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First Part

comment: The division of the book into “parts” is temporary for the duration
of the writing process. The division into “Sections” – such as “0. Introduction”
– will be kept in the final version of the book.

comment: Start of course I.
This part is essentially arXiv:1610.09640v1.

0. Introduction

comment: needs many changes

This book develops the theory of derived categories, starting from the founda-
tions, and going all the way to applications in algebra and geometry. The emphasis
is on explicit constructions (with examples), as opposed to axiomatics. The most
abstract concept we use is probably that of abelian category (which seems indis-
pensable).

A special feature of this book is that most of the theory deals with D(A,M), the
derived category of DG A-modules in M, where A is a DG (differential graded) ring
and M is an abelian category. This covers most important examples that arise in
algebra and geometry:

• The derived category D(A) of DG A-modules, for any DG ring A. This
includes ordinary rings.

• The derived category D(M) for any abelian category M. This includes
M = ModA, the category of sheaves of A-modules on a ringed space (X,A).

Furthermore, we work with unbounded derived categories. We prove existence of
resolutions (bounded or unbounded) in several contexts.

The first half of the book (Sections 1-10) covers the general theory. This is done
in an unorthodox manner, using DG categories as the source of derived categories
and triangulated functors. Another departure from the tradition is that we only
consider pretriangulated categories, thus sparing ourselves the burden of the octa-
hedral axiom. In this part of the book we provide detailed proofs of all statements
(except the routine ones, that are left as exercises). A more detailed description of
the contents of the first half is in the Synopsis (subsection 0.2 of the Introduction).

The second half of the book (that is not yet written) shall start off with more of
the general theory: derived bifunctor, and derived categories in geometry. This is
in Sections 12-16).

After that we shall deal with a few specialized topics:
B Derived Categories in Commutative Algebra.
B Residues and Duality in Algebraic Geometry.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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B Derived Categories in Noncommutative Algebra.
In this last portion of the book we shall leave out some of the proofs (but there are
precise external references). Much of the material here is the state of the art, and
is not included in any prior textbook.

The book is based on notes for advanced courses given at Ben Gurion University,
in the academic years 2011-12 and 2015-16. The main sources for the first part of
the book are [RD] and [KaSc1]; but the DG theory component is absent from those
earlier texts, and is pretty much our own interpretation of folklore results.

comment: Differences from other books; advice to the reader

0.1. A Motivating Discussion: Duality. By way of introduction to the subject
of derived categories, let us consider duality.

We begin with something elementary: linear algebra. Take a field K. Given a
K-module M (i.e. a vector space), let

D(M) := HomK(M,K),

be the dual module. There is a canonical homomorphism

θM : M → D(D(M)),

namely θM (m)(φ) := φ(m) for m ∈ M and φ ∈ D(M). If M is finitely generated
then θM is an isomorphism (actually this is “if and only if”).

To formalize this situation, let ModK denote the category of K-modules. Then

D : ModK→ ModK

is a contravariant functor, and

θ : Id→ D ◦D

is a natural transformation. Here Id is the identity functor of ModK.
Now let us replace K by any nonzero commutative ring A. Again we can define

a contravariant functor

D : ModA→ ModA, D(M) := HomA(M,A),

and a natural transformation θ : Id → D ◦ D. It is easy to see that θM : M →
D(D(M)) is an isomorphism if M is a finitely generated free module. Of course we
can’t expect reflexivity (i.e. θM being an isomorphism) ifM is not finitely generated;
but what about a finitely generated module that is not free?

In order to understand this better, let us concentrate on the ring A = Z. Since
Z-modules are just abelian groups, the category ModZ is often denoted by Ab.
Let Abf be the full subcategory of finitely generated abelian groups. Any finitely
generated abelian group is of the form M ∼= T ⊕ F , with F free and T finite. (The
letters “T” and “F” stand for “torsion” and “free” respectively.) It is important
to note that this is not a canonical isomorphism. There is a canonical short exact
sequence

(0.1.1) 0→ T
φ−→M

ψ−→ F → 0,

but the decomposition M ∼= T ⊕ F comes from choosing a splitting σ : F → M of
this sequence.
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Exercise 0.1.2. Prove that the exact sequence (0.1.1) is functorial (i.e. natural);
namely there are functors T, F : Abf → Abf , and natural transformations φ : T → Id
and ψ : Id → F , such that for any M ∈ Abf , the group T (M) is finite; the group
F (M) is free; and the sequence of homomorphisms

(0.1.3) 0→ T (M) φM−−→M
ψM−−→ F (M)→ 0

is exact.
Next, prove that there does not exist a functorial decomposition of a finitely

generated abelian group into a free part and a finite part. Namely, there is no
natural transformation σ : F → Id, such that for every M , the homomorphism
σM : F (M)→M splits the sequence (0.1.3). (Hint: find a counterexample.)

We know that for a free finitely generated abelian group F there is reflexivity,
i.e. θF : F → D(D(F )) is an isomorphism. But for a finite abelian group T we have

D(T ) = HomZ(T,Z) = 0.
Thus, for a M ∈ Abf with nonzero torsion subgroup T , reflexivity fails: θM : M →
D(D(M)) is not an isomorphism.

On the other hand, for an abelian group M we can define another sort of dual:
D′(M) := HomZ(M,Q/Z).

There is a natural transformation θ′ : Id → D′ ◦ D′. For a finite abelian group
T the homomorphism θ′T : T → D′(D′(T )) is an isomorphism; this can be seen
by decomposing T into cyclic groups, and for a finite cyclic group it is clear. So
D′ is a duality for finite abelian groups. (We may view the abelian group Q/Z as
the group of roots of 1 in C, via the exponential function; and then D′ becomes
Pontryagin Duality.)

But for a finitely generated free abelian group F we get D′(D′(F )) = F̂ , the
profinite completion of F . So once more this is not a good duality for all finitely
generated abelian groups.

We could try to be more clever and “patch” the two dualities D and D′, into
something that we will call D⊕D′. This looks pleasing at first – but then we recall
that the decomposition M ∼= T ⊕ F of a finitely generated group is not functorial,
so that D ⊕D′ can’t be a functor.

This is where the derived category enters. For any commutative ring A there is
the derived category D(ModA). Here is a very quick explanation of it.

Recall that a complex of A-modules is a diagram

(0.1.4) M =
(
· · · →M−1 d−1

M−−→M0 d0
M−−→M1 → · · ·

)
in the category ModA. Namely the M i are A-modules, and the diM are homomor-
phisms. The condition is that di+1

M ◦ diM = 0. We sometimes write M = {M i}i∈Z.
The collection dM = {diM}i∈Z is called the differential (or the coboundary operator)
of M .

Given a second complex

N =
(
· · · → N−1 d−1

N−−→ N0 d0
N−−→ N1 → · · ·

)
,

a homomorphism of complexes φ : M → N is a collection φ = {φi}i∈Z of homo-
morphisms φi : M i → N i in ModA satisfying

φi+1 ◦ diM = diN ◦ φi.
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The resulting category is denoted by C(ModA).
The i-th cohomology of the complex M is

Hi(M ) := Ker(diM )
Im(di−1

M )
∈ ModA.

