q} \hookrightarrow \mathbb{C}_{p}
$$

So $\mathbb{T}^{n} \in H_{i}(X(\mathbb{C}), \mathbb{Q})$ is "imported" to the p-adic world.

$$
\mathbb{T}^{n} \in H_{i}^{d R}(X / \mathbb{Q}) \otimes B_{d R}
$$

p-adic Mahler II

$$
\begin{aligned}
X & =\left(\mathbb{A}^{1}-\{0\}\right)^{n} \\
& -\left\{\left(z_{1}, \ldots, z_{n}\right): P\left(z_{1}, \ldots, z_{n}\right)=0\right\}
\end{aligned}
$$

Syntomic regulator:

$$
r_{\text {syn }}\left\{P, z_{1}, \ldots, z_{n}\right\} \in H_{d R}^{n}(X / \mathbb{Q}) \otimes \mathbb{Q}_{p}
$$

Definition The (p, σ)-Mahler measure of P is

$$
\left\langle r_{\text {syn }}\left\{P, z_{1}, \ldots, z_{n}\right\}, \mathbb{T}^{n}\right\rangle \in B_{d R}
$$

For $n=1$

$$
m_{p, \sigma}(P)=\log _{p} \tilde{P}(0)-\sum_{\substack{0<|b|_{\infty}<1 \\ P(b)=0}} \log _{p} b
$$

In some cases we can tie this to special values of p-adic L-functions.

