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1. Basics

Lecture 1, 17 Oct 2018

Before starting with the actual material, lets us go quickly over some basic ideas that we
will need. I hope all these are familiar to all students; if not, then we will have to see how
to close the gaps.

The first few weeks will be on geometry in general, but from the point of view of locally
ringed spaces.

Everybody needs to know a sufficient amount of elementary topology. Some algebraic
topology will be required (homology, cohomology and fundamental groups).

Categories, functors and natural transformations will be used a lot. I am assuming that
all students have already been exposed to these notions. For instance, all should understand
this statement:

• Let Top∗ and Grp be the categories of pointed topological spaces and of groups,
respectively. The fundamental group is a functor

π1 : Top∗ → Grp .

If not, then we will have to see how to close this gap. (Maybe go over material from [Ye3].)
Differential geometry will serve as an introductory model for locally ringed spaces. (A

preparation for the more complicated schemes.) Everybody should have some knowledge
on this topic (C∞ manifolds and maps between them, tangent bundles, etc.) Knowledge of
complex analytic geometry will be very useful.

2. Sheaves of Functions on Topological Spaces

Consider a topological space X . We do not make any conditions on X , especially we
don’t assume X is Hausdorff. But at first you can pretend, to help intuition, that X is a
topological subspace of �n (with its usual topology).

Given an open subset U ⊆ X , consider the continous functions

f : U → �.

Let us denote this set of functions by Γ(U,OX ).

We know that Γ(U,OX ) is a commutative �-ring.
Let V ⊆ U be a smaller open set. We get a continous function

f |V : V → �.
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The opration f 7→ f |V is a ring homomorphism

restV/U : Γ(U,OX ) → Γ(V ,OX ).

If W ⊆ V is another smaller open set, then of course

( f |V )|W = f |W .

We see that the restriction homomorphisms satisfy

restW/V ◦ restV/U = restW/U : Γ(U,OX ) → Γ(W ,OX ).

This means that OX is a presheaf of �-rings on X .
Here is a categorical interpretation of this statement. Let Rngc/� be the category of

commutative �-rings.
Let Open(X) be the category of open sets of X , where the morphisms are inclusions.

Thus if V ⊆ U then there is one arrow V → U; and if V * U then there are no arrows
V → U. The presheaf OX is a functor

Γ(−,OX ) : Open(X)op → Rngc/�.

But in fact much more is true.
Suppose U ⊆ X is an open set, and we are given an open covering

U =
⋃
i∈I

Vi .
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Let f , g ∈ Γ(U,OX ), i.e.

f , g : U → �,

and assume that

f |Vi = g |Vi

for all i.

Then of course f = g.
Now assume that we are given

fi ∈ Γ(Vi ,OX )

such that

fi |Vi∩Vj = fj |Vi∩Vj

for all i, j.
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Because the various fi agree on double intersections, there is a function

f : U → �

such that
f |Ui = fi .

Of course this function f is unique (by the previous discussion). But also f is continous.
This is because continuity is a local property, and on each of the open sets Ui we know that
f is continous.

Thus
f ∈ Γ(U,OX ).

Let us summarize these two further properties of OX :
(a) Let U ⊆ X be an open set, let U =

⋃
i∈I Vi an open covering, and let

f , g ∈ Γ(U,OX )

be such that f |Vi = g |Vi for all i. Then f = g.
(b) Let U ⊆ X be an open set, let U =

⋃
i∈I Vi be an open covering, and let

fi ∈ Γ(Vi ,OX )

be such that
fi |Vi∩Vj = fj |Vi∩Vj

for all i, j. Then there exists

f ∈ Γ(U,OX )

such that f |Vi = fi for all i.
These are the sheaf axioms. They tell us that OX is a sheaf of rings on X .
Because rings have underlying abelian groups, axioms (a) and (b) can be stated in terms

of exact sequences.
(∗) For every open set U ⊆ X and every open covering U =

⋃
i∈I Vi the sequence of

abelian groups

0→ Γ(U,OX )
ρ
−→

∏
i∈I

Γ(Vi ,OX )
δ0−δ1

−−−−−→
∏
j,k∈I

Γ(Vj ∩ Vk ,OX )

is exact.
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Here ρ is the product on all i ∈ I of the restriction homomorphisms

restVi/U : Γ(U,OX ) → Γ(Vi ,OX ).

The homomorphism δ1 is the product on all i = j ∈ I of the product on all k ∈ I of

restVj∩Vk /Vj
: Γ(Vj ,OX ) → Γ(Vj ∩ Vk ,OX ).

And the homomorphism δ0 is the product on all i = k ∈ I of the product on all j ∈ I of of

restVj∩Vk /Vk
: Γ(Vk ,OX ) → Γ(Vj ∩ Vk ,OX ).

Exercise 2.1. Prove that condition (∗) is equivalent to condition
(
(a) and (b)

)
.

The next exercise gives a variation of what we did above.

Exercise 2.2. Let X be a differentiable manifold (of type C∞). For every open set U ⊆ X
let Γ(U,OX ) be the set of differentiable functions f : U → �.

Prove that the assignment
U 7→ Γ(U,OX )

is a sheaf of �-rings on X . The sheaf OX is called the sheaf of differentiable functions on
X .

Exercise 2.3. If you know about real or complex analytic manifolds, state and prove the
corresponding analogue of Exercise 2.2.

Exercise 2.4. This exercise is for those who know the algebraic geometry of varieties. Let
� be an algebraically closed field, and let X be an algebraic variety over �. For every
(Zariski) open set U ⊆ X let Γ(U,OX ) be ring of algebraic functions on U. Prove that the
assignment

U 7→ Γ(U,OX )

is a sheaf of �-rings on X . The sheaf OX is called the sheaf of algebraic functions on X .

3. Sheaves on Topological Spaces

Until now we only saw ring valued sheaves. Here are some variations.

Definition 3.1. Let X be a topological space. A presheaf of groups on X is a functor

G : Open(X)op → Grp,

where Grp is the category of groups.

Concretely, the presheaf G is the data of a group Γ(U, G) for every open set U ⊆ X ,
called the group of sections of G over U, and a group homomorphism

restV/U : Γ(U, G) → Γ(V , G)

for every inclusion V ⊆ U, such that

restW/U = restW/V ◦ restV/U
for every double inclusion W ⊆ V ⊆ U. And of course

restU/U = idΓ(U,G)
for every U.

We often use the abbreviation

(3.2) g |V := restV/U (g) ∈ Γ(V , G)

for a presheaf G, an inclusion of open sets V ⊆ U, and a section g ∈ Γ(U, G).
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Definition 3.3. Let X be a topological space. A sheaf of groups on X is a presheaf of
groups G on X that satisfies the two sheaf axioms:

(a) Let U ⊆ X be an open set, let U =
⋃

i∈I Vi be an open covering, and let g, h ∈
Γ(U, G) be sections such that g |Vi = h|Vi for all i. Then g = h.

(b) LetU ⊆ X be an open set, letU =
⋃

i∈I Vi be an open covering, and let gi ∈ Γ(Vi , G)
be sections such that

gi |Vi∩Vj = gj |Vi∩Vj

for all i, j. Then there exists a section g ∈ Γ(U,OX ) such that

g |Vi = gi

for all i.

Recall that a topological group is a topological space G, that is also a group, such that
the operations of multiplication and inversion are continous. Namely

mult : G × G→ G

and
inv : G→ G

are continous functions.

Example 3.4. Let X be a topological space and G a topological group. For every open set
U ⊆ X define

Γ(U, G) := {continous functions g : U → G}.
I claim that G is a sheaf of groups on X .

That G is a presheaf is obvious. Sheaf axiom (a) is also clear, because for every point
x ∈ U we can find some i such that x ∈ Vi , and hence we have

g(x) = g |Vi (x) = g′ |Vi (x) = g′(x).

Thus g = g′.
Axiom (b) is also easy to verify. The values gi(x) at a point x ∈ U are equal, for all i ∈ I

such that x ∈ Vi . So there is a function g : U → G. Because continuity is a local property,
and g |Vi = gi , we see that g is continous. Thus g ∈ Γ(U, G).

Exercise 3.5. Let X be a topological space. Let G := GLn(�) for some positive integer n,
with the usual topology (by the embedding GLn(�) ⊆ �

n2 ). So G is a topological group.
Let G be the sheaf of groups on X from Example 3.4 for this choice of G. And let OX

be the sheaf of continous real valued function on X . Prove that for every open set U ⊆ X
there is a group isomorphism

Γ(U, G) � GLn(Γ(U,OX )),

that respects the restriction homomorphisms.

Definition 3.6. Let X be a topological space.
(1) A presheaf of abelian groups on X is a functor

G : Open(X)op → Ab,

where Ab is the category of abelian groups.
(2) A sheaf of abelian groups on X is a presheaf of abelian groups G that satisfies the

sheaf axioms (a) and (b) from Definition 3.3.

It is not hard to see that a sheaf of abelian groups G is the same as a sheaf of groups G
such that each Γ(U, G) is abelian.

Definition 3.7. Let X be a topological space.
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(1) A presheaf of commutative rings on X is a functor

A : Open(X)op → Rngc,

where Rngc is the category of commutative rings.
(2) A sheaf of commutative rings on X is a presheaf of commutative rings A that

satisfies the sheaf axioms (a) and (b) from Definition 3.3.

If A is a sheaf of commutative rings, and we forget the multiplication of A, then we
obtain a sheaf of abelian groups.

Example 3.8. Let X be a topological space and let A be a commutative ring. The constant
sheaf of rings on X with values in A is the sheaf AX defined as follows. Put on A the discrete
topology. Then for every U ⊆ X open we let

Γ(U, AX ) := {continous functions g : U → A}.

Exercise 3.9. Take a nonzero commutative ring A, say A := �. Calculate the ring Γ(X , AX )

for these choices of X :
(1) X := �with the classical topology.
(2) X := � with the discrete topology.

4. Stalks

A directed set is a partially ordered set I such that for every i, j ∈ I there exists some
k ∈ I with i, j ≤ k. We can view the directed set I as a category, with a single arrow
ri, j : i → j if i ≤ j, and no arrows otherwise.

A direct system in a category C, indexed by a directed set I, is a functor

C : I → C, i 7→ C(i) = Ci , ri, j 7→ C(ri, j).

We usually denote such a direct system by {Ci}i∈I , leaving the ri, j implicit.
A direct limit of a direct system {Ci}i∈I is an object C∞ ∈ C, together with a collection

of morphisms fi : Ci → C∞, such that the diagram

Ci

fi

  

C(ri, j )

��

Cj

fj
// C∞

is commutative for every i → j, and such that(
C∞, { fi}i∈I

)
is universal for this property. We write

lim
i→

Ci := C∞.

The categories Grp, Ab and Rngc have direct limits. Here is the construction:

lim
i→

Ci =
(∐

i∈I
Ci

)
/ ∼ ,

where ∼ is the relation ci ∼ cj for ci ∈ Ci and cj ∈ Cj whenever there are arrows i, j → k
such that

C(ri,k)(ci) = C(rj,k)(cj) ∈ Ck .

Let X be a topological space. For a point x ∈ X let Open(X , x) be the set of open
neighborhoods of x, made into a category by inclusions. Then Open(X , x)op is a directed
set.
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Definition 4.1. LetM be a presheaf of abelian groups on a topological space X . Let x ∈ X
be a point. The stalk of M at x is the abelian group

Mx := lim
U→

Γ(U,M),

where the direct limit is on U ∈ Open(X , x)op.
Likewise for a presheaf of groups and for a sheaf of commutative rings.

