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comment: Start of Lecture 11, 3 Jan 2018.

1. Noether Normalization

Recall that all rings are commutative, unless explicitly stated otherwise.
The letters t and s will usually refer to variables. Given a nonzero ring A, and a

finite sequence of distinct variables t := (t1, . . . , tn), we use the notation
A[t] := A[t1, . . . , tn]

for the polynomial ring over A in these variables.

Definition 1.1. Let A→ B be a ring homomorphism, and let b = (b1, . . . , bn) be a
sequence of elements of B. We say that this sequence is algebraically independent
over A if the A-ring homomorphism

fb : A[t] → B, ti 7→ bi,

from the polynomial ring in the sequence of variables t = (t1, . . . , tn), is injective.

A ring homomorphism fb : A[t] → B as above can be understood as substitution
or evaluation. A polynomial p(t) ∈ A[t] is sent by the ring homomorphism fb to
the element

p(b) = p(b1, . . . , bn) := fb(p(t)) ∈ B.

In an explicit formula it looks like this: if

p(t) =
∑

i1,...,in ∈N
ai1,...,in ·t

i1
1 · · · t

in
n ∈ A[t],
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with coefficients ai1,...,in ∈ A, all but finitely many of them zero, then

p(b) =
∑

i1,...,in ∈N
ai1,...,in ·b

i1
1 · · · b

in
n ∈ B.

Using the substitution notation, the sequence b in B is algebraically independent
over A iff it does not satisfy a nontrivial polynomial equation over A, namely for
every nonzero p(t) ∈ A[t] the substitution p(b) ∈ B is nonzero.

The substitution notation can also be used to denote the image of the A-ring
homomorphism fb : A[t] → B, which is also the A-subring of B generated by the
sequence b; the notation for this subring is A[b].

Definition 1.2. Let f : A → B be a ring homomorphism. We call f a finite
homomorphism, and we say that B is a finite A-ring, if f makes B into a finitely
generated A-module.

This should not be confused with a finitely generated A-ring.

Example 1.3. The polynomial ring B := A[t], in a single variable t over a nonzero
ring A, is a finitely generated A-ring, but it is not a finite A-ring, since as an
A-module B is free of infinite rank.

Proposition 1.4. Let f : A → B and g : B → C be finite ring homomorphisms.
Then g ◦ f : A→ C is a finite ring homomorphism.

Exercise 1.5. Prove the proposition above.

Let A be a nonzero ring. Consider a nonzero polynomial

p(t) =
m∑
i=0

ai ·ti ∈ A[t]

of degree m ≥ 1 in a single variable t (this means that am , 0). Recall that p(t) is
called monic if its leading coefficient is am = 1. Thus

(1.6) p(t) = tm +
m−1∑
i=0

ai ·ti .

Definition 1.7. Let f : A→ B be a ring homomorphism.
(1) An element b ∈ B is said to be integral over A if there is a monic polynomial

p(t) ∈ A[t] such that p(b) = 0.
(2) B is called an integral A-ring if all elements b ∈ B are integral over A.

Theorem 1.8. Let f : A → B be a ring homomorphism. The following two
conditions are equivalent:

(i) B is a finite A-ring.
(ii) B is a finitely generated integral A-ring.

We won’t prove this theorem, nor will we use it (except for the special easy case
in the lemma below). The proof of the theorem relies on the “determinant trick”,
an enhanced version of the Cayley-Hamilton Theorem; see [AlKl, Section 10].
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Lemma 1.9. Let f : A→ B be a ring homomorphism, and assume B = A[b] for
some element b ∈ B that is integral over A. Then f is a finite ring homomorphism.

Proof. Suppose p(b) = 0 for the monic polynomial p(t) of degree m ≥ 1 from
equation (1.6). Then

bm =
m−1∑
i=0
(−ai)·bi,

so B is generated as an A-module by 1, b, . . . , bm−1. �

Let A be a nonzero ring, and let B := A[t] = A[t1, . . . , tn] be the polynomial
ring in n variables. The canonical ring homomorphism A→ B is injective, and we
identify A with its image in B. The elements of A are called constant polynomials.
In case n = 1, and writing t := t1, a constant polynomial b(t) is either the zero
polynomial, or it has degree 0.

Here is a crucial lemma, due toM. Nagata (1962; see [Nag, Section 14] or [Lang,
Section VIII.2]). It is a modification of the original proof by E. Noether (1926,
[Noet]).

