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Definition of Mahler’s measure
For a Laurent polynomial

P (z1, z2, . . . , zn) =
∑

aIz
i1
1 · · · zin

n ∈ C[z±1 , . . . , z±n ]

The Mahler measure of P is given by

m(P ) = (2πi)−n

∫

Tn

log |P (z1, . . . , zn)|
dz1

z1
· · · dzn

zn

where T = {z ∈ C : |z| = 1}
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Change of variables =⇒

m(P ) =

∫ 1

0

· · ·
∫ 1

0

log |P (e2πiθ1, . . . , e2πiθn)|dθ1 · · · dθn
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Case n = 1

P̃ (z) =
P

zord0(P )

m(P ) =
1

2πi

∫

T

log |P (z)|dz

z
= log |P̃ (0)| −

∑

0<|b|<1
P (b)=0

log |b|

Jensen’s formula
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History - Lehmer’s work
Case n = 1 - Lehmer (Annals of Math. 1933).
Motivation - Finding large prime numbers:

Suppose P (x) =
∏

(x− αi) ∈ Z[x], |αi| 6= 1.

Set ∆n(P ) =
∏

(αn
i − 1) ∈ Z

Example: P (x) = x− 2,
∆n(P ) = 2n − 1 (Mersenne primes)
Measure for growth of ∆n(P ):

lim
n→∞

∣

∣

∣

∣

∆n+1(P )

∆n(P )

∣

∣

∣

∣

=
∏

max{1, |αi|}

= M(P ) := exp(m(P )) .
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Slower growth implies a larger chance for finding
primes.
Lehmer’s best example:

G(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1,

M(G) = 1.176 . . .

This is still the smallest value > 1 known today

Lehmer’s conjecture: 0 is not an accumulation point

for Mahler measures of integral polynomials in one

variable.
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History - Mahler’s work
Mahler (1960’s) compared m(P ) with other
measures on polynomials, e.g., L1 and L∞ norms, and
also provided the integral formula.

Account of history and elementary properties:
Everest and Ward, Height of Polynomials and Entropy
in Algebraic Dynamics, Springer (1999)
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Ties with Dynamical systems
To P ∈ Z[z±1 , . . . , z±n ] we associate

XP = Hom(Z[z±1 , . . . , z±n ]/P, T)

XP has a Zn-action: (k1, . . . , kn) acts via
multiplication by zk1

1 · · · zkn
n .

Example: P (z) = adz
d + · · · a0 ∈ Z[z].

XP = {(xk) ∈ TZ : a0zk + a1zk+1 + · · ·+ adzk+d = 0,

all k}

Z-action via shift.
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Ties with Dynamical systems
Theorem (Lind, Schmidt and Ward 1990) The
topological entropy of XP is exactly m(P ).
Recall Topological Entropy
X - compact topological space.
T : X → X - continuous map.
U - open cover of X .
N(U) = min{|V| : V is a subcover of U}.
U ∨ V := {U ∩ V : U ∈ U , V ∈ V} - join of U and
V .
Definition: The topological entropy of T is

sup
U

lim
n→∞

1

n
log N(U ∨ T−1U ∨ · · · ∨ T−(n−1)U) .
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Theorem (Lind, Schmidt, Ward 1990) The set of all
possible entropies of Zn-actions via automorphisms
on compact groups is either [0,∞] or equal to the set
of Mahler measures of polynomials in n variables,
depending on Lehmer’s conjecture.
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Essential spanning forests
Γ - graph with vertex set Zn, invariant under shifts.
k(y) - number of edges connecting y and 0.
D - number of edges coming out of a vertex (assumed
finite).
P (z1, . . . zn) = D −