Exercise 4.2. With the assumptions of Exercise 3.9(1, 2), calculate the stalks (AX )x for a
point x ∈ X .
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Lecture 2, 24 Oct 2018

5. Morphisms of Sheaves

We will mostly work with sheaves of abelian groups; but things are the same for sheaves
in Rngc, Grp and Set.

First we talk about morphisms of presheaves.

Definition 5.1. Let M and N be presheaves of abelian groups on a topological space X .
A morphism of presheaves of abelian groups

φ : M→ N

is a collection
φ =

{
Γ(U, φ)

}
U∈Open(X)

of homomorphisms of abelian groups

Γ(U, φ) : Γ(U,M) → Γ(U,N ),

such that the diagrams
Γ(U,M) //

restV /U

��

Γ(U,N )

restV /U

��

Γ(V ,M)
Γ(V,φ)

// Γ(V ,N )
are commutative for all inclusions V ⊆ U.

The category of presheaves of abelian groups on X us denoted by PAb X

In other words, a morphism of presheaves φ : M → N is a morphism of functors
(natural transformation)

(Open X)op → Ab .

Given a morphism φ : M→ N and a point x ∈ X , there is a group homomorphism

φx : Mx → Nx

in the stalks.
We say that φ is injective (respect. surjective) if for every open setU the homomorphism

Γ(U, φ) is injective (respect. surjective).
Let M be a presheaf. A subpresheaf of M is a presheaf M′ such that

Γ(U,M′) ⊆ Γ(U,M)

for every U, and they have the same restriction homomorphisms. The inclusionM′→M
is an injective morphism of presheaves.

Recall that the sheaves on X form a subset of the presheaves on X – these are presheaves
that satisfy the sheaf axioms.

Definition 5.2. Let M and N be sheaves of abelian groups on a topological space X . A
morphism of sheaves of abelian groups φ : M→ N is just a morphism of presheaves.

Thus the category Ab X of sheaves of abelian groups on X is a full subcategory of PAb X .

Likewise for groups, rings and sets: there are full embeddings

Grp X ⊆ PGrp X ,

Rng X ⊆ PRng X
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and
Set X ⊆ PSet X

of the categories of sheaves in the corresponding categories of presheaves.
It will be convenient to be a bit ambiguous sometimes - we shall talk about a morphism

of presheaves or sheaves, meaning any of the four kinds (Ab, Grp, Rng or Set). For this we
introduce the symbolic notation

Sh X ⊆ PSh X .
(Unless this turns out to be too confusing – then we will abolish it.)

Let φ : M → N be a morphism of sheaves on X . Given a point x ∈ X there is an
induced morphism

(5.3) φx : Mx → Nx .

Definition 5.4. Let φ : M→ N be a morphism of sheaves on X .
(1) We call φ an injective sheaf morphism if every point x the morphism φx is injective.
(2) We call φ a surjective sheafmorphism if every point x themorphism φx is surjective.

Proposition 5.5. Let φ : M→ N be a morphism of sheaves. The following conditions are
equivalent.

(i) φ is an injective sheaf morphism.
(ii) φ is an injective presheaf morphism.

Exercise 5.6. Prove the last proposition.

A subsheaf of a sheafM is a subpresheafM′ ⊆Mwhich is itself a sheaf. The inclusion
M′→M is an injective morphism of sheaves.

A presheaf M is called a separated presheaf if it satisfies sheaf axiom (a).

Exercise 5.7. Suppose M is a sheaf and M′ ⊆ M is a subpresheaf. Show that M′ is a
separated presheaf.

Proposition 5.5 is false for surjections! See Exercise 5.10 below. Instead we have:

Proposition 5.8. Let φ : M→ N be a morphism of sheaves. The following conditions are
equivalent.

(i) φ is a surjective sheaf morphism.
(ii) For evey open set U ⊆ X and every section n ∈ Γ(U,N ) there is an open covering

U =
⋃

i∈I Vi and sections mi ∈ Γ(Vi ,M) such that

Γ(Vi , φ)(mi) = n|Vi

in Γ(Vi ,N ).

Exercise 5.9. Prove this proposition.

Exercise 5.10. Find an example of a sheaf homomorphism φ : M→ N on a space X with
this property: φ is a surjection of sheaves, but it is not a surjection of presheaves. (This
could be hard; we will see examples later.)

Update. In class today such an example was proposed by Guy. The topological space
was X := � − {0}, the sheaf M was the sheaf of holomorphic (i.e. analytic) �-valued
functions on X , the sheaf N was the subsheaf of nonzero functions, and φ : M→ N was
f 7→ exp( f ). We can view these a morphism in Ab X . Try to understand why

Γ(X , φ) : Γ(X ,M) → Γ(X ,N )

is not surjective; so φ is not surjective as a morphism of presheaves. But φ : M → N
is surjective as a morphism of sheaves. (Hint: a logarithm is defined on each contractible
open set in X .)
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Exercise 5.11. Let M be a sheaf on X . What is Γ(�,M) ?

Proposition 5.12. Let φ : M → N be a morphism of sheaves on X . The following are
equivalent:

(i) φ is an isomorphism of sheaves, i.e. an isomorphism in the category of sheaves.
(ii) For every point x ∈ X the morphism on stalks

φx : Mx → Nx

is bĳective.
(iii) For every open set U ⊆ X the morphism

Γ(U, φ) : Γ(U,M) → Γ(U,N )

is bĳective.

Note that condition (ii) above says that φ is both injective and surjective, see Definition
5.4.

Exercise 5.13. Prove this proposition.

6. Sheafification

[comment: (181104) made this into a new section; small changes below]
Recall that by a (pre)sheaf, and a morphism of (pre)sheaves, we mean of the four kinds:

abelian groups, groups, rings or sets. (Later we will also talk about sheave of A-modules,
where A is a sheaf of rings.) We shall use the generic notation C(X) ⊆ PC(X), where
C = Set,Grp, Ab, Rng. So when C = Ab this stands for Ab(X) ⊆ PAb(X), etc.

Theorem 6.1 (Sheafification). LetM be a presheaf with values in C on a topological space
X . There is a sheaf Sh(M) on X , with a morphism of presheaves

τM : M→ Sh(M),

having this universal property:
(S) For every pair (N , φ), consisting of a sheaf N and a morphism of presheaves

φ : M→ N ,

there is a unique morphism of sheaves

φ′ : Sh(M) → N

such that the diagram

M
τM //

φ

""

Sh(M)

φ′

��

N

in PC(X) is commutative.
The pair

(
Sh(M), τM

)
is called the sheafification of M.

Let us note, before proving the theorem, that:

Proposition 6.2. The sheafification
(
Sh(M), τM

)
of M is unique, up to a unique isomor-

phism.

Exercise 6.3. Prove this proposition.

Corollary 6.4. In M is a sheaf then (Sh(M), τM) = (M, id); i.e. uniquely isomorphic.
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Exercise 6.5. Prove this corollary.

We need an auxilliary construction. Given a presheaf M, let us define the presheaf
GSh(M) as follows: for every open set U we take

Γ(U,GSh(M)) :=
∏
x∈U

Mx ,

the product on all stalks. For an open subset V ⊆ U we define

restV/U : Γ(U,GSh(M)) → Γ(V ,GSh(M))

to be the projection

(6.6)

Γ(U,GSh(M)) =
∏
x∈U

Mx =
( ∏
x∈V

Mx

)
×

( ∏
x∈U−V

Mx

)
pr
−−→

∏
x∈V

Mx = Γ(V ,GSh(M)).

Note that a section m ∈ Γ(U,GSh(M)) looks like this:

(6.7) m = {mx}x∈U , mx ∈Mx .

Lemma 6.8. Let M be a presheaf.
(1) The presheaf GSh(M) is a sheaf.
(2) There is a presheaf morphism

γM : M→ GSh(M).

(3) If the presheaf M is separated, then the morphism γM is injective.
(4) For every inclusion V ⊆ U of open sets, the morphism

Γ(U,GSh(M)) → Γ(V ,GSh(M))

is surjective.

A sheaf satisfying (4) above is called a flasque sheaf.

Proof. (1) Let U =
⋃

i∈I Vi be an open covering.
Let’s verify axiom (a) of Definition 3.3 for this covering. Let m, n ∈ Γ(U,GSh(M)) be

sections such that m|Vi = n|Vi in

Γ(Vi ,GSh(M)) =
∏
x∈Vi

Mx

for all i. This means that the stalks satisfy

mx = nx ∈Mx

for all x ∈ Vi . But for every x ∈ U there is some i such that x ∈ Vi . We see that

mx = nx ∈Mx

for all x ∈ U. By formula (6.7) we conclude that m = n.
Now we shall verify axiom (b) of Definition 3.3 for this covering. So we are given a

collection {mi}i∈I of sections
mi ∈ Γ(Vi ,GSh(M))

satisfying

(6.9) mi |Vi∩Vj = mj |Vi∩Vj

for all i, j ∈ I. Let’s write

mi = {mi,x}x∈Vi , mi,x ∈Mx .
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From (6.9) we see that mi,x = mj,x for all x ∈ Vi ∩Vj . Hence for every x ∈ U we can define

mx := mi,x ∈Mx

where i is some index such that x ∈ Vi , and this does not depend on the choice of i. We
obtain a section

m := {mx}x∈U ∈ Γ(U,GSh(M))

which satisfies

m|Vi = mi

for all i.

(2) For every open set U ⊆ X , a section m ∈ Γ(U,M) and a point x ∈ U let mx ∈Mx be
the image of m under the canonical homomorphism

Γ(U,M) →Mx .

We get a section

{mx}x∈U ∈ Γ(U,GSh(M)).

It is easy to see that this construction respects restrictions, so it is a morphism of presheaves.

(3) Exercise (see below).

(4) This is clear from fromula (6.6). �

Exercise 6.10. Prove item (3) above.

Definition 6.11. We call GSh(M) the Godement sheaf associated to M

Exercise 6.12. Show that

GSh : PC(X) → C(X)

is a functor, and

γ : Id→ GSh

is a morphism of functors from C(X) to itself.

Definition 6.13. Let M be a presheaf, and let U ⊆ X be an open set. A section

m ∈ Γ(U,GSh(M))

is called a geometric section if there is an open covering U =
⋃

i∈I Vi and sections mi ∈

Γ(Vi , (M)), such that for every x ∈ Vi the morphism

Γ(Vi , (M)) →Mx

sends mi 7→ mx .

See picture below.
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We refer to the data
(
{Vi}i∈I , {mi}i∈I

)
as evidence for the geometricity of m.

Lemma 6.14. Let M be a presheaf, let U ⊆ X be an open set, and let

m = {my}y∈U ∈ Γ(U,GSh(M)).

The following conditions are equivalent:
(i) m is a geometric section.
(ii) For every point x ∈ X there is an open set V s.t. x ∈ V ⊆ U, and a section

m′ ∈ Γ(V ,M), s.t. m′ 7→ my for every y ∈ V .

Exercise 6.15. Prove this lemma.
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Lecture 3, 31 Oct 2018

Lemma 6.16. Let M be a presheaf on X . The assignment

Sh(M) : U 7→
{
geometric sections of Γ(U,GSh(M))

}
is a subsheaf of GSh(M).