A homomorphism φ : M → N in C(ModA) induces homomorphisms

Hi(φ) : Hi(M )→ Hi(N )

in ModA. We call φ a quasi-isomorphism if all the homomorphisms Hi(φ) are
isomorphisms.

The derived category D(ModA) is the localization of C(ModA) with respect
to the quasi-isomorphisms. This means that D(ModA) has the same objects as
C(ModA). There is a functor

Q : C(ModA)→ D(ModA)
that is the identity of objects, and it sends quasi-isomorphisms to isomorphisms.
Furthermore, any morphism in D(ModA) can be written as a fraction:

Q(φ) ◦Q(ψ)−1,

where φ is a morphism in C(ModA), and ψ is a quasi-morphism in C(ModA). This
is studied in Section 7 of the book.

A single A-module M0 can be viewed as a complex M concentrated in degree 0:

(0.1.5) M =
(
· · · → 0 0−→M0 0−→ 0→ · · ·

)
.

This turns out to be a fully faithful embedding
(0.1.6) ModA→ D(ModA).
The essential image of this embedding is the full subcategory of D(ModA) on the
complexes M whose cohomology is concentrated in degree 0 (i.e. Hi(M ) = 0 for all
i 6= 0). In this way we have enlarged the category of A-modules.

Here is a very important kind of quasi-isomorphism. Suppose M is a module
and

(0.1.7) · · · → P−2 d−2
P−−→ P−1 d−1

P−−→ P 0 ε−→M → 0
is a free resolution of it. We can view M as a complex concentrated in degree 0, by
the embedding (0.1.6). Let P be the complex

P · =
(
· · · → P−2 d−2

P−−→ P−1 d−1
P−−→ P 0 → 0→ · · ·

)
,

concentrated in nonpositive degrees. Then ε becomes a morphism of complexes
ε : P →M

with trivial components in nonzero degrees, and the exactness of the sequence
(0.1.7) says that ε is actually a quasi-isomorphism. Thus

Q(ε) : P →M

is an isomorphism in D(ModA).
Let us now return to A = Z. The functor D = HomZ(−,Z) from ModZ to itself

has a right derived functor
RD = RHomZ(−,Z),
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which is a contravariant triangulated functor
RD : D(ModZ)→ D(ModZ).

And there is a natural transformation of triangulated functors
θ : Id→ RD ◦ RD.

Here is the way to calculate the value of the functor RD on a finitely generated
abelian group M . Let us choose a free resolution of M like in (0.1.7). To be easy
on ourselves, we can take it to be of this form:

P =
(
· · · → 0→ P−1 d−1

P−−→ P 0 → 0→ · · ·
)

=
(
· · · → 0 −→ Zr1 d−→ Zr0 −→ 0 · · ·

)
,

where r0, r1 ∈ N and d is a matrix of integers. Because Q(ε) : P → M is an
isomorphism in D(ModZ), it suffices to calculate RD(P ).

It is known that RD(P ) = D(P ) for bounded complexes of free modules, where
D(P ) is calculated term by term. Thus

RD(P ) = D(P ) = HomZ(P ,Z) =
(
· · · → 0 −→ Zr0 d∗−→ Zr1 −→ 0 · · ·

)
,

a complex concentrated in degrees 0 and 1, with the transpose matrix d∗ as its
differential.

Because RD(P ) = D(P ) is itself a bounded complex of free modules, its derived
dual is

RD(RD(P )) = D(D(P )) = HomZ
(
HomZ(P ,Z),Z

)
.

The canonical morphism
θP : P → D(D(P ))

in C(ModZ) is an isomorphism in this case, because P 0 and P−1 are finite rank
free modules. Therefore

θM : M → RD(RD(M ))
is an isomorphism in D(ModZ). (For a more general statement see Subsection
13.2.) We see that RD is a duality that holds for all finitely generated Z-modules !

Here is the connection between the derived duality RD and the “classical” du-
alities D and D′. Take a finitely generated abelian group M , with short exact
sequence (0.1.1). There are functorial isomorphisms

H0(RD(M)) ∼= Ext0
Z(M,Z) ∼= HomZ(M,Z) ∼= D(M)

and
H1(RD(M)) ∼= Ext1

Z(M,Z) ∼= D′(M).
The cohomologies Hi(RD(M)) vanish for i 6= 0, 1.

Note that D(M) ∼= D(F ) and D′(M) ∼= D′(T ). We see that if M is neither free
nor finite, then H0(RD(M)) and H1(RD(M)) are both nonzero; so that the complex
D(M) is not isomorphic to an object of ModZ, under the embedding (0.1.6).

This sort of duality holds for many noetherian commutative rings A. But the
formula for the duality functor

RD : D(ModA)→ D(ModA)
is somewhat different – it is

RD(M) := RHomA(M,R),
where R ∈ D(ModA) is a dualizing complex. Such a dualizing complex is unique
(up to a degree translation and tensoring with an invertible module).
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Figure 1. An algebraic variety that is connected but not equidi-
mensional, and hence not Cohen-Macaulay.

Interestingly, the structure of the dualizing complex R depends on the geometry
of the ring A (i.e. of the affine scheme Spec(A)). If A is a regular ring (like Z) then
R = A is dualizing. If A is Cohen-Macaulay (and Spec(A) is connected) then R is
a single A-module. But if A is a more complicated ring, then R must live in several
degrees.

Example 0.1.8. Consider the affine algebraic variety X ⊆ A3
R which is the union

of a plane and a line, with coordinate ring

A = R[t1, t2, t3]/(t3 · t1, t3 · t2).

See figure 1. The dualizing complex R must live in two adjacent degrees; namely
there is some i s.t. Hi(R) and Hi+1(R) are nonzero.

One can also talk about dualizing complexes over noncommutative rings. (This
is a favorite topic of mine!)

0.2. Synopsis of the Book. Here is a section-by-section description of the mate-
rial in the book (the first half only).

Sections 1-2. These sections are pretty much a review of the standard material on
categories and functors (especially abelian categories and additive functors) that
is needed for the book. A reader who is familiar with this material can skip these
sections. We do recommend looking at our notational convention, that are spelled
out in Convention 1.2.2.

Section 3. A good understanding of DG algebra (“DG” is short for “differential
graded”) is essential in our approach to derived categories. We aim to study both
the derived category D(M) of an abelian category M, and the derived category D(A)
of DG modules over a DG ring A. In order to accomplish this, we introduce a new
concept, that combines both these setups: the category C(A,M) of DG A-modules
in M. See Subsection 3.7.