Lemma 1.10. Let k be a field, let B := k[t] = k[t1, . . . , tn] be the polynomial ring
in n ≥ 1 variables, and let b1 = b1(t) ∈ B be a nonconstant polynomial. Then there
exist elements b2, . . . , bn ∈ B such that B is finite over the subring k[b1, . . . , bn].

The lemma asserts that the ring homomorphism
k[s] = k[s1, . . . , sn] → B = k[t], si 7→ bi,

where s is another sequence of variables, is finite.

Proof. Let us write the polynomial b1(t) explicitly:
(1.11) b1(t) =

∑
i∈Nn

λi · t i

where i = (i1, . . . , in) ∈ Nn is a multi-index, λi ∈ k and t i := ti11 · · · · t
in
n ∈ B. Define

I to be the support of b1, when it is viewed as a function b1 : Nn → k; namely
I := {i ∈ Nn | λi , 0}.

This is a finite set of course; and it is nonempty because b1(t) is a nonzero poly-
nomial. Moreover, I contains some multi-index i , (0, . . . , 0), because b1(t) is a
nonconstant polynomial.

Choose a natural number e large enough so that
e > sup {i1, . . . , in}

for every multi-index i ∈ I. In particular, e > 1. Consider the function
ε : I → N, ε(i) := i1 + i2 ·e + · · · + in ·en−1.

Thus i is the base e expansion of the natural number ε(i). It follows that the function
ε is injective. Define imax ∈ I to be the multi-index for which the function ε attains
its maximum, and let εmax := ε(imax) ∈ N and λmax := λ(imax) ∈ k. Note that
λmax , 0, εmax > 0 and imax , (0, . . . , 0).
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For i = 2, . . . , n define

(1.12) bi(t) := ti − te
i−1

1 ∈ k[t] = B.

Thus

(1.13) ti = bi + te
i−1

1 for all i ≥ 2.

For every multi-index i ∈ I we have

t i = ti11 ·t
i2
2 · · · · t

in
n = ti11 ·

(
b2 + te1

) i2 · · · · (bn + te
n−1

1
) in

in k[t] = B. Expanding this expression by powers of t1 we obtain

(1.14)

t i = ti1+i2 ·e+· · ·+in ·e
n−1

1 + (lower degree terms in t1)

= tε (i)1 +

ε (i−1)∑
j=0

ci, j(b2, . . . , bn)·t j1

where
ci, j(s2, . . . , sn) ∈ k[s2, . . . , sn]

are polynomials in a new sequence of variables s = (s1, s2, . . . , sn), and in (1.14)
we substitute si 7→ bi for i ≥ 2. Therefore, by combining (1.11) and (1.14), we get

(1.15) b1(t) =
∑
i∈I

λi · t i = λmax ·tεmax
1 +

εmax−1∑
j=0

cj(b2, . . . , bn)·t j1

in k[t] = B, where

(1.16) cj(s2, . . . , sn) :=
∑
i∈I

λi ·ci, j(s2, . . . , sn) ∈ k[s2, . . . , sn].

Define the ring

(1.17) A := k[b1, . . . , bn] ⊆ k[t] = B

and the polynomial

(1.18) q(s1) := sεmax
1 +

(∑εmax−1

j=0
λ−1

max ·cj(b2, . . . , bn)·s j1
)
− λ−1

max ·b1 ∈ A[s1].

Notice that q(s1) is a monic polynomial in the variable s1, of degree εmax, with
coefficients in the ring A. By formulas (1.14), (1.15) and (1.16) the substitution
s1 7→ t1 gives q(t1) = 0 in B. Therefore the element t1 ∈ B is integral over the ring
A. By Lemma 1.9 the subring A[t1] ⊆ B is finitely generated as an A-module.

Finally, by formulas (1.17) and (1.13), we have

A[t1] = k[b1, . . . , bn, t1] = k[t1, . . . , tn] = B.

So B is finite over the subring A. �

comment: Start of Lecture 12, 10 Jan 2018.
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Theorem 1.19 (Noether Normalization). Let k be a field, and let A be a nonzero
finitely generated k-ring. Then there exists a sequence a = (a1, . . . , an) of elements
of A with these properties:

. The sequence a is algebraically independent over k.

. A is finite over the subring k[a].