Proof. Step 1. Here we prove that Sh(M) is a subpresheaf of GSh(M). Namely that for
an inclusion V ⊆ U, the morphism

restV/U : Γ(U,GSh(M)) → Γ(V ,GSh(M))

sends geometric sections to geometric sections.
So let m ∈ Γ(U,GSh(M)) be a geometric section, and let m|V ∈ Γ(V ,GSh(M)) be its

restriction to V . Talk a point x ∈ V . By Lemma 6.14 there is evidence for m at x : an open
set W such that x ∈ W ⊆ U, and a section m′ ∈ Γ(W ,M) such that m′ 7→ my for all y ∈ W .
Then the pair (W ∩ V ,m′ |W∩V ) is evidence for m|V at x. We see that m|V is a geometric
section.

Step 2. Because Sh(M) is a subpresheaf of the sheaf GSh(M), it is automatically separated
(axiom (a) holds); see Exercise 5.7.

Now for axiom (b). Let U =
⋃

i∈I Vi be an open covering of an open set, and let
mi ∈ Γ(Vi , Sh(M)) be a collection of sections that agree on double intersections. Let
m ∈ Γ(U,GSh(M)) be the unique section such that m|Vi = mi . Like in step 1, we see that
m is a geometric section, namely m ∈ Γ(U, Sh(M)). �

Remark 6.17. Here is a useful heuristic for the inclusion of sheaves

Sh(M)) ⊆ GSh(M)).

We can pretend that the elements of Γ(U,GSh(M)) are "arbitrary functions" on U, and the
elements of Γ(U, Sh(M)) are the "continous functions".

Lemma 6.18. If M is a presheaf of abelian groups, then

Sh(M) ⊆ GSh(M)

is a subsheaf of abelian groups. Likewise for a presheaf of groups or rings.

Exercise 6.19. Prove this lemma.

Lemma 6.20. The assignment M 7→ Sh(M) is a functor PC(X) → C(X).

Exercise 6.21. Prove this lemma.

[comment: (date 181104) new lemma next – was part of proof of thm]

Lemma 6.22. There is a morphism

τ : Id→ Sh

of functors from PC(X) to itself, such that for every presheaf M the diagram such that the
diagram

M
τM //

γM

##

Sh(M)

⊆

��

GSh(M)
in PC(X) is commutative.
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Proof. Take an open set U. For each section m ∈ Γ(U,M), the section

γM(m) ∈ Γ(U,GSh(M))

is geometric section – the pair (U,m) is a tautological evidence. We define

τM(m) := γM(m) ∈ Γ(U, Sh(M)) ⊆ Γ(U,GSh(M)).

�

[comment: (date 181104) new lemma next – was Exer 5.36 in prev version]

Lemma 6.23. Let M be a presheaf on X and let x ∈ X be a point. Then the function on
stalks

(τM)x : Mx → Sh(M)x
induced by τM is bĳective.

Proof. Injectivity: For every open set U containing x there is a canonical morphism

Γ(U,GSh(M)) =
∏
y∈U

My →Mx .

So there are canonical morphisms

Γ(U,M)
Γ(U,τM)
−−−−−−−→ Γ(U, Sh(M)) → Γ(U,GSh(M)) →Mx .

Passing to the direct limit over all U 3 x we get a commutative diagram

Mx
(τM)x

//

id

��

Sh(M)x // GSh(M)x //Mx

Hence (τM)x in injective.
Surjectivity: Take a germ mx ∈ Sh(M)x . It is represented by some section m ∈

Γ(U, Sh(M)). This means that m ∈ Γ(U,GSh(M)) is a geometric section. So there
is evidence for m at x : there is an open set V and a section m′ ∈ Γ(V ,M) such that
x ∈ V ⊆ U and m′ = m|U . But then the germ m′x ∈Mx satisfies (τM)x(m′x) = mx . �

[comment: (date 181104) new lemma next ]

Lemma 6.24. Let M be a presheaf on X . The morphism of sheaves

GSh(τM) : GSh(M) → GSh(Sh(M))

is an isomorphism.

Proof. This is immediate from Lemma 6.23. �

[comment: (date 181104) many changes in proof below ]
[comment: (date 181107) new, improved (?) notation ]

A change of notation: for a "legitimate category" C, i.e. C = Set,Grp, Ab, Rng or Mod A
for a ring A, we write CX for the category of sheaves with values in C, and Cpre

X for the
category of presheaves with values in it.

Proof of Theorem 6.1. We will prove that the pair
(
Sh(M), τM

)
defined in Lemmas 6.16

and 6.22 has the required properties.
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Let φ : M→ N be a morphism to a sheaf N . We get the solid commutative diagram

(6.25) M
φ

//

τM

��

γM

��

N

τN

��

γN

��

Sh(M)
Sh(φ)

//

⊆

��

φ′

99

Sh(N )

⊆

��

GSh(M)
GSh(φ)

// GSh(N )

in Cpre
X . Because τN is an isomorphism (see Corollary 6.4), there is a unique morphism

φ′ : Sh(M) → N

that makes the diagram commutative, namely

(6.26) φ′ := τ−1
N ◦ Sh(φ).

It remains to verify the uniqueness of φ′. So let φ′′ : Sh(M) → N be any morphism in
Cpre
X s.t. φ′′ ◦ τM = φ. We need to prove that φ′′ = φ′. Define

ψ ′′ := τN ◦ φ′′ : Sh(M) → Sh(N ).

In view of (6.26), it suffices to prove that ψ ′′ = Sh(φ).
We have this commutative diagram

(6.27) M
φ

//

τM

��

N

τN�

��

Sh(M)
ψ′′

// Sh(N )

in Cpre
X . Passing to stalks at each point x ∈ X we get a commutative diagram

(6.28) Mx
φx

//

(τM)x �

��

Nx

(τN )x�

��

Sh(M)x
ψ′′x // Sh(N )x

in C. The right vertical arrow is an isomorphism by Lemma 6.23. The commutativity of
diagram (6.28), together with Lemma 6.24, say that

GSh(φ) = GSh(ψ ′′) : GSh(M) → GSh(N ).
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[comment: (181107) small change below ] We end up with this commutative diagram

(6.29) M
φ

//

τM

��

γM

��

N

τN�

��

γN

��

Sh(M)
ψ′′

//

⊆

��

Sh(N )

⊆

��

GSh(M)
GSh(φ)=GSh(ψ′′)

// GSh(N )

inCpre
X . Comparing the bottom square in this diagram to the bottom square in diagram (6.25),

and noting that Sh(N )� GSh(N ) is a monomorphism, we conclude that ψ ′′ = Sh(φ), as
required. �

Exercise 6.30. Let X be a topological space and M an abelian group (or a ring, etc.).
Define M to be the constant presheaf with values in M , namely

Γ(U,M) := M

for every open set U. Prove that the sheafification of M is

Sh(M) = MX ,

the constant sheaf with values in M .

Exercise 6.31. Consider X := � with its classical topology, let M := �X , the constant
sheaf with values in �.

(1) Let U ⊆ X be a connected open set (i.e. a nonempty open interval). Calculate
Γ(U,M) and Γ(U,GSh(M)). Conclude that

Γ(U,M)  Γ(U,GSh(M)).

(2) Conclude that for every point x ∈ X ,

Mx  GSh(M)x .

Exercise 6.32. Consider X := �̂p with its p-adic topology. This is a totally disconnected
compact Hausdorff topological space. Let A := �X , the constant sheaf with values in a
ring �. Calculate Γ(X ,A).

7. Gluing Sheaves and Morphisms between Them

As a prelude to this abstract theory, today in class we saw two "geometric" versions.
Let X be a topological space (the base), and let π : M → X be a map of spaces (a

continous function). We call (M , π) and X-space. A morphism of X-spaces f : M → N is
a map f such that πN ◦ f = πM . See Figures below.
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Given an open set U ⊆ X , a section of M over U is a map

σ : U → M

such that
π ◦ σ = idU .

I.e. σ is a map of X-spaces. We denote by Γ(U, M) the set of sections over of M over U.
See Figure:

The assignment
M : U 7→ Γ(U, M)

is a sheaf of sets on X . We call M the sheaf of sections of M .
A map f : M → N of X-spaces induces a morphism

φ : M→ N

on the sheaves of sections.
The first geometric tale was on gluing maps of X-spaces. We are given X-spaces

πM : M → X and πN : N → X , an open covering X = U =
⋃

i∈I Ui , and for every i a
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maps of X-spaces

fi : π−1
M (Ui) → π−1

N (Ui).

The condition is that

fi |π−1
M (Ui∩Uj )

= fj |π−1
M (Ui∩Uj )

.

Then there is a unique map of X-spaces

f : M → N

such that

f |π−1
M (Ui )

= fi

for all i. The reason: basic topology. See Figure below.

The second geometric tale today was on gluing X-spaces. We are given an open covering
X =

⋃
i∈I Ui , and for every i a Ui-space

πi : Mi → Ui ,

for every i, j an isomorphism

fi, j : π−1
i (Ui ∩Uj)

'
−→ π−1

j (Ui ∩Uj)

of X-spaces. The condition is that

fj,k |π−1
M (Ui∩Uj∩Uk )

◦ fi, j |π−1
M (Ui∩Uj∩Uk )

= fi,k |π−1
M (Ui∩Uj∩Uk )

for all i, j, k. Then there is an X-space π : M → X , with isomorphisms of X-spaces

fi : π−1(Ui)
'
−→ Mi

such that

fi, j ◦ fi |π−1(Ui∩Uj )
= fj |π−1(Ui∩Uj )

.

Again, the proof is just basic topology, with complicated bookkeeping. A partial figure is:
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Exercise 7.1. Draw a full picture of this gluing procedure, with these 3 open sets.

By the first tale the X-space M that we get here is unique up to a unique isomorphism.
The theorems that we want are abstract versions of the concrete geometric constructions

above.

Definition 7.2. LetM be a sheaf on a space X and letU ⊆ X be an open set. The restriction
of M to U is the sheaf M|U on U such that

Γ(M|U ,V) := Γ(M,V)

for every open set V ⊆ U, and
restM |U

W/V
:= restMW/V

for every W ⊆ V ⊆ U open.

Theorem 7.3 (Gluing Sheaf Morphisms). LetM andN be sheaves on a topological space
X , let X =

⋃
i∈I Ui be an open covering, and let

φi : M|Ui → N |Ui

be morphisms of sheaves satisfying the condition

φi |Ui∩Uj = φ j |Ui∩Uj : M|Ui∩Uj → N |Ui∩Uj .

Then there is a unique morphism of sheaves

φ : M→ N

such that
φ|Ui = φi : M|Ui → N |Ui .

Theorem 7.4 (Gluing Sheaves). Let X be a topological space, let X =
⋃

i∈I Ui be an open
covering, for every i let Mi be a sheaf on Ui , and for every i, j let

φi, j : Mi |Ui∩Uj

'
−→Mj |Ui∩Uj

be an isomorphism of sheaves on Ui ∩Uj . The condition is that

φ j,k |Ui∩Uj∩Uk
◦ φi, j |Ui∩Uj∩Uk

= φi,k |Ui∩Uj∩Uk

as isomorphisms
Mi |Ui∩Uj∩Uk

'
−→Mk |Ui∩Uj∩Uk

,

for all i, j, k.
Then there is a sheaf M on X , together with isomorphisms

φi : M|Ui

'
−→Mi ,
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such that
φi, j ◦ φi |Ui∩Uj = φ j |Ui∩Uj : M|Ui∩Uj

'
−→Mj |Ui∩Uj .