Actually, our methods can be expanded to handle the DG category C(A,M) of
DG A-modules in M, where A is a DG category (rather than a DG ring as above).
This includes as a special case (M = Ab) the category C(A) of DG A-modules, in
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the sense of Keller; see Remark 3.7.7. We have decided to stick to the less general
setup C(A,M) for these reasons:

(1) The treatment is much more streamlined and intuitive.
(2) Virtually all DG categories that occur in practice (in algebra and algebraic

geometry) are full subcategories of C(A,M), for suitable A and M. A note-
worthy instance is derived Morita theory for schemes (see Section 18.3),
that fits nicely within our framework.

There do not exist (to our knowledge) detailed textbook references for DG alge-
bra (by which we mean DG rings, DG modules, DG categories, DG functors and
related constructions). Therefore we have included a lot of basic material in this
section. Moreover, we present a new treatment of translations and cones, using
the “little t operator”, following our paper [Ye11]. Among other things, we prove
(in Theorem 4.1.7) that the translation functor T of C(A,M) is a DG functor, and
t : Id→ T is a degree −1 morphisms of DG functors from C(A,M) to itself.
Section ????. This section consists mostly of new material, some of it implicit in
the paper [BoKa] on pretriangulated DG categories.

Inside the DG category C(A,M) there is the strict category Cstr(A,M), that
has all the objects, but its morphisms are the degree 0 cocycles. Any morphism
φ : M → N in Cstr(A,M) gives rise to a standard triangle

M
φ−→ N

eφ−→ Cone(φ) pφ−→ T(M)
in Cstr(A,M).

Consider a DG functor
(0.2.1) F : C(A,M)→ C(B,N),
where A and B are DG rings, and M and N are abelian categories. In Theorem
4.4.3 we show that there is a canonical isomorphism of DG functors

(0.2.2) τF : F ◦ T '−→ T ◦F
called the translation isomorphism. Then, in Theorem 4.5.7, we prove that F sends
standard triangles in the Cstr(A,M) to standard triangles in Cstr(B,N).

We end this section with several examples of DG functors. These examples are
prototypes – they can be easily extended to other setups.
Section 5. We start with the theory of pretriangulated categories and triangulated
functors, following mainly [RD]. Because the octahedral axiom plays no role in
our approach, we exclude it from the discussion, and this is the reason we do not
talk about triangulated categories. In Subsection 5.4 we prove that the homotopy
category K(A,M) is pretriangulated.

We conclude this section with Theorem 5.4.15. It says that given a DG functor F
as in (0.2.1), with translation isomorphism τF from (0.2.2), the T-additive functor

(F, τF ) : K(A,M)→ K(B,N)
is triangulated. This is possibly a new result (unifying well-known yet disparate
examples).
Section 6. In this section we take a close look at localization of categories. We give
a detailed proof of the theorem on Ore localization (also known as noncommutative
localization). We then prove that the localization KS of a pretriangulated category
K at a multiplicatively closed set of cohomological origin S is a left and right Ore
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localization, the category KS is pretriangulated, and the localization functor Q :
K→ KS is triangulated.

Section 7. In the case of the pretriangulated category K(A,M), and the quasi-
isomorphisms S(A,M) in it, we get the derived category

D(A,M) := K(A,M)S(A,M),

and the triangulated localization functor

Q : K(A,M)→ D(A,M).

We look at the full subcategories K?(A,M) of K(A,M) corresponding to bound-
edness conditions ?, and prove that their localizations with respect to quasi-iso-
morphisms embed fully faithfully in D(A,M). We also prove that the obvious
functor M→ D(M) is fully faithful.

Section 8. In this section we talk about derived functors. To make the definitions
of the derived functors precise, we introduce some 2-categorical notation here.

The setting is general: we start from a triangulated functor F : K→ E between
pretriangulated categories, and a denominator set of cohomological origin S ⊆ K.
A right derived functor of F is a pair (RF, η), where RF : KS → E is a triangulated
functor, and η : F → RF ◦ Q is a morphism of triangulated functors. The pair
(RF, η) has a universal property, making it unique up to a unique isomorphism.
The left derived functor (LF, η) is defined similarly.

We provide a general existence theorem for derived functors. For the right de-
rived functor we assume the existence of a pretriangulated category J ⊆ K that is
“right F -acyclic”. Likewise for the left derived functor. This is the original result
from [RD], but our proof is much more detailed.

Section 9. Here we specialize the general existence theorem from Section 8 to
the case of the pretriangulated categories K?(A,M), for a DG ring A, and abelian
category M and a boundedness condition ?. We define K-injective DG modules, and
show they can be used to present any right derived functor (if there are enough of
them). We also define K-projective and K-flat DG modules, and explain how they
are used.

Section 10. In this section we prove existence of K-injective, K-projective and
K-flat resolutions in several important cases of C?(A,M) :

• K-projective resolutions in C−(M), where M is an abelian category with
enough projectives. This is classical (i.e. it is already in [RD]).
• K-projective resolutions in C(A), where A is any DG ring. This includes

C(ModA), the category of unbounded complexes of modules over a ring A.
• K-injective resolutions in C+(M), where M is an abelian category with
enough injectives. This is classical too.
• K-injective resolutions in C(A), where A is any DG ring. This includes

C(ModA) for any ring A.
Our proofs are explicit, and we use limits of complexes cautiously (since this is
known to be a pitfall).

This ends the first half of the book. As mentioned before, the second half is yet
to be written.
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comment: continue synopsis

0.3. Recommended Bibliography.
comment: and prerequisites
For further discussion of categories (and the related set theory), functors, and
classical homological algebra, see the books [Mac2], [HiSt], [Rot], [GeMa], [KaSc1],
[KaSc2], [Ne1], and [We].

Derived categories are treated in [RD] (the original reference), and in the last five
books in the previous list. None of these references has emphasis on DG categories
as the background out of which derived categories arise; indeed, most of these books
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1. Basic Facts on Categories

1.1. Set Theory. In this book we will not try to be precise about issues of set
theory. The blanket assumption is that we are given a Grothendieck universe U.
This is a “large” infinite set. A small set, or a U-small set, is a set S that is an
element of U. We want all the products

∏
i∈I Si and disjoint unions

∐
i∈I Si, with

I and Si small sets, to be small sets too. (This requirement is not crucial for us,
and it is more a matter of convenience. When dealing with higher categories, one
usually needs a hierarchy of universes anyhow.) We assume that the axiom of choice
holds in U.

A U-category is a category C whose set of objects Ob(C) is a subset of U, and
for every C,D ∈ Ob(C) the set of morphisms HomC(C,D) is small. If Ob(C) is
also small, then C is called a small category. See [SGA 4] or [KaSc2, Section 1.1].
Another approach, involving “sets” vs “classes”, can be found in [Ne1].

We denote by Set the category of all small sets. So Ob(Set) = U, and Set is a
U-category. A group (or a ring, etc.) is called small if its underlying set is small.
We denote by Grp, Ab, Ring and Ringc the categories of small groups, small abelian
groups, small rings and small commutative rings respectively. For a small ring A
we denote by ModA the category of all small left A-modules.