Proof. Because A is a finitely generated k-ring, there exist finite k-ring homomor-
phisms

f : k[t] = k[t1, . . . , tn] → A

from polynomial rings in n variables, for various n ∈ N; some of these homomor-
phisms are even surjections. Let us choose such a finite homomorphism f with
minimal number of variables n. We will prove that this f is injective. Then the
sequence a = (a1, . . . , an), with ai := f (ti) ∈ A, will have the required properties.

Let us write B := k[t] = k[t1, . . . , tn], and b := Ker( f ) ⊆ B. We need to prove
that the ideal b = 0. The proof is by contraposition: we shall assume that b , 0,
and arrive at a contradiction.

Take a nonzero element b1 ∈ b. The polynomial b1 is nonconstant, because
otherwise b1 ∈ k×, and then b = B and A = 0, which is false.

According to Lemma 1.10 there are elements b2, . . . , bn ∈ B, such that the ring
homomorphism

g : k[s] = k[s1, . . . , sn] → B = k[t], si 7→ bi,

is finite. Here s = (s1, . . . , sn) is a new sequence of variables. Consider the k-ring
homomorphism

f ◦ g : k[s] → A.

It is a finite ring homomorphism, and ( f ◦ g)(s1) = f (b1) = 0. Define

ai := ( f ◦ g)(si) = f (bi) ∈ A;

so a1 = 0.
Let

h : k[s2, . . . , sn] → A

be the the restriction of f ◦ g to this subring of k[s], which is a polynomial ring
over k in n − 1 variables. The image of h in A is

Im(h) = k[a2, . . . , an] = k[a1, a2, . . . , an] = Im( f ◦ g).

Because f ◦ g is a finite ring homomorphism, so is h. But this contradicts the
minimality of n. �

2. Transcendence Degree

In this section we recall without proofs some facts on field extensions.

Exercise 2.1. Read about transcendence degree. Some sources are: [Art], [Lang]
or [Jac].
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A ring homomorphism f : K → L between fields is called a field extension. Of
course f is an injection. Let’s fix such a field extension.

An element b ∈ L is called algebraic over K if it satisfies some nonzero polyno-
mial equation over K; namely there is a nonzero polynomial p(t) ∈ K[t] such that
p(b) = 0. If b is not algebraic over K then it is called transcendental over K . Being
transcendental is the same as being algebraically independent (Definition 1.1 with
n = 1, A = K and B = L). It is easy to see that b is algebraic over K iff it is integral
over K .

We say that L is an algebraic extension of K if every b ∈ L is algebraic over K .
This is equivalent to the condition that

L =
⋃
i∈I

Li,

where I is an indexing set (possibly infinite), and each Li is a finite field extension
of K .

Definition 2.2. A transcendence basis of L overK is a collection {bi}i∈I of elements
of L such that:

• The collection {bi}i∈I is algebraically independent over K; i.e. for every
finite sequence of distinct indices (i1, . . . , in) in I, the sequence (bi1, . . . , bin )
in L is algebraically independent in the sense of Definition 1.1.
• L is an algebraic extension of the subfield K({bi}i∈I ) generated by this
collection of elements and K .

Theorem 2.3. Let K → L be a field extension.
(1) There exists a transcendence basis {bi}i∈I of L over K .
(2) If {cj}j∈J is another transcendence basis of L over K , then the cardinalities

satisfy |J | = |I |.
Definition 2.4. The transcendence degree of L over K is the cardinality |I | of some
transcendence basis {bi}i∈I of L over K . It is denoted by tr.degK (L).

3. Dimension Theory

Some of the proofs in this section are, apparently, new. Certainly they are shorter
and claner than what can be found in the textbooks I have seen.

We begin by recalling some definitions from earlier in the course (see page 83.1).

Definition 3.1. Let A be a ring.
(1) A chain of prime ideals in A is a sequence p = (p0, . . . ,pn) of prime ideals
pi in A such that pi $ pi+1. The length of this chain is n.

(2) The (Krull) dimension of the ring A is the supremum of the lengths of
chains of primes ideals in A, and we denote it by dim(A).

Note that dim(A) ∈ N ∪ {∞}.
Lemma 3.2. Let K be a field, let M be a finiely generated K-module, and let
φ ∈ EndK (M). The following three conditions are equivalent.

(i) φ is injective.
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(ii) φ is surjective.
(iii) φ is bijective.