Moreover, that sheafM, with the collection of isomorphisms {φi}, is unique up to a unique
isomorphism.

We will give a full proof next week.
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Lecture 4, 7 Nov 2018

I owe you a nice example of the topological – or geometric – gluing.

Example 7.5. The base space is X = S1, the circle. We take the covering X =
⋃

i∈I Ui

with I = {0, 1, 2} shown below.

Let Z := [−1, 1] ⊆ �, the closed line segment. So X × Z is the ordinary, untwisted,
band. Let φ : Z → Z be the homeomorphism (or better yet, diffeomorphism) ψ(z) := −z.
(If you don’t know about manifolds with boundary and their diffeomorphisms, then take
take Z to be the open line segment.)
[comment: (21Nov2018) In the book [Lee] there is a good discussion of manifolds with
boundary.]

For i ∈ I we define the space (or differentiable manifold)

Mi := Ui × Z ,

with the obvious map
πi : Mi → Ui .

The gluing data (what will soon be called the 1-cochain...) {φi, j} is

φi, j := id× id : (Ui ∩Uj) × Z → (Ui ∩Uj) × Z

for (i, j) ∈ {(0, 1), (1, 2)}, and

φ0,2 := id×ψ : (U0 ∩U2) × Z → (U0 ∩U2) × Z .

These are extended (i.e. for j ≤ i) by φi, j := φ−1
j,i and φi,i := id.

Because the triple intersections are empty, the condition

φ j,k |Ui∩Uj∩Uk
◦ φi, j |Ui∩Uj∩Uk

= φi,k |Ui∩Uj∩Uk

is satisfied automatically.
The resulting X-space (or manifold over X) M is the Mobius band of course.
What invariant tells us that M is not homeomorphic (or diffeomorphic) to X × Z ?
The only one I know is orientability. It is easier to explain in the differentiable case (but

still not easy). Here is a sketchy explanation...
In the differentiable version, the manifold M has its tangent bundle TM . This is a rank 2

(real differentiable) vector bundle, that is glued by very similar formulas (the differentials
of the {φi, j}). Indeed, for every i the tangent bundle of Mi is trivial:

TMi � Mi ×�
2,

and in the fiber direction �2 we glue by (1,±1).

25 | file: notes-181219-d2



Course Notes | Amnon Yekutieli | 19 Dec 2018

For the ordinary band the tangent bundle is trivial:

T(X × Z) � X × Z ×�2.

But not so for M . Still, why?
Here is what we do.
First, in general, for a rank d vector bundle p : E → M on M we have its frame bundle

FE , that is a sheaf of sets on M . Over every open set V ⊆ M we define Γ(V ,FE ) to be the
set of vector bundle isomorphisms

(7.6) σ : V ×�d '−→ p−1(V).

This is a sheaf, and the set Γ(V ,FE ) is either empty (if E is not trivial above V), or it is
isomorphic as a set to

Γ(V ,V × GLd(�)) � HomMfld(V ,GLd(�)) � Γ(V ,GLd(OM )).

Here V ×GLd(�) is the bundle over V , and we look at sections of it; these are the same as
morphisms V → GLd(�) in the category Mfld of differentiable real manifolds; and also as
the sections on V of the sheaf of groups GLd(OM ), where OM is the sheaf of differentiable
manifolds. If there is one frame σ, then we get all other frames by the action ofV ×GLd(�)

on V ×�d .
[comment: (21Nov2018) some changes below]

Now the topological group GLd(�) has two connected components (according to the
determinant). Hence for a small connected open setV (small enough so that Γ(V ,FE ) , �)
the space p−1(V) has two connected components – see (7.6). Let conn(FE ) be the sheaf of
sets on M associated to the presheaf

V 7→ π0(Γ(V ,FE )),

the set of connected components. This is a locally constant sheaf of sets: it is locally
isomorphic to the constant sheaf of sets {1,−1}. (On small open sets V ⊆ M this is the
constant sheaf.)

There are two options: either the sheaf conn(FE ) is the constant sheaf, or it is not. This
is detected by the monodromy representation.

Suppose S is a locally constant sheaf of sets on a path connected space Y , that’s locally
isomorphic to the constant sheaf {1,−1}. Then there is a representation

ρS : π1(M) → G,

where G is the 2-element group, seen as permutations of {1,−1}. The monodromy ρS is
either trivial; and then S is the constant sheaf, and

Γ(Y , S) = {1,−1};

or ρS is not trivial, and then
Γ(Y , S) = �.

Getting back to Mobius, the explicit gluing that we made shows that ρS , for Y := M ,
E := TM and S := conn(FE ), is not trivial!

Geometrically this says that the manifold M is not orientable – an orientation of M is by
definition a global section of conn(FE ). So either there are two or none. An orientation is
what we need to integrate on a manifold (to get a consistent sign for the Jacobian matrix).

By “legitimate category”, or “very concrete category” we mean a category C that admits
infinite products, infinite direct limits, finite fiber products, and a faithful functor

F : C→ Set
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that respects the previous constructions. As we know, the categories Set, Grp, Ab, Rng and
Mod A for a ring A, all have these good properties. (Warning: F might not respect initial
objects and epimorphisms.)

We write CX for the category of sheaves with values in C, and Cpre
X for the category of

presheaves with values in it.
Another general fact on sheaves, related to Definition 5.4.

[comment: (21Nov2018) There was a mistake earlier in item (1) below. It is now correct.
The proof is given here: Proposition 7.18.]

Proposition 7.7. Let φ : M→ N be a morphism in CX .
(1) Assume C = Ab. The morphism φ is surjective iff it is a categorical epimorphism

in CX .
(2) φ is injective iff it is a categorical monomorphism in CX .

Exercise 7.8. Prove this proposition.

Before proceeding, I see that there is something we talked about in class that was not
typed in the notes. This is the equalizer diagram formulation of the sheaf axioms.

Recall that an equalizer sequence (also called a cartesian sequence) in a category C is a
diagram

C0
ε

−−−→ C1

δ0

−−−→
−−−→
δ1

C2

such that when we write it like this:

C0
ε //

ε

��

C1

δ0

��

C1
δ1

// C2

is a cartesian diagram, or synonymously a pullback diagram, or equivalently that

C0 � C1 ×C2 C1,

the fibered product. The pair (C0, ε) is somtimes called the kernel of C1

δ0

−−−→
−−−→
δ1

C2.

In Set we know that

ε : C0
'
−→

{
c ∈ C1 | δ

0(c) = δ1(c)
}
.

Hence it is the same when C is a very concrete category (the forgetful functor F repects
fiber products).

Exercise 7.9. Prove that the kernel ε is a monomorphism in C.

We have seen that:

Proposition 7.10. A presheaf M ∈ Cpre
X is a sheaf iff for every open set U ⊆ X and every

open covering U =
⋃

i∈I Vi the diagram

Γ(U,M)
ε

−−−→
∏
i∈I

Γ(Vi ,M)
δ0

−−−→
−−−→
δ1

∏
j,k∈I

Γ(Vj ∩ Vk ,M)

is an equalizer sequence in C.
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Here ε is the product on all i ∈ I of the restriction morphisms

restVi/U : Γ(U,M) → Γ(Vi ,M).

The morphism δ1 is the product on all i = j ∈ I of the product on all k ∈ I of

restVj∩Vk /Vj
: Γ(Vj ,M) → Γ(Vj ∩ Vk ,M).

And the morphism δ0 is the product on all i = k ∈ I of the product on all j ∈ I of

restVj∩Vk /Vk
: Γ(Vk ,M) → Γ(Vj ∩ Vk ,M).

We now provide proofs of the gluing theorems.

Proof of Theorem 7.3: gluing sheaf morphisms. Let V ⊆ X be an open set. Defining Vi :=
V ∩Ui , we get an open covering V =

⋃
i∈I Vi . Consider the following solid diagram

(7.11) Γ(V ,M) ε //

Γ(V,φ)

��

∏
i∈I Γ(Vi ,M)

δ0
//

δ1
//

{Γ(Vi,φi )}

��

∏
j,k∈I Γ(Vj ∩ Vk ,M)

{Γ(Vj∩Vk,φ j )} = {Γ(Vj∩Vk,φk )}

��

Γ(V ,N ) ε //
∏

i∈I Γ(Vi ,N )
δ0

//

δ1
//

∏
j,k∈I Γ(Vj ∩ Vk ,N )

in the category C. This is commutative, by the compatibilty condition

φ j |Uj∩Uk
= φk |Uj∩Uk

.

Therefore there is a unique morphism Γ(V , φ) on the dashed vertical arrow.
As the open set V varies, we obtain a morphism of sheaves

φ : M→ N .

If V ⊆ Ui for some index i, then Vi = V , and therefore by the commutativity of the left
square in (7.11) – and neglecting all indices other than i – we see that

Γ(V , φ) = Γ(Vi , φi).

This means that
φ|Ui = φi .

The uniqueness of this φ is also because it is the only morphism that makes (7.11)
commutative. �

Proof of Theorem 7.4: gluing sheaves. Recall that we are given an open covering X =⋃
i∈I Ui , a sheaf Mi on Ui , and an isomorphism

φi, j : Mi |Ui∩Uj

'
−→Mj |Ui∩Uj

for every i, j. The condition is that

φ j,k |Ui∩Uj∩Uk
◦ φi, j |Ui∩Uj∩Uk

= φi,k |Ui∩Uj∩Uk
.

Take a point x ∈ X . Let us denote by Mi,x the stalk of Mi at x. There is an object
Mx ∈ C, together with an isomorphism

φi,x : Mi,x
'
−→Mx

for every i, such that
φ j,k,x ◦ φi, j,x = φi,k,x .

Moreover, the object Mx , with its collection of isomorphisms {φi,x}, is unique (up to a
unique isomorphism).
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Let us define the sheaf M̂ on X as follows:

Γ(V , M̂) :=
∏
x∈V

Mx .

(This will eventually be the Godement sheaf of M.) On every Ui there is a morphism of
sheaves

φ̂i : Mi → M̂|Ui ,

and it gives rise to an isomorphism of sheaves

(7.12) GSh(Mi)
'
−→ M̂|Ui .

A section
{mx}x∈V ∈ Γ(V , M̂)

will be called geometric relative to the collection {Mi} if for every x ∈ V there is an open
setW s.t. x ∈ W ⊆ V ∩Ui for some i, and a section m ∈ Γ(W ,Mi), s.t. φi,y(m) = my ∈My

for all y ∈ W .
Now let M be the subpresheaf of M̂ defined as follows:

Γ(V ,M) ⊆ Γ(V , M̂)

is the subset of all geometric sections, in the relative sense as above. As we already know
from previous calculations, M is a subsheaf of M̂; and M̂ � GSh(M).

For every index i, the isomorphism (7.12) identifies Mi with M|Ui , as the subsheaves
of geometric sections of M̂|Ui . This is the isomorphism

φi : M|Ui

'
−→Mi

that we want. By construction these satisfy

φi, j ◦ φi |Ui∩Uj = φ j |Ui∩Uj .