By default we work with U-categories, and from now on U will remain implicit.
The one exception is when we deal with localization of categories, where we shall
briefly encounter a set theoretical issue; but for most interesting cases this issue
has an easy solution.

1.2. Notation. Let C be a category. We often write C ∈ C as an abbreviation for
C ∈ Ob(C). For an object C, its identity automorphism is denoted by idC . The
identity functor of C is denoted by IdC.

The opposite category of C is Cop. It has the same objects as C, but the morphism
sets are

HomCop(C0, C1) := HomC(C1, C0),
and composition is reversed. Of course (Cop)op = C. The identity functor of C can
be viewed as a contravariant functor

(1.2.1) Op : C→ Cop .

To be explicit, on objects we take Op(C) := C. As for morphisms, given a morphism
φ : C0 → C1 in C, we let

Op(φ) : Op(C1)→ Op(C0)

be the morphism Op(φ) := φ in Cop. The inverse functor Cop → C is also denoted
by Op. (We could have distinguished between these two functors, say by writing
OpC and OpCop ; but this would have been pretty awkward.) Thus Op ◦Op = IdC.

A contravariant functor F : C → D is the same as a covariant functor F ◦ Op :
Cop → D. Since we prefer dealing only with covariant functors, we make the
following convention:

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Convention 1.2.2. By default all functors will be covariant, unless explicitly men-
tioned otherwise.

Contravariant functors will almost always we dealt with by replacing the source
category with its opposite.

Rings and modules are important for us, so let us also put forth the next con-
vention.

Convention 1.2.3.
(1) All rings and ring homomorphisms are unital. The category of rings is

denoted by Ring.
(2) All modules are left modules by default. For a ring A, we denote by

ModA = M(A) the category of (left) A-modules.

Right A-modules are left modules over the opposite ring Aop, and this is the way
we shall most often deal with them.

We will try to keep the following font and letter conventions:
• f : C → D is a morphism between objects in a category.
• F : C→ D is a functor between categories.
• η : F → G is morphism of functors (i.e. a natural transformation) between

functors F,G : C→ D.
• f, φ, α : M → N are morphisms between objects in an abelian category M.
• F : M→ N is an additive functor between abelian categories.
• The category of complexes in an abelian category M is C(M).
• If M is a module category, and M ∈ Ob(M), then elements of M will be
denoted by m,n,mi, . . ..

1.3. Epimorphisms and Monomorphisms. Let C be a category. Recall that
a morphism f : C → D in C is called an isomorphism if there is a morphism
g : D → C such that f ◦ g = idD and g ◦ f = idC . The morphism g is called the
inverse of f , it is unique (if it exists), and it is denoted by f−1. An isomorphism is
often denoted by this shape of arrow: f : C '−→ D.

A morphism f : C → D in C is called an epimorphism if it has the right
cancellation property: for any g, g′ : D → E, g ◦ f = g′ ◦ f implies g = g′.
An epimorphism is often denoted by this shape of arrow: f : C � D.

A morphism f : C → D is called a monomorphism if it has the left cancellation
property: for any g, g′ : E → C, f ◦ g = f ◦ g′ implies g = g′. A monomorphism is
often denoted by this shape of arrow: f : C � D.

Example 1.3.1. In Set the monomorphisms are the injections, and the epimor-
phisms are the surjections. A morphism f : C → D in Set that is both a monomor-
phism and an epimorphism is an isomorphism. The same holds in the category
ModA of left modules over a ring A.

This example could be misleading, because the property of being an epimorphism
is often not preserved by forgetful functors, as the next exercise shows.

Exercise 1.3.2. Consider the category of rings Ring. Show that the forgetful
functor Ring→ Set respects monomorphisms, but it does not respect epimorphisms.
(Hint: show that the inclusion Z→ Q is an epimorphism in Ring.)
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By a subobject of an object C ∈ C we mean a monomorphism f : C ′ � C in
C. We sometimes write C ′ ⊆ C in this situation, but this is only notational (and
does not mean inclusion of sets). We say that two subobjects f0 : C ′0 � C and
f1 : C ′1 � C of C are isomorphic if there is an isomorphism g : C ′0

'−→ C ′1 such that
f1 ◦ g = f0.

Likewise, by a quotient of C we mean an epimorphism g : C � C ′′ in C. There
is an analogous notion of isomorphic quotients.

Exercise 1.3.3. Let C be a category, and let C be an object of C.
(1) Suppose f0 : C ′0 � C and f1 : C ′1 � C are subobjects of C. Show that

there is at most one morphism g : C ′0 → C ′1 such that f1 ◦ g = f0; and if g
exists, then it is a monomorphism.

(2) Show that isomorphism is an equivalence relation on the set of subobjects
of C. Show that the set of equivalence classes of subobjects of C is partially
ordered by “inclusion”. (Ignore set-theoretical issues.)

(3) Formulate and prove the analogous statements for quotient objects.

An initial object in a category C is an object C0 ∈ C, such that for every object
C ∈ C there is exactly one morphism C0 → C. Thus the set HomC(C0, C) is a
singleton. A terminal object in C is an object C∞ ∈ C, such that for every object
C ∈ C there is exactly one morphism C → C∞.

Definition 1.3.4. A zero object in a category C is an object which is both initial
and terminal.

Initial, terminal and zero objects are unique up to unique isomorphisms (but
they need not exist).

Example 1.3.5. In Set, ∅ is an initial object, and any singleton is a terminal
object. There is no zero object.

Example 1.3.6. In ModA, any trivial module (with only the zero element) is a
zero object, and we denote this module by 0. This is allowed, since any other zero
module is uniquely isomorphic to it.

1.4. Products and Coproducts. Let C be a category. By a collection of objects
of C indexed by a (small) set I, we mean a function I → Ob(C), i 7→ Ci. We usually
denote this collection like this: {Ci}i∈I .

Given a a collection {Ci}i∈I of objects of C, its product is a pair (C, {pi}i∈I)
consisting of an object C ∈ C, and a collection {pi}i∈I of morphisms pi : C → Ci,
called projections. The pair (C, {pi}i∈I) must have this universal property: given
any object D and morphisms fi : D → Ci, there is a unique morphism f : D → C
s.t. fi = pi ◦ f . Of course if a product (C, {pi}i∈I) exists, then it is unique up to
a unique isomorphism; and we usually write

∏
i∈I Ci := C, leaving the projection

morphisms implicit.

Example 1.4.1. In Set and ModA all products exist, and they are the usual
cartesian products.

For a collection {Ci}i∈I of objects of C, their coproduct is a pair (C, {ei}i∈I),
consisting of an object C and a collection {ei}i∈I of morphisms ei : Ci → C, called
embeddings. The pair (C, {ei}i∈I) must have this universal property: given any
object D and morphisms fi : Ci → D, there is a unique morphism f : C → D
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s.t. fi = f ◦ ei. If a coproduct (C, {ei}i∈I) exists, then it is unique up to a unique
isomorphism; and we write

∐
i∈I Ci := C, leaving the embeddings implicit.