Exercise 3.3. Prove Lemma 3.2. (Hint: translate it to the language of linear
algebra.)

Lemma 3.4. Let K be a field, let A be an integral domain, and let K → A be a
finite ring homomorphism. Then A is a field.

Exercise 3.5. Prove Lemma 3.4. (Hint: use Lemma 3.2.)

Lemma 3.6 (Going Down). Let f : A → B be a finite ring homomorphism, let
q0 $ q1 be prime ideals in B, and let pi := f −1(qi) ⊆ A. Then p0 $ p1.

Proof. Define Ā := A/p0, B̄ := B/q0, p̄ := p0/p0 = (0) ⊆ Ā and q̄ := q1/q0 =
(0) ⊆ B̄. We get a finite injective ring homomorphism f̄ : Ā→ B̄ between integral
domains, and we have to show that f̄ −1(q̄) , p̄.

Thus, dropping the bars everywhere, an replacing A with its image f (A) ⊆ B,
we now have an integral domain B, a subring A over which B is finite, a nonzero
prime ideal q ⊆ B, and p = (0) ⊆ A. We have to show that A ∩ q , p.

Let’s assume that A∩q = p, and show that this leads to a contradiction. Consider
the local ring Bq, with its maximal ideal qq. In the commutative diagram

q
φ
//

ψ

��

B

g

��

qq
φq
// Bq

the homomorphism φ : q→ B is the inclusion, g : B→ Bq andψ : q→ qq are is the
canonical homomorphisms of localization, and φq : qq → Bq is the homomorphism
induced from φ by applying Bq ⊗B (−) to φ. The homomorphism g is injective,
because B is an integral domain. The homomorphism φq is injective because φ is
injective and by by the flatness of localization. It follows that the homomorphism
ψ is injective, and thus the maximal ideal qq is nonzero.

On the other hand, letting K := Frac(A) = Ap, the assumption that A ∩ q = p
implies that the inclusion f : A → B extends to a ring homomorphism fq : K →
Bq. The homomorphism fq fits into this commutative diagram of injective ring
homomorphisms:

B

loc
��

loc

))

K
fp
//

fq

99
K ⊗A B loc // Bq

loc // Frac(B)

The homomorphisms marked “loc” are localizations. Because the ring homomor-
phism f : A→ B is finite, the induced ring homomorphism fp : K → K ⊗A B is
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also finite. But K ⊗A B is an integral domain, so according to Lemma 3.4 the ring
K ⊗A B is a field. We deduce that the localization homomorphisms

K ⊗A B→ Bq → Frac(B)

are all bijective. Therefore Bq is a field, and its maximal ideal qq is zero. We have
a contradiction. �

Lemma 3.7 (Going Up). Let A ⊆ B be integral domains such that B is finite over
A, and let p ⊆ A be a prime ideal. Then there is a prime ideal q ⊆ B such that
A ∩ q = p.

Proof. We have an induced finite injective ring homomorphism Ap → Ap ⊗A B;
so Ap ⊗A B is a nonzero finitely generated Ap-module. Let K := Ap/pp. By the
Nakayama Lemma the ring

K ⊗A B � K ⊗Ap (Ap ⊗A B)

is nonzero. So there is some maximal ideal n ⊆ K ⊗A B. (We will see later, in ???,
that here we don’t need Zorn’s lemma to find a maximal ideal in K ⊗A B, and that
there are only finitely many of them.) Let g : B → K ⊗A B be the canonical ring
homomorphism, and define q := g−1(n) ⊆ B, which is a prime ideal.

There is a commutative diagram of rings

A ⊆ //

f

��

B

g

��

K //

⊆
$$

K ⊗A B

h

��

(K ⊗A B)/n

in which h is the canonical surjection. Because the homomorphisms marked “⊆”
are injective, and Ker(h) = n, we get

p = Ker( f ) = A ∩ Ker(h ◦ g) = A ∩ q.

�

Remark3.8. Actually there are only finitelymany primesq satisfying the conditions
of the lemma.

comment: Start of Lecture 13, 17 Jan 2018.

Lemma 3.9. Let A ⊆ B be integral domains such that B is finite over A, and let
(p0, . . . ,pn) be chain of prime ideals in A. Then there is a chain of prime ideals
(q0, . . . , qn) in B such that pi = A ∩ qi.
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Proof. The proof is by induction on n ≥ 0. According to Lemma 3.7 there is a
prime ideal q0 ⊆ B such that A ∩ q0 = p0. This takes care of the case n = 0.