The uniqueness (up to unique isomorphism) of M is a consequence of Theorem 7.3,
and is left as an exercise. �

Exercise 7.13. Finish the proof above.

29 | file: notes-181219-d2





Course Notes | Amnon Yekutieli | 19 Dec 2018

Lecture 5, 21 Nov 2018

[comment: (21Nov2018) (1) No lecture 14 Nov. (2) There are corrections above.]
I did not mean to introduce the next definition now, but it is needed for the proof of

Proposition 7.18 (the correction of Prop 7.7(1)).
Note that for M,N ∈ Abpre

X and an open set U ⊆ X the set of morphisms M|U → N |U
in Abpre

U is itself an abelian group. We denote it by

HomAbpre
U
(M|U ,N |U ).

Also recall that AbU (sheaves) is a full subcategory of Abpre
U (presehaves).

Definition 7.14. Let X be a topological space and let φ : M→ N be a homomorphism in
Abpre

X . The cokernel of φ is the presheaf

Cokerpre(φ) ∈ Abpre
X

defined by
Cokerpre(φ)(U) := Coker

(
Γ(U, φ) : Γ(U,M) → Γ(U,N )

)
.

Definition 7.15. Let X be a topological space and let φ : M→ N be a homomorphism in
AbX . The cokernel of φ is the sheaf

Coker(φ) := Sh(Cokerpre(φ)) ∈ AbX .

There is a canonical homomorphism

π : N → Coker(φ)

in AbX that’s induced from the homomorphism

N → Cokerpre(φ)

in Abpre
X .

Proposition 7.16. Let φ : M→ N and be a homomorphism in AbX .
(1) The canonical homomorphism π : N → Coker(φ) in AbX is surjective.
(2) The composition π ◦ φ is the zero homomorphism.
(3) Let ψ : N → P be a homomorphism in AbX such that ψ ◦ φ = 0. Then ψ factors

uniquely through Coker(φ). Namely there is a unique morphism

ψ̄ : Coker(φ) → P

in AbX such that
ψ = ψ̄ ◦ π.

(4) For every point x ∈ X the sequence

Mx
φx
−−→ Nx

πx
−−→ Coker(φ)x → 0

in Ab is exact. In other words, πx induces an isomorphism

Coker(φx)
'
−→ Coker(φ)x .

Exercise 7.17. Prove Proposition 7.16.

Recall that the trivial abelian group is denoted by 0. It is both the initial and terminal
object of the category Ab. Given a space X , let 0X ∈ AbX be the constant sheaf with values
in the group 0. This sheaf is both the initial and terminal object of the category AbX .

Proposition 7.18. Let φ : M→ N be a homomorphism in AbX . The following conditions
are equivalent:
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(i) φ is surjective (Definition 5.4).
(ii) φ is a categorical epimorphism in AbX .
(iii) The sheaf Coker(φ) is the constant sheaf 0X .

Proof.
(i)⇒ (ii): This is easy, and was done in class by Yotam.

(ii)⇒ (iii): Let P := Coker(φ). We consider these two homomorphisms in AbX :

ψ0, ψ1 : N → P ,

ψ0 := 0 and ψ1 := π. These both satisfy

ψi ◦ φ = 0.

But φ is a categorical epimorphism, so we must have ψ0 = ψ1. This means that π = 0.
According to Proposition 7.16(1) the homomorphism π is surjective. Hence P = 0X .

(iii)⇒ (i): We are given that Coker(φ) = 0X , so for every point x ∈ X the stalk is

Coker(φ)x = 0 ∈ Ab .

Using 7.16(4) we conclude that
φx : Mx −→ Nx

is surjective. Thus φ is a surjection of sheaves. �

8. Vector Bundles

We are going to discuss real vector bundles on spaces and manifolds. This will take us
a step closer to a modern understanding of geometry. Later we will use similar ideas for
schemes.

Convention 8.1. We shall work in one of the following categories:
• The category Top of topological spaces and continous maps between them. Here
� = �, the field of real numbers.
• The category Mfld of real differentiable manifolds and differentiable maps between
them, where by differentiable we mean of class C∞. Here � = �.
• The categoryVar of quasi-projective algebraic varieties over an algebraically closed
field �.

We shall denote by Sp any of these categories, and refer to an object of Sp as a space.

The category Sp has finite products. These products respect the forgetful functor

Sp→ Set .

Warning: the forgetful functor
Var→ Top

does not respect products. On the other hand, the forgetful functor

Mfld→ Top

does respect products.
In Top and Var we have fiber products: given f : Y → X and g : Z → X the fiber

product is the closed subset

(8.2) Y ×X Z = {(y, z) | f (y) = g(z)} ⊆ Y × Z

with the induced structure of a closed subspace.
Fiber products in Mfld are more delicate, because the closed subset in (8.2) is not a

submanifold in general.
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Recall that a map f : Y → X in Mfld is called a submersion if for every point y ∈ Y the
linear map on tangent spaces

d( f )y : Ty Y → T f (y) X

is surjective. (See [Lee].)

Example 8.3. The inclusion f : U → X of an open subset is a submersion in Mfld.

Exercise 8.4. Prove that if f : U → X is the inclusion of an open set in Sp, then for every
g : Z → X in Sp the fiber product exists, and it is

U ×X Z � g−1(U) ⊆ Z .

Example 8.5. A submersion f : Y → X in Mfld of relative dimension 0 (i.e. dim(Y ) =
dim(X)) is a local diffeomorphism.

Lemma 8.6. Given maps f : Y → X and g : Z → X in Mfld such that either f or g is a
submersion, the closed subset

{(y, z) | f (y) = g(z)} ⊆ Y × Z

is a submanifold. It is the categorical fiber product Y ×X Z in Mfld.

Exercise 8.7. Prove the lemma. (Hint: use the Implicit Function Theorem.)

Remark 8.8. From a contemporary point of view, Mfld is the wrong category. It is a relic
from decades ago, and it is “deficient”.

There actually is a theory of “differentiable spaces”, very recent, due to D. Joyce. It is
new and not many people are aware of it. The manifolds are the nonsingular objects in the
category of differentiable spaces.

Remark 8.9. What are the “manifolds” in Var ? These are the nonsingular varieties. They
have tangent spaces, and one can talk about submersions in Var. But these have another
name: smooth maps of varieties. Lemma 8.6 holds in Var. See [Har, Prop III.10.4].

A smooth map f of relative dimension 0 is called an étale map. I is usually not a local
isomorphism!

In algebraic geometry we also talk about smooth maps f : Y → X between singular
varieties.

If we are lucky (it is a matter of time) we will be able to talk about smooth maps between
schemes.

Next is a nonstandard definition.

Definition 8.10. A map Y → X in Sp is called Sp-fibered, and Y is called Sp-fibered over
X , if for every Z → X in Sp the fibered product Y ×X Z exists in Sp.

Thus when Sp = Top or Sp = Var this is an empty condition (all maps are Sp-fibered),
and when Sp = Mfld all submersions a fibered (by Lemma 8.6).

For every n ≥ 0 we have the affine n-dimensional space An(�). As a set it is �n. It is
viewed as an object of Sp, either as a topological space with the usual metric topology, or
as a differentiable manifold with the usual differentiable structure, or as an algebraic variety
with the Zariski topology with the usual algebro-geometric structure, as the case may be.

For n = 0, A0(�) is a single point, that we denote by 0. Note that A0(�) is the terminal
object of Sp.
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For n = 1, A1(�) is a commutative ring object in Sp. There are maps

(8.11)

add : A1(�) × A1(�) → A1(�), add(a, b) := a + b,

mult : A1(�) × A1(�) → A1(�), mult(a, b) := a ·b,

0 : A0(�) → A1(�), 0(0) := 0� ∈ �,

1 : A0(�) → A1(�), 1(0) := 1� ∈ �

in Sp that satisfy the axioms of a commutative ring. After applying the forgetful functor to
Set we recover the familiar operations of the ring �.

For other values of n ∈ � the space An(�) is an A1(�)-module in Sp, i.e. literally a
vector space. This just means that there are maps

(8.12)

add : An(�) × An(�) → An(�), add(v, w) := v + w ∈ �n,

mult : A1(�) × An(�) → An(�), mult(a, v) := a ·v ∈ �n,

0 : A0(�) → An(�), 0(0) := 0�n ∈ �n

in Sp that satisfy the axioms of a module (for the ring structure (8.11). After applying the
forgetful functor to Set we recover the familiar operations of the �-module �n.

The idea of a vector bundle is meant to provide a relative version of (8.12): a collection
of vector spaces that move – continously or smoothly or algebraically – over a base X .

Fixing a space X ∈ Sp (the base), we can talk about the category Sp/X of X-spaces,
or spaces over X . An object of Sp/X is a pair (Y , πY ) where πY : Y → X is a map in Sp,
called the structure map. A morphism

g : (Y , πY ) → (Z , πZ )

in Sp/X is a map g : Y → Z satisfying

πZ ◦ g = πY .

In a commutative diagram:

Y
g

//

πY
��

Z

πZ
��

X
We shall often keep πY implicit.

We need to know about finite products in Sp/X . These are just the fibered products in
Sp. To be precise:

(8.13) (Y , πY ) × (Z , πZ ) = (Y ×X Z , π),

where
Y ×X Z ⊆ X × Y

is the fibered product in Sp (if it exists); and

π(y, z) := πY (y) = πZ (z) ∈ X

for (y, z) ∈ Y ×X Z .
Thus in the cases Sp = Top and Sp = Var all finite products exist in Sp/X .
In the case Sp = Mfld, in many important instances at least one of the maps πY or πZ

will be a submersion, so the finite product will exist. Here is a typical good situation in this
case. Given any space Y0, consider the product

(8.14) Y := X × Y0
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Define

(8.15) πY : Y = X × Y0 → X

to be the projection on the first coordinate. This is a submersion, so Y is Sp-fibered over X .

Lemma 8.16. Let (U, πU ) ∈ Sp/X , let Y0 ∈ Sp, and let (Y , πY ) ∈ Sp/X be as in (8.14)
and (8.15).

(1) There is an isomorphism of sets

HomSp/X (U,Y ) = HomSp/X (U, X × Y0) � HomSp(U,Y0).

It is functorial in U and Y0.
(2) There is an isomorphism

U ×X Y � U × Y0

in Sp. It is functorial in U and Y0.

Exercise 8.17. Prove the lemma. Give explicit formulas for the isomorphisms.

Before approaching the vectors bundles, let’s talk about more general (and less struc-
tured) bundles.

Definition 8.18. Let X ∈ Sp. A fiber bundle over X is an object (Y , πY ) in Sp/X with this
property: there is a space Z , an open covering X =

⋃
i∈I Ui , and isomorphisms

φi : Ui × Z
'
−→ π−1

Y (Ui)

in Sp/Ui . The space Z is called the fiber, and the isomorphisms φi are called local
trivializations.

Example 8.19. TheMöbius band is a fiber bundle in Top (or, if we choose the open version,
in Mfld). The base is X = S1, and the fiber is Z = [−1, 1] (or Z = (−1, 1)).

Proposition 8.20. Let (Y , πY ) be a fiber bundle over X with fiber Z .
(1) If Sp = Mfld then πY is a submersion.
(2) The object (Y , πY ) ∈ Sp/X is Sp-fibered.
(3) For every point x ∈ X the fiber

π−1
Y (x) � {x} ×X Y

is an object of Sp, and it is isomorphic (noncanonically) to Z .