Example 1.4.2. In Set the coproduct is the disjoint union. In ModA the coproduct
is the direct sum.

comment: move direct and inverse limits to this location?

1.5. Equivalence of Categories. Recall that a functor F : C → D is an equiva-
lence if there exists a functor G : D→ C, and isomorphisms of functors (i.e. natural
isomorphisms) G ◦F '−→ IdC and F ◦G '−→ IdD. Such a functor G is called a quasi-
inverse of F , and it is unique up to isomorphism (if it exists), and it is denoted by
F−1.

The functor F : C→ D is full (resp. faithful) if every C0, C1 ∈ C the function

F : HomC(C0, C1)→ HomD
(
F (C0), F (C1)

)
is surjective (resp. injective).

We know that F : C→ D is an equivalence iff these two conditions hold:
(i) F is essentially surjective on objects. This means that for every D ∈ D

there is some C ∈ C and an isomorphism F (C) '−→ D.
(ii) F is fully faithful (i.e. full and faithful).

Exercise 1.5.1. If you are not sure about the last claim (characterization of equiv-
alences), then prove it. (Hint: use the axiom of choice to construct a quasi-inverse
of F .)

Example 1.5.2. Let C and D be categories. A functor F : C → D is called
an isomorphism of categories if it is bijective on sets of objects and on sets of
morphisms. It is clear that an isomorphism of categories is an equivalence. If F
is an isomorphism of categories, then it has an inverse isomorphism F−1 : D→ C,
which is unique. In practice, it is quite rare to find an isomorphism of categories.

1.6. Bifunctors. Let C and D be categories. Their product is the category C×D
defined as follows: the set of objects is

Ob(C×D) := Ob(C)×Ob(D).

The sets of morphisms are

HomC×D
(
(C0, D0), (C1, D1)

)
:= HomC(C0, C1)×HomD(D0, D1).

The composition is

(f1, g1) ◦ (f0, g0) := (f1 ◦ f0, g1 ◦ g0),

and the identity morphisms are (idC , idD).
A bifunctor

F : C×D→ E
is by definition a functor from the product category C×D to E. We say “bifunctor”
because it is a functor of two arguments: F (C,D) ∈ E. This will be especially useful
when considering additive categories, because then we can talk about “additive
bifunctors”.
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1.7. Representable Functors. Let C be a category and C ∈ C an object. We get
a functor

YC : Cop → Set, YC := HomC(−, C),
called the Yoneda functor. This functor sends an object C ′ to the set HomC(C ′, C),
and a morphism ψ : C ′ → C ′′ in C to the function

YC(ψ) := Hom(ψ, idC) : HomC(C ′′, C)→ HomC(C ′, C).
Now suppose we are given a morphism φ : C0 → C1 in C. There is a morphism

of functors (a natural transformation)
Yφ := HomC(−, φ) : YC0 → YC1 .

Here is the first formulation of the Yoneda Lemma.

Proposition 1.7.1 (Yoneda Lemma v1). Let C be a category, let C0, C1 ∈ C be
objects, and let η : YC0 → YC1 be a morphism of functors Cop → Set.

(1) There exists a unique morphism φ : C0 → C1 in C such that Yφ = η.
(2) If η : YC0 → YC1 is an isomorphism of functors, then φ : C0 → C1 is an

isomorphism in C.

See [KaSc2, Section 1.4] for a proof. The proof is not hard, but it is very
confusing.

A functor F : Cop → Set is called representable if there is an isomorphism of
functors f : F '−→ YC for some object C ∈ C. By Proposition 1.7.1 the pair (C, f)
is unique up to a unique isomorphism (if it exists). Note that the isomorphism of
sets fC : F (C) '−→ YC(C) gives a special element f̃ ∈ F (C) such that fC(f̃) = idC .

Here is a fancier way to state this result. Consider the category Fun(Cop,Set),
whose objects are the functors F : Cop → Set, and whose morphisms are the
morphisms of functors. There is a set-theoretic difficulty here: the sets of objects
and morphisms of Fun(Cop,Set) are too big (unless C is a small category); so this
is not a U-category, and we must enlarge the universe.

Proposition 1.7.2 (Yoneda Lemma v2). The Yoneda functor
Y : C→ Fun(Cop,Set), C 7→ YC , φ 7→ Yφ

is fully faithful.

In other words, the Yoneda Lemma says that the functor Y is an equivalence
from C to the category of representable functors Cop → Set.

Dually, any C ∈ C gives rise to a functor
Y ′C : C→ Set, Y ′C := HomC(C,−).

The identity automorphism idC is a special element of the set Y ′C(C).
A functor F : C → Set is called corepresentable if F ∼= Y ′C for some object

C ∈ C. The object C is said to corepresent the functor F . The dual Yoneda
Lemma (v2) says that the functor Y ′ is an equivalence from Cop to the category of
corepresentable functors C→ Set.
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2. Abelian Categories and Additive Functors

The concept of abelian category is an extremely useful abstraction of module
categories, introduced by Grothendieck in 1957. Before defining it (in Definition
2.3.8), we need some preparation.

2.1. Linear Categories.

Definition 2.1.1. Let K be a commutative ring. A K-linear category is a cat-
egory M, endowed with a K-module structure on each of the sets of morphisms
HomM(M0,M1). The condition is this:

• For all M0,M1,M2 ∈ M the composition function
HomM(M1,M2)×HomM(M0,M1)→ HomM(M0,M2)
(φ1, φ0) 7→ φ1 ◦ φ0

is K-bilinear.
If K = Z, we say that M is a linear category.

Let K be a commutative ring. By central K-ring we mean a ring A, with a ring
homomorphism K→ A, such that the image of K is inside the center of A. (Many
texts would call such A a “unital associative K-algebra”.)

Example 2.1.2. Let K be any nonzero commutative ring, and let n be a positive
integer. Then the ring of matrices A := Matn(K) is a central K-ring.

Proposition 2.1.3. Let M be a K-linear category.
(1) For any object M ∈ M, the set

EndM(M) := HomM(M,M),

with its given addition operation, and with the operation of composition, is
a central K-ring.

(2) For any two objects M0,M1 ∈ M, the set HomM(M0,M1), with its given
addition operation, and with the operations of composition, is a left module
over the ring EndM(M1), and a right module over the ring EndM(M0).
Furthermore, these left and right actions commute with each other.

Proof. Exercise. �

This result can be reversed:

Example 2.1.4. Let A be a central K-ring. Define a category M like this: there
is a single object M , and its set of morphisms is HomM(M,M) := A. Composition
in M is the multiplication of A. Then M is a K-linear category.

Because of the above, in a linear category M, we often denote the identity auto-
morphism of an object M by 1M := idM ∈ EndM(M).

For a central K-ring A, the opposite ring Aop has the same K-module structure
as A, but the multiplication is reversed.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Exercise 2.1.5. Let A be a nonzero ring. Let P,Q ∈ ModA be distinct free
A-modules of rank 1.