Now assume that n ≥ 1, and the result is known for chains of length n − 1. Let
q0 be as above, and define Ā := A/p0 and B̄ := B/q0. So there is a finite injective
ring homomorphism Ā→ B̄, and in Ā we have a chain of prime ideals (p̄1, . . . , p̄n),
where p̄i := pi/p0. By the induction hypothesis there is a chain of prime ideals
(q̄1, . . . , q̄n) in B̄ such that Ā∩ q̄i = p̄i. Define qi ⊆ B to be the preimage of q̄i under
the canonical surjection B→ B̄. Then qi $ qi+1, and pi = A ∩ qi. �

The proof of the lemma is illustrated in the diagram below.
p0
��

��

q0
��

��

p1 // //

����

A // fin //

����

B

����

qioooo

����

p̄i // // Ā // fin // B̄ q̄ioooo

The next theorem due to Krull [Kru].

Theorem 3.10. Let f : A→ B be a finite ring homomorphism.
(1) The dimensions satisfy

dim(B) ≤ dim(A).
(2) If f is injective and B is an integral domain, then

dim(B) = dim(A).

Proof. (1) Given a chain of prime ideals (q0, . . . , qn) in B, let pi := f −1(qi). By
Lemma 3.6 the sequence (p0, . . . ,pn) is a chain of prime ideals in A. Hence
dim(B) ≤ dim(A).
(2)Wemay assume that A ⊆ B and f is the inclusion. Note that A is also an integral
domain. Given a chain of prime ideals (p0, . . . ,pn) in A, Lemma 3.9 says that there
is a chain of prime ideals (q0, . . . , qn) in B. This implies that dim(A) ≤ dim(B). �

Notice that so far in this section we did not assume our rings are noetherain.

Theorem 3.11. Let k be a field, and let A := k[t1, . . . , tn], the polynomial ring in n
variables. Then dim(A) = n.

Proof. For every i = 0, . . . , n the ideal pi := (t1, . . . , ti) ⊆ A is prime, and thus we
get a chain of prime ideals (p0, . . . ,pn) in A. This proves that dim(A) ≥ n.

For the reverse inequality, we shall prove that if (p0, . . . ,pm) is a chain of prime
ideals in A, then m ≤ n. The proof is by induction on n ≥ 0. The case n = 0 is
trivial.

Now take some integer n ≥ 1. Suppose that there is a chain of prime ideals
(p0, . . . ,pm) in A = k[t1, . . . , tn] of length m > n; we will derive a contradiction
from this. Choose an element a1 ∈ p1 − p0. Since a1 = a1(t) is a nonconstant
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polynomial, by Lemma 1.10 there are elements a2, . . . , an in A such that A is
finite over the subring k[a1, . . . , an]. Let s1, . . . , sn be new variables, and define
B := k[s1, . . . , sn]. The ring homomorphism

f : B→ A, f (si) := ai,

is finite.
Let q1 := (s1) ⊆ B, and define B̄ := B/q1. Also define Ā := A/p1. Since

f (q1) ⊆ p1, there is an induced finite ring homomorphism f̄ : B̄ → Ā. Define
p̄i := pi/p1 ⊆ Ā for i ≥ 1. Then (p̄1, . . . , p̄m) is a chain of prime ideals in Ā. Let
q̄i := f̄ −1(p̄i) ⊆ B̄. Lemma 3.6 says that (q̄1, . . . , q̄m) is a chain of prime ideals in
B̄. Its length is m − 1. However there is a k-ring isomorphism B̄ � k[s2, . . . , sn],
so B̄ is a polynomial ring in n − 1 variables. By the induction hypothesis we must
have m − 1 ≤ n − 1, i.e. m ≤ n. This is a contradiction. �

Corollary 3.12. Let k be a field, and let A be a finitely generated k-ring. Then
dim(A) < ∞.

Proof. There exists a surjective k-ring homomorphism B → A, where B :=
k[t1, . . . , tn] is the polynomial ring in n variables, for some n. By Theorems
3.10(1) and 3.11 we get

dim(A) ≤ dim(B) = n.

�

Corollary 3.13 (Dimension Theorem). Let k be a field, and let A be an integral
domain that is finitely generated as a k-ring, with field of fractions K . Then

dim(A) = tr.degk(K).