Exercise 8.21. Prove the proposition.
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Lecture 6, 28 Nov 2018

Recall that Sp is either Top, Mfld or Var, and correspondingly the field � is either �, �
or algebraically closed.

Last time we talked about the vector spaces An(�), that are A1(�)-modules in Sp. We
also talked about fiber bundles in Sp. Now we are going to combine these notions.

Definition 8.22. We fix a base X ∈ Sp. For every n ∈ � consider the X-space

(8.23) An(X) := X × An(�)

with structure map
πAn(X)(x, v) := x,

the projection on the first coordinate.

Of course A0(X) = X .
For n = 1, A1(X) is a commutative ring object in Sp/X . This structure is induced

from the commutative ring structure of A1(�) in formula (8.11). Here it is explicitly. As
mentioned above (in Prop 8.20(2)) the fiber product

A1(X) ×X A1(X) ⊆ A1(X) × A1(X)

exists in Sp. (In fact it is isomorphic to A2(X), but that’s not helpful here.) The points in
A1(X) are pairs

(
(x, a), (x, b)

)
with x ∈ X and a, b ∈ �. The operations are:

(8.24)

add : A1(X) ×X A1(X) → A1(X), add
(
(x, a), (x, b)

)
:= (x, a + b),

mult : A1(X) ×X A1(X) → A1(X), mult
(
(x, a), (x, b)

)
:= (x, a ·b),

0X : A0(X) → A1(X), 0(x) := (x, 0),

1X : A0(X) → A1(X), 1(x) := (x, 1).

These are maps in Sp/X .
For any value n ∈ �, the space An(X) is an A1(X)-module object in Sp/X . This

structure is induced from formula (8.12). Again in explicit terms: the fiber product

An(X) ×X An(X) ⊆ An(X) × An(X)

exists in Sp. The points in it are
(
(x, v), (x, w)

)
with x ∈ X and v, w ∈ �n. The operations

are:

(8.25)

add : An(X) ×X An(X) → An(X), add
(
(x, v), (x, w)

)
:= (x, v + w),

mult : A1(X) ×X An(X) → An(X), mult
(
(x, a), (x, v)

)
:= (x, a ·v),

0X : A0(X) → An(X), 0(x) := (x, 0).

The map 0X is called the zero section.

Definition 8.26. Let n be a natural number. The standard trivial rank n vector bundle over
X is the space

An(X) = X × An(�)

with the operations defined in (8.25).

Definition 8.27. Let X ∈ Sp and n ∈ �. A rank n vector bundle over X is an Sp-fibered
object (E , πE ) in Sp/X , with these maps

addE : E ×X E → E ,

multE : A1(X) ×X E → E ,
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Figure 1. A rank n vector bundle E over X

0E : X → E

in Sp/X that are called the operations. The conditions are:
(i) The operations make E into an A1(X)-module in Sp/X , i.e. the module axioms are

satisfied.
(ii) Local triviality: there is an open covering X =

⋃
i∈I Ui , and for every i an

isomorphism
φi : An(Ui)

'
−→ π−1

E (Ui)

of A1(Ui)-modules, i.e. an isomorphism in Sp/Ui that respects the operations.

See Figure 1.
Notice that for every point x ∈ X the fiber

(8.28) E(x) := π−1
E (x) � {x} ×X E

is isomorphic to An(�) as �-modules.

Example 8.29. Assume Sp = Mfld. Let X be an n-dimensional manifold, an object of
Mfld. The tangent bundle TX is a rank n vector bundle on X .

Exercise 8.30. If you don’t understand the example above, then read about it (in [Lee] or
another book) and write a proof.

Remark 8.31. This is an elaboration of Example 8.29. Unfortunately you won’t find this
material in [Lee], and probably not in any other textbook on differential geometry. It is
"extra material". We might do the algebraic version next semester (for schemes).

Let X be an n-dimensional differentiable manifold (so Sp = Mfld and � = �). The
tangent bundle is TX , and let TX be the sheaf of section of TX , i.e.

Γ(U, TX ) := Γ(U,TX) = HomSp/X (U,TX)

for every open set U ⊆ X . It is standard to refer to a section ∂ ∈ Γ(U,TX) as a vector field
on U.
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This is not mysterious, at least when X = An(�). Let t1, . . . , tn be the coordinate
functions. Then there are the constant vector fields

∂i :=
∂

∂ti
,

and every vector field ∂ can be written uniquely as

∂ =

n∑
i=1

fi ·∂i

with fi ∈ Γ(X ,OX ). Moreover, ∂ is a derivation of A := Γ(X ,OX ), as defined in the next
paragraph, and

fi = ∂(ti).

Suppose A is a commutative �-ring. A derivation of A (relative to �) is an �-linear
homomorphism

∂ : A→ A

satisfying the Leibniz rule
∂(a ·b) = ∂(a)·b + a ·∂(b).

The set of derivations of A is Der�(A).
This can be done for sheaves. Consider the sheaf of differentiable functions OX on X .

For an open set U ⊆ X we can look at derivations

∂ : OU → OU ,

namely �-linear sheaf homomorphisms on U that satisfy the Leibniz rule on every open
set U ′ ⊆ U (or equivalently, in all stalks at x ∈ U). These form an �-module

Der�(OU ) ⊆ Hom�X (OU ,OU ).

As U moves we get a sheaf Der�(OX ) such that

Γ(U,Der�(OX )) = Der�(OU ).

Theorem. There is a canonical isomorphism of sheaves of �-modules

Der�(OX ) � TX .

Proposition 8.32. Let X be a space in Sp, and let E , F be vector bundles on X , of ranks
m, n respectively.

(1) There is a vector bundle E ⊕ F on X , whose fibers are

(E ⊕ F)(x) = E(x) ⊕ F(x).

(2) There is a vector bundle E ⊗ F on X , whose fibers are

(E ⊗ F)(x) = E(x) ⊗� F(x).

(3) There is a vector bundle Hom(E , F) on X , whose fibers are

Hom(E , F)(x) = Hom�(E(x), F(x)).

(4) There is a vector bundle
∧k(E) on X , whose fibers are∧k(E)(x) =

∧k
�(E(x)),

the k-the exterior power, for 0 ≤ k ≤ m.
(5) There is a vector bundle Symk(E) on X , whose fibers are

Symk(E)(x) = Symk
�(E(x)),

the k-the symmetric power, for 0 ≤ k.
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Exercise 8.33. Prove this proposition. What are the ranks of the various vector bundles
there?

As a prelude to next week’s lecture, do the following exercise.

Exercise 8.34. Let E be a vector bundle over X , let U ⊆ X be an open set, and let

σ, τ : U → E

be sections, i.e.
σ, τ ∈ HomSp/X (U, E).

Then there is a unique section

σ + τ ∈ HomSp/X (U, E)

such that for every point x ∈ U we have

(σ + τ)(x) = σ(x) + τ(x) ∈ E(x).

(Hint: this is easy if you understand the definitions well.)
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Lecture 7, 5 Dec 2018

Last time we defined vector bundles. Recall that Sp is either Top, Mfld or Var, and
correspondingly the field � is either �, � or algebraically closed.

Definition 8.35. Let X be a space in Sp, and let E and F be vector bundles on X . A map
of vector bundles

φ : E → F

is a map φ in Sp/X that respects the operations add and mult.
We denote by Vec/X the category of vector bundles on X .

We could require φ to respect the zero sections, but that is a consequence of the operation
mult.

Note that the category Vec/X is deficient: given φ : E → F, there usually aren’t vector
bundles E ′ and F ′, and maps α : E ′ → E and β : F → F ′, such that in all fibers the
sequence of �-modules

0→ E ′(x)
α(x)
−−−→ E(x)

φ(x)
−−−→ F(x)

β(x)
−−−→ F ′(x) → 0

is exact.

Exercise 8.36. Find an example of the phenomenon above, and explain what goes wrong.
(See Proposition 9.14 for another point of view.)

This weakness of Vec/X is an important reason to work with sheaves, as we now do.

9. Ringed Spaces and Sheaves of Modules

We now take a break from vector bundles.

Definition 9.1. A ringed space is a pair (X ,OX ), where X is a topological space X , and
OX is a sheaf of commutative rings on X .

Every space X ∈ Sp, see Convention 8.1, is actually a ringed space.
• When Sp = Top, OX is the sheaf of continous �-valued functions.
• When Sp = Mfld, OX is the sheaf of differentiable �-valued functions.
• When Sp = Var, OX is the sheaf of algebraic �-valued functions.

In all these cases the formula for OX is this:

Γ(U,OX ) = HomSp(U,A1(�)),

and the ring structure comes from that of A1(�) in (8.11).

Definition 9.2. Let (X ,OX ) be a ringed space. A sheaf of OX -modules on X , or an
OX -module, is a sheaf of abelian groupsM on X , together with a structure of a Γ(U,OX )-
module on Γ(U,M) for every open set U ⊆ X , such that for every inclusion of open sets
V ⊆ U the homomorphism

restMV/U : Γ(U,M) → Γ(V ,M)

is Γ(U,OX )-linear.

Definition 9.3. Let (X ,OX ) be a ringed space, and let M and N be OX -modules. A
homomorphism of OX -modules from M to N is a homomorphism of sheaves of abelian
groups

φ : M→ N
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such that for every open set U ⊆ X the homomorphism

Γ(U, φ) : Γ(U,M) → Γ(U,N )

is Γ(U,OX )-linear.
The category of OX -modules is denoted by ModOX .

There are forgetful functors

ModOX → Mod�X → Mod�X = AbX .

Definition 9.4. A sequence of homomorphisms

· · · →Mi φi

−−→Mi+1 φi+1

−−−→Mi+1 → · · ·

in ModOX is called exact if for every point x ∈ X the sequence of homomorphisms

· · · →Mi
x

φi
x
−−→Mi+1

x

φi+1
x
−−−→Mi+1

x → · · ·

in ModOX,x is exact.

Example 9.5. Let φ : M→ N be a homomorphism in ModOX .
(1) φ is surjective iff

M
φ
−→ N → 0

is exact. Here 0 is the zero sheaf.
(2) φ is injective iff

0→M
φ
−→ N

is exact.

Exactness can be checked also in Mod�X or AbX .
In Definitions 7.14 and 7.15 we learned about the cokernel of a sheaf homomorphism

in AbX . It works also for homomorphisms in ModOX . Namely Coker(φ) is the sheaf
associated to the presheaf

Cokerpre : U 7→ Coker
(
Γ(U, φ) : Γ(U,M) → Γ(U,N )

)
.

Definition 9.6. Given a homomorphisms φ : M → N in ModOX , its kernel is the
OX -module Ker(φ) such that for every open set U

Γ(U,Ker(φ)) := Ker
(
Γ(U, φ) : Γ(U,M) → Γ(U,N )

)
.

Exercise 9.7.
(1) Verify that the sheaf Coker(φ) is an OX -module.
(2) Verify that Ker(φ) is a sheaf, and it is an OX -module.

Proposition 9.8. Given a homomorphism φ : M→ N in ModOX , the sequence

0→ Ker(φ) →M
φ
−→ N → Coker(φ) → 0

in ModOX is exact.