(1) Prove that there is a ring isomorphism EndModA(P ) ∼= Aop. Is this ring
isomorphism canonical?

(2) Let M be the full subcategory of ModA on the set of objects {P,Q}. Com-
pare the linear category M to the ring of matrices Mats2(Aop).

2.2. Additive Categories.

Definition 2.2.1. An additive category is a linear category M satisfying these
conditions:

(i) M has a zero object 0.
(ii) M has finite coproducts.

Observe that HomM(M,N) 6= ∅ for any M,N ∈ M, since this is an abelian
group. Also

HomM(M, 0) = HomM(0,M) = 0,
the zero abelian group. We denote the unique arrows 0 → M and M → 0 also
by 0. So the numeral 0 has a lot of meanings; but they are (hopefully) clear from
the contexts. The coproduct in a linear category M is usually denoted by

⊕
; cf.

Example 1.4.2.

Example 2.2.2. Let A be a K-central ring. The category ModA is a K-linear
additive category. The full subcategory F ⊆ ModA on the free modules is also
additive.

Proposition 2.2.3. Let M be a linear category. Let {Mi}i∈I be a finite collection
of objects of M, and assume the coproduct M =

⊕
i∈IMi exists, with embeddings

ei : Mi →M .
(1) For any i let pi : M → Mi be the unique morphism s.t. pi ◦ ei = 1Mi

,
and pi ◦ ej = 0 for j 6= i. Then (M, {pi}i∈I) is a product of the collection
{Mi}i∈I .

(2)
∑
i∈I ei ◦ pi = 1M .

Exercise 2.2.4. Prove this proposition.

Part (1) of Proposition 2.2.3 directly implies:

Corollary 2.2.5. An additive category has finite products.

Definition 2.2.6. Let M be an additive category, and let N be a full subcategory
of M. We say that N is a full additive subcategory of M if N contains the zero object,
and is closed under finite direct sums.

Exercise 2.2.7. In the situation of Definition 2.2.6, show that the category N is
itself additive.

Example 2.2.8. Consider the linear category M from Example 2.1.4, built from a
ring A. It does not have a zero object (unless the ring A is the zero ring), so it is
not additive.

A more puzzling question is this: Does M have finite direct sums? This turns
out to be equivalent to whether or not A ∼= A⊕A as right A-modules. To see why,
choose a fully faithful additive functor F : M → ModAop, that sends the unique
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object M ∈ M to a rank 1 free right A-module P . (We identify right A-modules
with left Aop-modules.) Compare to Exercise 2.1.5.

Let I := {1, 2}, and let {Mi}i∈I be the only possible collection in M indexed by
I (i.e. Mi = M). If there is a coproduct in M, then it must be M1 ⊕M2 ∼= M .
According to Proposition 2.4.2, we get

P ⊕ P ∼= F (M1)⊕ F (M2) ∼= F (M) ∼= P

in ModAop.
One can show that when A is nonzero and commutative, or nonzero and noe-

therian, then A 6∼= A⊕A in ModAop. On the other hand, if we take a field K, and
a countable rank K-module N , then A := EndK(N) will satisfy A ∼= A⊕A.

Proposition 2.2.9. Let M be a linear category, and N ∈ M. The following condi-
tions are equivalent:

(i) The ring EndM(N) is trivial.
(ii) N is a zero object of M.

Proof. (ii) ⇒ (i): Since the set EndM(N) is a singleton, it must be the trivial ring
(1 = 0).
(i) ⇒ (ii): If the ring EndM(N) is trivial, then all left and right modules over it
must be trivial. Now use Proposition 2.1.3(2). �

2.3. Abelian Categories.

Definition 2.3.1. Let M be an additive category, and let f : M → N be a
morphism in M. A kernel of f is a pair (K, k), consisting of an object K ∈ M and
a morphism k : K →M , with these properties:

(i) f ◦ k = 0.
(ii) If k′ : K ′ → M is a morphism in M such that f ◦ k′ = 0, then there is a

unique morphism g : K ′ → K such that k′ = k ◦ g.

In other words, the object K represents the functor Mop → Ab,
K ′ 7→ {k′ ∈ HomM(K ′,M) | f ◦ k′ = 0}.

The kernel of f is of course unique up to a unique isomorphism (if it exists), and we
denote if by Ker(f). Sometimes Ker(f) refers only to the object K, and other times
it refers only to the morphism k; as usual, this should be clear from the context.

Definition 2.3.2. Let M be an additive category, and let f : M → N be a
morphism in M. A cokernel of f is a pair (C, c), consisting of an object C ∈ M and
a morphism c : N → C, with these properties:

(i) c ◦ f = 0.
(ii) If c′ : N → C ′ is a morphism in M such that c′ ◦ f = 0, then there is a

unique morphism g : C → C ′ such that c′ = g ◦ c.

In other words, the object C corepresents the functor M→ Ab,
C ′ 7→ {c′ ∈ HomM(N,C ′) | c′ ◦ f = 0}.

The cokernel of f is of course unique up to a unique isomorphism (if it exists), and
we denote if by Coker(f). Sometimes Coker(f) refers only to the object C, and
other times it refers only to the morphism c; as usual, this should be clear from the
context.
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Example 2.3.3. In ModA all kernels and cokernels exist. Given f : M → N , the
kernel is k : K →M , where

K := {m ∈M | f(m) = 0},
and the k is the inclusion. The cokernel is c : N → C, where C := N/f(M), and c
is the canonical projection.

Proposition 2.3.4. Let M be an additive category, and let f : M → N be a
morphism in M.

(1) If k : K →M is a kernel of f , then k is a monomorphism.
(2) If c : N → C is a cokernel of f , then c is an epimorphism.

Proof. Exercise. �

Definition 2.3.5. Assume the additive category M has kernels and cokernels. Let
f : M → N be a morphism in M.

(1) Define the image of f to be
Im(f) := Ker(Coker(f)).

(2) Define the coimage of f to be
Coim(f) := Coker(Ker(f)).

The image is familiar, but the coimage is not. The next diagram should help.
We start with a morphism f : M → N in M. The kernel and cokernel of f fit into
this diagram:

K
k−→M

f−→ N
c−→ C.

Inserting α := Coker(k) = Coim(f) and β := Ker(c) = Im(f) we get the following
commutative diagram (solid arrows):

(2.3.6) K
k //

0
!!

M
f
//

α

��

γ

!!

N
c // C

M ′
f ′
// N ′

0

>>

β

OO

Since c ◦ f = 0 there is a unique morphism γ making the diagram commutative.
Now β ◦ γ ◦ k = f ◦ k = 0; and β is a monomorphism; so γ ◦ k = 0. Hence there is
a unique morphism f ′ : M ′ → N ′ making the diagram commutative. We conclude
that f : M → N induces a morphism
(2.3.7) f ′ : Coim(f)→ Im(f).