Proof. By Noether Normalization (Theorem 1.19) there is a finite injective k-ring
homomorphism f : B→ A, where B := k[t] = k[t1, . . . , tn] is the polynomial ring
in n variables for some n ∈ N. We may assume that B ⊆ A and f is the inclusion.
Theorems 3.11 and 3.10(2) tell us that dim(A) = dim(B) = n.

The field of fractions of B is the field of rational functions L := k(t), and it has
tr.degk(L) = n. By Lemma 3.4 there is an isomorphism L ⊗B A � K , so L → K is
a finite field extension, and hence tr.degk(L) = tr.degk(K). �

Theorem 3.14 (Hilbert Nullstellensatz). Let k be a field, let A be a finitely generated
k-ring, and let m be a maximal ideal. Then A/m is a finite field extension of k.

Proof. The field K := A/m is a finitely generated k-ring, say K = k[a1, . . . , am],
and it has dim(K) = 0. By Corollary 3.13 we know that tr.degk(K) = 0. Thus K is
an algebraic extension of k. It implies that the elements ai are all algebraic over k,
and hence k→ K is finite. �

Corollary 3.15. Let k be an algebraically closed field, let A be a finitely generated
k-ring, and let m be a maximal ideal. Then k→ A/m is an isomorphism.

Proof. This is immediate from the theorem. �
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Corollary 3.16. Let k be an algebraically closed field, let A := k[t1, . . . , tn] be a
polynomial ring in n variables, and let m be a maximal ideal in A. Then there is a
unique sequence of elements (λ1, . . . , λn) in k such that

m = (t1 − λ1, . . . , tn − λn).

Proof. The previous corollary says that the canonical ring homomorphism k →
A/m is bijective. Let λi ∈ k be the element that goes to ti + m ∈ A/m under this
ring isomorphism. Define the ideal

m
′ = (t1 − λ1, . . . , tn − λn) ⊆ A.

Then m′ ⊆ m, and m′ is maximal; so they are equal. �

We end with another variant of the NSZ, that was not done in class.
Let k be an algebraically closed field. For n ≥ 1 we write An(k) := kn,

viewed as a set. It is the n-dimensional affine space over k. The polynomial ring
A = k[t] = k[t1, . . . , tn] is viewed as a ring of functions An(k) → k, by evaluation.
To be explicit, for a point x = (λ1, . . . , λn) ∈ An(k) and a polynomial f (t) ∈ A we
have

f (x) := f (λ1, . . . , λn) ∈ k.
Given an ideal a ⊆ A we denote by Z(a) ⊆ An(k) the zero locus of a, namely

(3.17) Z(a) := {x ∈ An(k) | f (x) = 0 for all f ∈ a}.
Thus

Z(a) =
⋂
f ∈a

Z( f ).

Corollary 3.16 can be interpreted as follows: there is a canonical bijection from
the set of maximal ideals of A to the set An(k). The formula is

m 7→ x = (λ1, . . . , λn) ∈ An(k) , where Z(m) = {x}.

Corollary 3.18. Let k be an algebraically closed field, let A := k[t1, . . . , tn] be a
polynomial ring in n variables, let a be an ideal in A, and let f ∈ A. If Z( f ) ⊆ Z(a)
then f j ∈ a for some j > 0.

Proof. The proof is by contraposition. Let Ā := A/a. Assume that f j < a for all
j > 0. Then the element f̄ := f + a ∈ Ā is not nilpotent. Therefore the localized
ring Ā f̄ is nonzero, and it has some maximal ideal m̄. Let m ⊆ A be the preimage
of m̄ under the ring homomorphism A→ Ā f̄ . So m is a prime ideal of A, a ⊆ m,
and m ∩ { f j}j>0 = �. Also m f ⊆ Af is a maximal ideal. Because Af is a finitely
generated k-ring, Corollary 3.15 says that

k→ Af /m f � (A/m) f
is bijective. But A/m is a k-subring of (A/m) f , so actually k → A/m is bijective.
We see that m is a maximal ideal of A.

By Corollary 3.16 we know thatm = x for some point x ∈ An(k). The inclusion
a ⊆ m implies x ∈ Z(a). The fact that f < m means that f (x) , 0. Hence
x ∈ Z(a) − Z( f ), so Z( f ) * Z(a). �
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