∑

k(y)zy.
Definition: An essential spanning forest is a subgraph
on all the vertices, with no cycles and having only
infinite connected components.
The essential spanning forest dynamical system:
X - set of all essential spanning forests.
Zn-action - via shifts.
Theorem (Burton & Pemantle 1993, Solomyak 1998)
The entropy of X is m(P ).
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Variation of Mahler measures
Rodriguez-Villegas 1998
Consider P (x, y) ∈ C[x±, y±].
Set Pk(x, y) = k − P (x, y), λ = 1

k

Pk = 1
λ
(1− λP )

m(Pk) = (2πi)−2

∫

T2

log |1
λ

(1− λP (x, y))|dx

x

dy

y
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∫

T2

xkymdx

x

dy

y
=

{

(2πi)2 if k = m = 0

0 otherwise,

so m(Pk) = Re m̃(λ)

m̃(λ) = − log λ−
∞

∑

n=1

an

n
λn ,

where an is the constant coefficient of P (x, y)n.
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E.g., if P (x, y) = x + y + x−1 + y−1, then

m̃(λ) = − log(λ)−
∞

∑

n=1

1

2n

(

2n

n

)2

λ2n
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Set a0 = 1. Then

−λ
d

dλ
m̃(λ) =

∞
∑

n=0

anλ
n =

1

(2πi)2

∫

T2

1

1− λP (x, y)

dx

x

dy

y

This is a period for the family of curves
Cλ := {(x, y) ∈ C2 : 1− λP (x, y) = 0}
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It satisfies a differential equation with algebraic
coefficients, the Picard-Fuchs equation.

In the example: u0(λ) =
∞

∑

n=0

(

2n

n

)2

λ2n.

Under substitution λ2 = µ we get the equation

µ(16µ− 1)
d2u0

dµ2
+ (32µ− 1)

du0

dµ
+ 4u0 = 0 .
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L-functions
Arithmetic Geometric objects X =⇒ L-function
L(X, s) : {s ∈ C : Re s > α} → C.
Examples:
• a Dirichlet character is a function χ : Z→ C,

multiplicative, periodic of period N (N is called
the conductor of χ)

L(χ, s) =
∞

∑

n=1

χ(n)

ns
.

E.g., if χ = 1 we get Riemann’s zeta function.
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It is easy to see that

L(χ, s) =
∏

p prime

(

1− χ(p)p−s
)−1

.
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L-functions of elliptic curves
• For an elliptic curve y2 = x3 + ax + b with

a, b ∈ Z, set

ap = p + 1−number of solutions of

y2 = x3 + ax + b modulo p

L(E, s) =
∏

p prime

(

1− app
−s + p−2s

)−1

Taniyama-Shimura conjecture (implies Fermat)
says L(E, s) has analytic continuation to all of C.
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Mahler and L-functions
Let χ3 be the Dirichlet character of conductor 3 with
χ3(1) = 1 and χ3(2) = −1.
Theorem (Smyth 1981)

m(1 + x + y) =
3
√

3

4π
L(χ3, 2) ,

m(1 + x + y + z) =
7

2π2
ζ(3) .

Theorem (Schmidt)

m((x + y)2 + 3) =
2

3
log(3) +

√
3

π
L(χ3, 2) .
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Deninger’s Explanation
consider X an algebraic variety over Q.
This roughly means: X is a set in Cn defined by
polynomial equations and inequations with
coefficients in Q.

Kn(X) - algebraic K-theory groups of X =?
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Beilinson’s “regulator”

rD : Kn(X)→ H i
D(X, R(2i − n)) .

We are interested in the case:
dim X = n,
rD : Kn+1(X)→ Hn+1

D (X, R(n + 1)).

In Kn+1(X) we have symbols {f0, . . . , fn}, where fi

are invertible algebraic functions on X .
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rD({f0, . . . , fn}) =
n

∑

i=0

(−1)i

(n + 1)!

∑

σ∈Sn+1

sgn(σ)

log |fσ(0)|
df̄σ(1)

f̄σ(1)

∧ · · · ∧ df̄σ(i)

f̄σ(i)

∧ dfσ(i+1)

fσ(i+1)
∧ · · · ∧ dfσ(n)

fσ(n)
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Suppose P does not vanish on Tn. Let

X = (C− {0})n

− {(z1, . . . , zn) ∈ Cn : P (z1, . . . , zn) = 0}

Then Tn ⊂ X . The functions z1, . . . , zn, P are invert-

ible on X , hence {z1, . . . , zn, P} ∈ Kn+1(X)
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Deninger’s theorem 1997
Note that on T:
• log |zi| = 0,

• z̄i =
1

zi

so
dz̄i

z̄i

= −dzi

zi

.