Definition 2.3.8. An abelian category is an additive category M with these extra
properties:

(i) All morphisms in M admit kernels and cokernels.
(ii) For any morphism f : M → N in M, the induced morphism f ′ in equation

(2.3.7) is an isomorphism.

Here is a less precise but (maybe) easier to remember way to state property (ii).
Because M ′ = Coker(Ker(f)) and N ′ = Ker(Coker(f)), we see that
(2.3.9) Coker(Ker(f)) = Ker(Coker(f)).

From now on we forget all about the coimage.
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Exercise 2.3.10. For any ring A, prove that the category ModA is abelian.

This includes the category Ab = ModZ, from which the name derives.

Definition 2.3.11. Let M be an abelian category, and let N be a full subcategory
of M. We say that N is a full abelian subcategory of M if N is closed under finite
direct sums, kernels and cokernels.

Exercise 2.3.12. In the situation of Definition 2.3.11, the category N is itself
abelian.

Example 2.3.13. Let M1 be the category of finitely generated abelian groups,
and let M0 be the category of finite abelian groups. Then M1 is a full abelian
subcategory of Ab, and M0 is a full abelian subcategory of M1.

Exercise 2.3.14. Let N be the full subcategory of Ab whose objects are the finitely
generated free abelian groups. It is an additive subcategory of Ab (since it is closed
under direct sums).

(1) Show that N is closed under kernels in Ab.
(2) Show that N is not closed under cokernels in Ab, so it is not a full abelian

subcategory of Ab.
(3) Show that N has cokernels (not the same as those of Ab). Still, it fails to

be an abelian category.

Exercise 2.3.15. The category Grp is not linear of course. Still, it does have a zero
object (the trivial group). Show that Grp has kernels and cokernels, but condition
(ii) of Definition 2.3.8 fails.

Exercise 2.3.16. Let Hilb be the category of Hilbert spaces over C. The morphisms
are the continuous C-linear homomorphisms. Show that Hilb is a C-linear additive
category with kernels and cokernels, but it is not an abelian category.

Exercise 2.3.17. Let A be a ring. Show that A is left noetherian iff the category
Modf A of finitely generated left modules is a full abelian subcategory of ModA.

Example 2.3.18. Let (X,A) be a ringed space; namely X is a topological space
and A is a sheaf of rings on X (see [Har, Sections II.1-2]). We denote by PModA
the category of presheaves of left A-modules on X. This is an abelian category.
Given a morphism f :M→N in PModA, its kernel is the presheaf K defined by

Γ(U,K) := Ker
(
f : Γ(U,M)→ Γ(U,N )

)
on every open set U ⊆ X. The cokernel is the presheaf C defined by

Γ(U, C) := Coker
(
f : Γ(U,M)→ Γ(U,N )

)
.

Now let ModA be the full subcategory of PModA consisting of sheaves. It is a
full additive subcategory of PModA, closed under kernels. We know that ModA
is not closed under cokernels inside PModA, and hence it is not a full abelian
subcategory.

However ModA is itself an abelian category, but with different cokernels. In-
deed, for a morphism f : M → N in ModA, its cokernel CokerModA(f) is the
sheafification of the presheaf CokerPModA(f).

Here is a general result about abelian categories.
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Theorem 2.3.19 (Freyd & Mitchell). Let M be a small abelian category. Then M
is equivalent to a full abelian subcategory of ModA, for a suitable ring A.

This means that most of the time we can pretend that M ⊆ ModA. This is a
helpful heuristic; although in practice it is not a very useful fact.

Proposition 2.3.20. Let M be a linear category.
(1) The opposite category Mop has a canonical structure of linear category.
(2) If M is additive, then Mop is also additive.
(3) If M is abelian, then Mop is also abelian.

Proof. (1) Since
HomMop(M,N) = HomM(N,M),

this is an abelian group. The bilinearity of the composition in Mop is clear.
(2) The zero objects in M and Mop are the same. Existence of finite coproducts in
Mop is because of existence of finite products in M; see Proposition 2.2.3(1).
(3) Mop has kernels and cokernels, since KerMop(f) = CokerM(f) and vice versa.
Also the symmetric condition (ii) of Definition 2.3.8 holds. �

Proposition 2.3.21. Let f : M → N be a morphism in an abelian category M.
(1) f is a monomorphism iff Ker(f) = 0.
(2) f is an epimorphism iff Coker(f) = 0.
(3) f is an isomorphism iff it is both a monomorphism and an epimorphism.

Exercise 2.3.22. Prove this proposition.

2.4. Additive Functors.

Definition 2.4.1. Let M and N be K-linear categories. A functor F : M → N is
called a K-linear functor if for every M0,M1 ∈ M the function

F : HomM(M0,M1)→ HomN(F (M0), F (M1))
is a K-linear homomorphism.

A Z-linear functor is also called an additive functor.

Additive functors commute with finite direct sums. More precisely:

Proposition 2.4.2. Let F : M → N be an additive functor between linear cate-
gories, let {Mi}i∈I be a finite collection of objects of M, and assume that the direct
sum (M, {ei}i∈I) of the collection {Mi}i∈I exists in M. Then

(
F (M), {F (ei)}i∈I

)
is a direct sum of the collection {F (Mi)}i∈I in N.

Exercise 2.4.3. Prove Proposition 2.4.2. (Hint: use Proposition 2.2.3.)

Note that the proposition above also talks about finite products, because of
Proposition 2.2.3.

Example 2.4.4. Let f : A→ B be a ring homomorphism. The forgetful functor
Restf : ModB → ModA,

called restriction of scalars, is additive. The induction functor
Indf : ModA→ ModB,

sometimes called extension of scalars, defined by Indf (M) := B ⊗A M , is also
additive.
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Proposition 2.4.5. Let F : M → N be an additive functor between linear cate-
gories. Then:

(1) For any M ∈ M the function
F : EndM(M)→ EndN

(
F (M)

)
is a ring homomorphism.

(2) For any M0,M1 ∈ M the function
F : HomM(M0,M1)→ HomN

(
F (M0), F (M1)

)
is a homomorphism of left EndM(M1)-modules, and of right EndM(M0)-
modules.

(3) If M is a zero object of M, then F (M) is a zero object of N.

Proof. (1) By Definition 2.4.1 the function F respects addition. By the definition
of a functor, it respects multiplication and units.
(2) Immediate from the definitions, like (1).
(3) Combine part (1) with Proposition 2.2.9. �

Definition 2.4.6. Let F : M → N be an additive functor between abelian cate-
gories.

(1) F is called left exact if it commutes with kernels. Namely for any morphism
φ : M0 →M1 in M, with kernel k : K →M0, the morphism F (k) : F (K)→
F (M0) is a kernel of F (φ) : F (M0)→ F (M1).

(2) F is called right exact if it commutes with cokernels. Namely for any
morphism φ : M0 → M1 in M, with cokernel c : M1 → C, the morphism
F (c) : F (M1)→ F (C) is a cokernel of F (φ) : F (M0)→ F (M1).