Proof. By definition for every open set U we have an exact sequence of abelian groups

(EU ) 0→ Γ(U,Ker(φ)) → Γ(U,M)
Γ(U,φ)
−−−−−→ Γ(U,N ) → Γ(U,Cokerpre(φ)) → 0.

Choose some point x ∈ X . Passing to the direct limit on all exact sequences EU , where U
is an open neighborhood of x, we get an exact sequence

(Ex) 0→ Ker(φ)x →Mx
φx
−−→ Nx → Coker(φ)x → 0.
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Here we are using the fact that the direct limit of a direct system of exact sequences is exact
(see below), and that

Cokerpre(φ)x → Coker(φ)x
is bijective. �

Theorem 9.9. Let {Ei}i∈I be a direct system of sequences of A-modules, and let

E := limi→ Ei .

If all the sequences Ei are exact, then so is E.

Exercise 9.10. Prove this theorem. (Unless you already know it.)

Exercise 9.11. State and prove the categorical properties of Ker and Coker inside ModOX .
(Cf. Prop 7.16(3).)

For an open set U ⊆ X there is a functor

RestU/X : ModOX → ModOX |U , M 7→M|U .

Definition 9.12. Let (X ,OX ) be a ringed space. A sheaf of OX -modules E on X is called
locally free of rank n, for some n ∈ �, if there is an open covering U = {Ui}i∈I of X , and
for every i there is an isomorphism

φi : O⊕nUi

'
−→ E |Ui

of OUi -modules. We say that the covering U trivializes E , and that the collection {φi}i∈I
is a trivialization of E on U .

Just like in module categories, an exact sequence

0→ L
φ
−→M

ψ
−→ N → 0

in ModOX is called split if there is a homomorphism τ : N →M such that ψ ◦ τ = idN .

Exercise 9.13. Suppose

(♥) 0→ L
φ
−→M

ψ
−→ N → 0

is a split exact sequence in ModOX . Show that

M � L ⊕ N .

Proposition 9.14. Let

(E) 0→ L
φ
−→M

ψ
−→ N → 0

be an exact sequence in ModOX . Assume that N is locally free of finite rank. Then (†) is
locally split; namely every point x ∈ X has an open neighborhoodU such that the sequence
of OU -modules

0→ L|U
φ
−→M|U

ψ
−→ N |U → 0

is split.

Exercise 9.15. Prove this proposition.

We now return to vector bundles.
Let X be a space and (Y , πY ) an X-space. For an open set U ⊆ X let us write

(9.16) Γ(U,Y ) := HomSp/X (U,Y ),

the set of sections σ : U → Y in Sp/X of πY : Y → X over U.
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Lemma 9.17. The assignment
U 7→ Γ(U,Y )

is a sheaf of sets on X . It is called the sheaf of sections of Y , and is denoted by ShSeX (Y ).

Exercise 9.18. Prove the lemma.

Proposition 9.19. Let X ∈ Sp. There is a canonical isomorphism of sheaves of rings
between OX and the sheaf ShSeX (A1(X)) of sections of the ring bundle A1(X).

Proof. Recall that
A1(X) = X × A1(�).

As we saw in Lemma 8.16(1), for an open set U ⊆ X there is an isomorphism

Γ(U,A1(X)) � HomSp(U,A1(�)).

And by definition
Γ(U,OX ) = HomSp(U,A1(�)).

We see that OX is the sheaf of sections of the bundle A1(X). The ring structure in both
cases comes from that of A1(�). �

Proposition 9.20. Let X ∈ Sp, and let (E , πE ) be a rank n vector bundle on X . Let
E := ShSeX (E), the sheaf of sections of E . Then E is a locally free OX -module of rank n.

Proof. The operations on E give E a structure of anOX -module. IfU = {Ui}i∈I is an open
covering that trivializes E , and {φi}i∈I is a trivialization, then this same data trivializes E ,
so E is locally free of rank n. �

Exercise 9.21. Let E be a vector bundle on X in Sp, with associated locally free sheaf E .
Show that for every point x ∈ X there is a canonical isomorphism of �-modules

E(x) � � ⊗OX,x Ex .

Here E(x) is the fiber at x, and Ex is the stalk at x, which is a module over the ring OX,x .

Definition 9.22. Let (X ,OX ) be a ringed space. The full subcategory of ModOX on the
finite rank locally free sheaves is denoted by LFModOX .

Theorem 9.23. Let X ∈ Sp. The assignment

ShSeX : Vec/X → LFModOX

is an equivalence of categories.

The proof will be given next week.
For the proof we will need the next general result.

Theorem 9.24. The following are equivalent for a functor F : C→ D.
(i) F is an equivalence.
(ii) F is fully faithful, and essentially surjective on objects.

Exercise 9.25. Prove the theorem. (Hint: use the axiom of choice to construct a quasi-
inverse of F.)
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Lecture 8, 12 Dec 2018

Today’s lecture turned out to be dedicated to reviewing earlier material and expanding
it.

Our first topic is solving Exercise 9.7 For this we introduce the category Modpre OX of
presheaves of OX -modules. It is defined just like in Definitions 9.2 and 9.3, except the
objects are presheaves.

Lemma 9.26. Given M ∈ Modpre OX , the sheaf of abelian groups Sh(M) has a unique
structure of OX -modules such that τM : M→ Sh(M) is OX -linear.

Proof. Take an open set U ⊆ X . An element f ∈ Γ(U,OX ) induces, by multiplication, a
homomorphism of presehaves

f ·(−) : M|U →M|U .

This is viewed as a morphism in Abpre
U . Applying the functor Sh we get a morphism

f ·(−) : Sh(M|U ) → Sh(M|U )

in AbU . But Sh(M|U ) = Sh(M)|U , and so we obtain a homomorphism of abelian groups

f ·(−) : Γ(U, Sh(M)) → Γ(U, Sh(M)).

A little checking shows that this gives Γ(U, Sh(M)) a structure of a Γ(U,OX )-module. As
U changes we get an OX -module structure on Sh(M). And it respects τM.

The uniqueness can be checked in stalks. �

Lemma 9.27. There is a functor

Sh : Modpre OX → ModOX

that respects the forgetful functor to AbX .

This is an immediate consequence of the previous lemma.
Now back to our exercise. We are given a homomorphism φ : M→ N in ModOX . On

every open set U we get an exact sequence

0→ Γ(U,Kerpre(φ)) → Γ(U,M)
φ
−→ Γ(U,N ) → Γ(U,Cokerpre(φ)) → 0.

This makes both Γ(U,Kerpre(φ)) and Γ(U,Cokerpre(φ)) into Γ(U,OX )-modules. As U
varies we get

Kerpre(φ),Cokerpre(φ)) ∈ Modpre OX .

But
Ker(φ) = Kerpre(φ),

so it is in ModOX . By Lemma 9.26 we know that

Ker(φ) ∈ ModOX .

This concludes Exercise 9.7.

– – –

Next we talked about Exercise 9.21. Here I forgot to tell you what is the �-ring
homomorphism OX,x → �. It comes from the next proposition.

Proposition 9.28. Let X ∈ Sp and x ∈ X .
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(1) There is a unique �-ring homomorphism

evx : OX,x → �

such that for every open neighborhood U of x and every function f ∈ Γ(U,OX ),
with germ fx ∈ OX,x , there is equality

evx( fx) = f (x) ∈ �.

(2) Let mx := Ker(evx). Then mx is the only maximal ideal of the ring OX,x , and
hence this is a local ring.

We sometimes write
k(x) := OX,x/mx ,

and call it the residue field of x. In our three geometries we always have k(x) = �; but
later, in schemes, this will usually not be the case.

Exercise 9.29. Prove this proposition.

Now I can again give you:

Exercise 9.30. Let X ∈ Sp, and let E be a vector bundle on X , with associated locally free
sheaf E . Show that for every point x ∈ X there is a canonical isomorphism of �-modules

E(x) � � ⊗OX,x Ex .

Here E(x) is the fiber at x, and Ex is the stalk at x, which is a module over the ring OX,x .
(I talked about this in class, but please write it in full.)

– – –

The last topic is about Exer 8.36. Here is a possible solution (perhaps the simplest
one). It is like what Yotam and Hezi wrote, but without the irrelevant stuff (the two extra
components).

Take X := A1(�) ∈ Sp and

E = F := A1(X) = X × A1(�) = A1(�) × A1(�).

A point in E is a pair (x, e), where x, e ∈ �. The projection is πE : E → X , πE (x, e) = x.
Likewise for F. The vector bundle map we choose is

φ : E → F, φ(x, e) := (x, x ·e).

If x = 0 then in the fiber the homomorphism E(x) → F(x) is 0. If x , 0 then the
homomorphism E(x) → F(x) is bijective. We see that the kernels and cokernels have
different ranks as x changes (either 0 or 1). If there were vector bundles E ′ and F ′, with
maps α : E ′→ E and β : F → F ′, such that the sequence

0→ E ′(x)
α
−→ E(x)

φ
−→ F(x)

β
−→ F ′(x) → 0

is exact for every x, then the ranks would be constant.
Let’s now be smarter, and analyze this situation using sheaves. The sheaves of sections

of E and F are E and F respectively. The homomorphism φ : E → F in ModOX has a
kernel and a cokernel, say K := Ker(φ) and C := Coker(φ). They sit in this exact sequence

(9.31) 0→ K
α
−→ E

φ
−→ F

β
−→ C → 0

in ModOX . We can calculate these sheaves.
Let us introduce the coordinate function

t : A1(�) = X → �,
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which is nothing but the identity of � is disguise, i.e. t(x) = x. But it will be good to have
notation for it, as a global section of OX . Indeed, as a homomorphism of OX -modules,

φ : E = OX → F = OX

is multiplication by t.

Claim 1. The homomorphism φ is injective (so K = 0). Let’s see why. Take a point x ∈ X .
To prove that

φx : Ex = OX,x → Fx = OX,x

is injective is the same as to prove that the germ tx ∈ OX,x is not a zero-divisor. There
are two cases. First assume x , z, where z is the origin (i.e. t(z) = 0). In this case tx is
invertible in OX,x , so a fortiori it is not a zero-divisor.

Now take x = z. Here tz ∈ mz , so it is not invertible. Let fz ∈ OX,z be a germ, and
assume that tz · fz = 0 in OX,z . We will show that fz = 0. Now fz has some representative
f ∈ Γ(U,OX ) on a neighborhood U of z, and fz ·tz = 0 means that on some smaller
neighborhood V of z we have t |V · f |V = 0 in Γ(V ,OX ). So t(y)· f (y) = 0 for all y ∈ V .
But t(y) , 0 for all y ∈ V − {z}, so f (y) = 0 for all y ∈ V − {z}. By continuity we get
f (z) = 0 too. So f = 0 in Γ(V ,OX ), and thus fz = 0 in the stalk.

Claim 2. The sheaf C is supported on the closed set Z := {z}, so it is a "skyscraper sheaf".
Indeed, by the calculations above for every x there is a short exact sequence

0→ Ex = OX,x
tx ·(−)
−−−−−→ Fx = OX,x → Cx → 0.

So Cx = 0 if x , z, and
Cz = OX,z/(tz) , 0.

The actual structure of the stalk Cx is clear only when Sp = Var. In this case the element tz
generates the maximal ideal mz , so Cz = k(z) = �. But in the other geometries there are
rapidly decaying functions inmz , like exp(−t−2), that are not divisible by t; and hence Cz is
bigger.