Theorem (Deninger 1997)
∫

Tn

rD({P, z1, . . . , zn}) = (2πi)nm(P )
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A better formula is obtained as follows:
Z = (C− {0})n −X
A = Z ∩ Tn−1 × {|zn| ≤ 1}.
{z1, . . . , zn} ∈ Kn(Z).
P ∗(z1, . . . zn−1) := P (z1, . . . , zn−1, 0)
Theorem (Deninger 1997) Under certain assumptions

m(P ∗)−m(P ) =

(

(−1)

2πi

)n−1 ∫

A

rD({z1, . . . , zn}) .

(1)
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Beilinson’s conjecture
Beilinson’s conjecture: “A determinant with entries
like (1) is related to a special value of an L-function”
Consequence: If
• {z1, . . . , zn} extends to a “compactification” Y

of Z,
• The determinant happens to be 1× 1,

Then we get a relation with the L-function of Y .
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p-adic Mahler measures
• Analogue of Beilinson regulator = Syntomic

regulator (Fontaine, Messing, Gros, Nizioł, B.)
• Analogue of integration on the complex torus =

One of
• Multidimensional Shnirelman integration;
• Integration on the complex torus imported via

the theory of p-adic periods
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p-adic numbers
Qp = completion of Q with respect to the absolute
value

|pnr

s
|p = p−n r, s prime to p

Cp = completion of the algebraic closure of Qp.
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Shnirelman integration
Tp = {x ∈ Cp : |x|p = 1}
f : Tn

p → Cp.
Definition of Shnirelman’s integral:
∫

Tn
p

f(z)
dz1

z1
. . .

dzn

zn

:= lim
N→∞

(N,p)=1

1

Nn

∑

ζ∈µn
N

f(ζ) .

Similarity with usual integration:
• Looks like Riemann sums;
• Residue theorem:

f(z) =
∑

I∈Zn

aIz
i1
1 . . . zin

n ⇒
∫

Tn
p

f(z)
dz1

z1
. . .

dzn

zn

= a0 .
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p-adic Mahler measure I
Assume P ∈ Cp[z

±
1 , . . . , z±n ] does not vanish on Tn

p

mp(P ) =

∫

Tn
p

logp P (z)
dz1

z1
. . .

dzn

zn

logp : Cp → Cp = p-adic version of the logarithm.
For n = 1

mp(P ) = logp P̃ (0)−
∑

0<|b|p<1

P (b)=0

logp b
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p-adic L-functions
They are p-adic functions interpolating special values
of complex L-functions.
Example: Kubota-Leopoldt p-adic L-function -
Interpolating special values of Riemann’s ζ:

ζ(1− k) = −Bk

k

Bk - Bernoulli numbers,
t

et − 1
=

∑ Bk

k!
tk

Set ζ∗(s) = (1− p−s)ζ(s).
Kummer congruences:

k1 ≡ k2 (mod (p− 1)pn) =⇒
ζ∗(1− k1) ≡ ζ∗(1− k2) (mod pn+1)
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Consequence: Existence of p-adic L-function Lp

It satisfies for example: Lp(1 − n) = ζ∗(1 − n) if

p− 1|n.
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Importing the complex torus to the p-adic world.
For X a variety over Q:

Hi(X(C), Q)→ Het
i (X̄, Qp)→ HdR

i (X/Q)⊗BdR

BdR = “field of p-adic periods”- a mysterious field
containing Cp.
These maps depend on σ - a choice of embeddings

C←↩ Q̄ ↪→ Cp
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So Tn ∈ Hi(X(C), Q) is “imported” to the p-adic
world.

Tn ∈ HdR
i (X/Q)⊗BdR
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p-adic Mahler II

X = (A1 − {0})n

− {(z1, . . . , zn) : P (z1, . . . , zn) = 0}

Syntomic regulator:

rsyn{P, z1, . . . , zn} ∈ Hn
dR(X/Q)⊗Qp

Definition The (p, σ)-Mahler measure of P is

〈rsyn{P, z1, . . . , zn}, Tn〉 ∈ BdR

Mahler measures, complex and p-adic – p.37/38



For n = 1

mp,σ(P ) = logp P̃ (0)−
∑

0<|b|∞<1
P (b)=0

logp b

In some cases we can tie this to special values of p-adic

L-functions.
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