From the two claims we see that for every x ∈ X − {z} there is an exact sequence

0→ Ex
tx ·(−)
−−−−−→ Fx → 0.

Passing to the fibers, i.e. tensoring with k(x) = �, we get an exact sequence

0→ E(x)
t(x) ·(−)
−−−−−−→ F(x) → 0.

Just as expected.
But for x = z something interesting happens. We have the short exact sequence of

OX,z-modules

0→ Ez
tz ·(−)
−−−−→ Fz → Cz → 0.

Now the functor k(z)⊗OX,z (−) is right exact, so we get this exact sequence of k(z)-modules:

k(z) ⊗OX,z Ez
t(z) ·(−)
−−−−−−→ k(z) ⊗OX,z Ez → k(z) ⊗OX,z Cz → 0.

To close it up to an exact sequence we use the long exact sequence of the left derived functor
Tor, plus the fact that

TorOX,z

1 (k(z),Fz) = 0.
We obtain this exact sequence of k(z)-modules:
(9.32)

0→ TorOX,z

1 (k(z), Cz) → k(z) ⊗OX,z Ez
t(z) ·(−)
−−−−−−→ k(z) ⊗OX,z Ez → k(z) ⊗OX,z Cz → 0.

We need to figure out what are TorOX,z

1 (k(z), Cz) and k(z) ⊗OX,z Cz .
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But we already know that
k(z) ⊗OX,z Ez � k(z)

and
k(z) ⊗OX,z Fz � k(z).

Also t(z) = 0. We conclude that

k(z) ⊗OX,z Cz � k(z)

and
TorOX,z

1 (k(z), Cz) � k(z).
Thus (9.32) becomes this exact sequence

0→ k(z)
�
−→ k(z)

0
−→ k(z)

�
−→ k(z) → 0.

This agrees with what we saw in the more simplistic discussion above, but now we under-
stand where the first k(z) comes from: it is the value of a derived functor.
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Lecture 9, 19 Dec 2018

This lecture will start with a couple of general constructions on ringed spaces. After
that we’ll talk about homework.

Proposition 9.33. Let (X ,OX ) be a ringed space, and let M,N ∈ ModOX . There is an
OX -module HomOX (M,N ) such that

Γ(U,HomOX (M,N )) = HomModOU
(M|U ,N |U )

for every open set U ⊆ X .

Exercise 9.34. Prove Proposition 9.33.

It is convenient, and customary, to write

HomX (M,N ) := HomModOX
(M,N )

and
HomX (M,N ) := HomOX (M,N ).

Definition 9.35. Let (X ,OX ) be a ringed space. GivenM,N ∈ ModOX we letM⊗OX N
be the OX -module associated to the presheaf

U 7→ Γ(U,M) ⊗Γ(U,OX ) Γ(U,N ).

Exercise 9.36. In the setting of the definition above:
(1) Prove that for every point x ∈ X there is a canonical isomorphism ofOX,x-modules

(M ⊗OX N )x � Mx ⊗OX,x Nx .

(2) Show that is M and N are locally free OX -modules then so is M ⊗OX N .

Exercise 9.37. Let (X ,OX ) be a ringed space over�, and let M be an OX -module. Prove
that M is a free OX -module of rank r iff

M � OX ⊗�X MX ,

where M is a free �-module of rank r , and MX is the associated constant sheaf.

The next exercisees were in an email last week.

Exercise 9.38. Find an example of a ringed space (X ,OX ), and a short exact sequence E
in ModOX consisting of locally free sheaves, that is not split.

Exercise 9.39. Prove that when (X ,OX ) is a compact manifold in Mfld, then every short
exact sequence of locally free sheaves is split. (Hint: partitions of unity.) (This also works
for (X ,OX ) in Top, when X is a compact metric space.)

The next example is a solution of Exer 9.38.

Example 9.40. Here is an example of a short exact sequence

(E) 0→ L
φ
−→M

ψ
−→ N → 0

of locally free sheaves that is not globally split. This is in the setting of Sp = Var. The
example will also take us on a tour into algebraic geometry.

The variety X is the projective line P1(�). The homogeneous coordinates are t0, t1. Let

U0 := {t0 , 0} = {(1, λ) | λ ∈ �} ⊆ P1(�)

and
U1 := {t1 , 0} = {(µ, 1) | µ ∈ �} ⊆ P1(�).
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These are affine open sets, and
U0 ∪U1 = P1(�).

Consider the rational function
t := t1/t0.

It has a zero of order 1 at the origin

x0 = (1, 0) ∈ U0

and a pole of order 1 at infinity
x∞ = (0, 1) ∈ U1.

At all other points t does not have a zero or a pole.
The rings of functions on the important affine open sets are

Γ(U0,OX ) = �[t],

Γ(U1,OX ) = �[t−1],

and
Γ(U0 ∩U1,OX ) = �[t, t−1].

The function field of X is the field

k(X) = �(t).

For every nonempty affine open set U ⊆ X the field k(X) is the field of fractions of the
integral domain Γ(U,OX ).

Let k(X)× be the set of nonzero elements of k(X), i.e. its multiplicative group. For a
rational function f ∈ k(X)× and a point x ∈ X we write

(9.41) ordx( f ) := order of vanishing of the function f at the point x .

Thus ordx( f ) > 0 if f has a zero at x, and ordx( f ) < 0 if f has a pole at x.
Note that

(9.42) OX,x =
{

f ∈ k(X)× | ordx( f ) ≥ 0
}
∪ {0} ⊆ k(X)

and

(9.43) mx =
{

f ∈ k(X)× | ordx( f ) > 0
}
∪ {0} ⊆ k(X).

We can consider k(X) as a constant sheaf of rings on X , and then

OX ⊆ k(X).

This inclusion allows the following description: every nonempty open set U ⊆ X we have

(9.44)
Γ(U,OX ) =

{
f ∈ k(X)× | f has no poles in U

}
∪ {0}

=
⋂
x∈U

OX,x .

For a nonzero rational function f and a subset U ⊆ X we define the divisor to be the
element

(9.45) divU ( f ) :=
∑
x∈U

ordx( f )· x ∈
⊕
x∈U

� · x = Ffin(U,�).

In the free �-module Ffin(U,�) we write d ≥ e if d(x) ≥ e(x) for all x ∈ U. Thus (9.44)
can be rewriten as

Γ(U,OX ) =
{

f ∈ k(X)× | divU ( f ) ≥ 0
}
∪ {0}.

For V ⊆ U we have the restriction homomorphism:

Ffin(U,�) → Ffin(V ,�), e 7→ e|V .
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For every j ∈ � we define the subsheaf O( j) ⊆ k(X) as follows:

(9.46) Γ(U,O( j)) :=
{

f ∈ k(X)× | divU ( f ) ≥ (− j · x∞)|U
}
∪ {0}.

This means that a nonzero rational function f belongs to Γ(U,O( j)) if these conditions
hold:

• f has no poles in U − {x∞}.
• If x∞ ∈ U, then f must vanish to order ≥ − j at x∞. I.e. a pole of order at most j if

j ≥ 0, and a zero of order at least − j if j < 0.
This is a locally free OX -module. In fact,

(9.47) O( j)|U0 = OX |U0 ⊆ k(X)

and

(9.48) O( j)|U1 = OX |U1 ·t
j ⊆ k(X).

It is clear that there are inclusions of OX -modules

O( j) ⊆ O( j + 1) ⊆ · · · k(X).

This means that multiplication by the rational function 1 ∈ k(X) belongs to the �-module

HomX (O( j),O( j + 1)).

In fact:

(9.49) HomX (O( j),O( j + 1)) = (� ·1) ⊕ (� ·t).

We can finally exhibit the exact sequence E in ModOX . It is this:

(E) 0→ OX (−2)

[
−1
t

]
·(−)

−−−−−−−→ OX (−1)⊕2 [ t 1 ] ·(−)
−−−−−−−→ OX → 0.

Here we view the direct sums as column modules, and they are acted upon from the left by
matrices of morphisms, using formula (9.49).

Exercise 9.50. This exercise is an elaboration of the last example.
(1) Explain how X = P1(�) is the gluing of the ringed spaces (U0,OU0 ) and (U1,OU1 ).
(2) Prove formula (9.44).
(3) Prove that (9.46) defines an OX -submodule of k(X).
(4) Prove (9.47) and (9.48). Exhibit the gluing isomorphism for O( j) on U0 ∩U1.
(5) Find a �-basis for Γ(X ,O( j)). (Hint: you should get

rank�(Γ(X ,O( j))) = j + 1

for j ≥ 0, and
rank�(Γ(X ,O( j))) = 0

for j < 0.)
(6) Verify formulas (9.47), (9.48) and (9.49).
(7) Show that

O( j) ⊗OX O(k) � O( j + k)
and

HomX (O( j),O(k)) � O(k − j).
(8) Verify that E is indeed an exact sequence. Do this by writing out E|Ui , for i = 0, 1,

explicity as a sequence of free modules over the ring Γ(Ui ,OX ), and show that
E|Ui is split exact.

(9) Use (5) to prove that E is not split in ModOX .

– – –
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Here is a complement on derivations, a follow up to Rem 8.31.

Example 9.51. Take Sp = Mfld. In Rem 8.31 we said that for a manifold X , the sheaf of
sections of the tangent bundle TX is the sheaf TX of derivations of OX .

When considered as a sheaf of �X -modules, the sheaf TX has a Lie algebra structure.
Namely for every open set U the �-module Γ(U, TX ) is a Lie algebra, and the Lie brackets
respect restriction to open sets. The formula is quite easy – see Exer 9.52 below.

Suppose G is a group object in Mfld. I.e. G is a Lie group. The identity element is
e ∈ G. The tanget space TeG is called the Lie algebra of G, with notation g. Let’s see how
g gets a Lie algebra structure.

The tangent sheaf TG is trivial. In fact there are two (in general distinct) trivializations
of it. The group G acts on Γ(G, TG) by left translations, and we denote by Γ(G, TG)G the
�-module of invariant sections, namely the left invariant vector fields on G. The canonical
homomorphism

Γ(G, TG) → TG,e → � ⊗OG,e TG,e � TeG = g

induces a bijection
Γ(G, TG)G

'
−→ g.

In this way we get an embedding

g� Γ(G, TG)

that can be viewed as an embedding of sheaves

gG � TG
where gG is the constant sheaf g on G. It turns out that the induced OG-module homomor-
phism

OG ⊗� gG → TG
is an isomorphism. This shows that TG is a freeOG-module (see Exer 9.37). A calculation
shows that the subsheaf gG of TG is closed under the Lie bracket. Under the canonical
isomorphism

g � (gG)e

there is a Lie algebra structure on g.
The other option is to look at right invariant vector fields on G.

Exercise 9.52. Now (X ,OX ) is a ringed space over �, for some commutative ring �.
By this we mean that OX is a sheaf of �-rings, or in other words, there is a given ring
homomorphism �X → OX . Consider the sheaf of rings End�X (OX ).

(1) Suppose
φ, ψ ∈ Γ(U, End�X (OX ))

are derivations of OU = OX |U , for some open set U. Show that

[φ, ψ] := φ ◦ ψ − ψ ◦ φ

is also a derivation of OU .
(2) Conclude that Der�(OX ) is a sheaf of Lie algebras on X .
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