(3) F is called exact if it is both left exact and right exact.

This is illustrated in the following diagrams. Suppose φ : M0 → M1 is a mor-
phism in M, with kernel K and cokernel C. Applying F to the diagram

K
k // M0

φ
// M1

c // C

we get the solid arrows in

F (K)
F (k)

//

ψ
%%

F (M0)
F (φ)

// F (M1)

��

F (c)
// F (C)

KerN(F (φ))

OO

CokerN(F (φ))

χ

88

Because N is abelian, we get the vertical dashed arrows: the kernel and cokernel
of F (φ). The slanted dashed arrows exist and are unique because F (φ) ◦ F (k) = 0
and F (c) ◦ F (φ) = 0. Left exactness requires ψ to be an isomorphism, and right
exactness requires χ to be an isomorphism.

Definition 2.4.7. Let M be an abelian category. An exact sequence in M is a
diagram

· · · →M0
φ0−→M1

φ1−→M2 → · · ·
(finite or infinite on either side), such that for every index i for which φi−1 and
φi are both defined, the composition φi ◦ φi−1 is zero, and the induced morphism
Im(φi−1)→ Ker(φi) is an isomorphism.
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A short exact sequence is as exact sequence of the form

(2.4.8) 0→M0
φ0−→M1

φ1−→M2 → 0.

Proposition 2.4.9. Let F : M → N be an additive functor between abelian cate-
gories.

(1) The functor F is left exact iff for every short exact sequence (2.4.8) in M,
the sequence

0→ F (M0) F (φ0)−−−−→ F (M1) F (φ0)−−−−→ F (M2)

is exact in N.
(2) The functor F is right exact iff for every short exact sequence (2.4.8) in M,

the sequence

F (M0) F (φ0)−−−−→ F (M1) F (φ1)−−−−→ F (M2)→ 0

is exact in N.

Exercise 2.4.10. Prove Proposition 2.4.9. (Hint: M0 ∼= Ker(M1 →M2) etc.)

Example 2.4.11. Let A be a commutative ring, and let M be a fixed A-module.
Define functors F,G : ModA → ModA and H : (ModA)op → ModA like this:
F (N) := M ⊗A N , G(N) := HomA(M,N) and H(N) := HomA(N,M). Then F is
right exact, and G and H are left exact.

Proposition 2.4.12. Let F : M→ N be an additive functor between abelian cate-
gories. If F is an equivalence then it is exact.

Proof. We will prove that F respects kernels; the proof for cokernels is similar.
Take a morphism φ : M0 →M1 in M, with kernel K. We have this diagram (solid
arrows):

M

ψ

��

θ

!!

K
k // M0

φ
// M1

Applying F we obtain this diagram (solid arrows):

N = F (M)

F (ψ)
��

θ̄

&&

F (K)
F (k)

// F (M0)
F (φ)

// F (M1)

in N. Suppose θ̄ : N → F (M0) is a morphism in N s.t. F (φ) ◦ θ̄ = 0. Since F
is essentially surjective on objects, there is some M ∈ M with an isomorphism
α : F (M) '−→ N . After replacing N with F (M) and θ̄ with θ̄ ◦ α, we can assume
that N = F (M).

Now since F is fully faithful, there is a unique θ : M → M0 s.t. F (θ) = θ̄;
and φ ◦ θ = 0. So there is a unique ψ : M → K s.t. θ = k ◦ ψ. It follows that
F (ψ) : F (M)→ F (K) is the unique morphism s.t. θ̄ = F (k) ◦ F (ψ). �

Here is a result that could afford another proof of the previous proposition.
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Proposition 2.4.13. Let F : M → N be an additive functor between linear cate-
gories. Assume F is an equivalence, with quasi-inverse G. Then G : N→ M is an
additive functor.

Exercise 2.4.14. Prove Proposition 2.4.13.

We end this subsection with a discussion of contravariant functors. Suppose M
and N are linear categories. A contravariant functor F : M → N is said to be
additive if it satisfies the condition in Definition 2.4.1, with the obvious changes.

Proposition 2.4.15. Let M and N be linear categories. Put on Mop the canonical
linear structure (see Proposition 2.3.20).

(1) The functor Op : M→ Mop is an additive contravariant functor.
(2) If F : M→ N is an additive contravariant functor, then F ◦Op : Mop → N

is an additive functor; and vice versa.

Exercise 2.4.16. Prove Proposition 2.4.15.

In view of Proposition 2.4.9, we can give an unambiguous definition of left and
right exact contravariant functors. Let F : M → N be an additive contravariant
functor between abelian categories. We call F a left exact contravariant functor if
for any short exact sequence (2.4.8) in M, the sequence

0→ F (M2) F (φ1)−−−−→ F (M1) F (φ0)−−−−→ F (M0)
in N is exact. The functor is a right exact contravariant functor if the same holds,
except that the 0 is on the right side. And F is an exact contravariant functor if it
sends any short exact sequence (2.4.8) to a short exact sequence.

Proposition 2.4.17. Let M and N be abelian categories. Recall that Mop is also
an abelian category.

(1) The functor Op : M→ Mop is an exact contravariant functor.
(2) If F : M → N is an exact contravariant functor, then F ◦ Op : Mop → N

is an exact functor; and vice versa. Likewise for left exactness and right
exactness.

Exercise 2.4.18. Prove Proposition 2.4.17.

Sometimes M and Mop are equivalent as abelian categories, as the next exercise
shows. For a counterexample see Remark 2.6.21 below.

Exercise 2.4.19. Let K be a field, and consider the category M := Modf K of
finitely generated K-modules (traditionally known as “finite dimensional vector
spaces over K”). This is a K-linear abelian category. Find a K-linear equivalence
F : Mop → M.

2.5. Projective Objects. In this subsection M is an abelian category.
A splitting of an epimorphism ψ : M → M ′′ in M is a morphism α : M ′′ → M

s.t. ψ ◦ α = 1M ′′ . A splitting of a monomorphism φ : M ′ → M is a morphism
β : M →M ′ s.t. β ◦ φ = 1M ′ . A splitting of a short exact sequence

(2.5.1) 0→M ′
φ−→M

ψ−→M ′′ → 0
is a splitting of the epimorphism ψ, or equivalently a splitting of the monomorphism
φ. The short exact sequence is said to be split if it has some splitting.
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Exercise 2.5.2. Show how to get from a splitting of φ to a splitting of ψ, and vice
versa. Show how any of those gives rise to an isomorphism M ∼= M ′ ⊕M ′′.

Definition 2.5.3. An object P ∈ M is called a projective object if for any morphism
γ : P → N and any epimorphism ψ : M � N , there exists a morphism γ̃ : P → N
such that ψ ◦ γ̃ = γ.

This is described in the following commutative diagram in M :

P

γ

��

γ̃

~~

M
ψ
// // N

Proposition 2.5.4. The following conditions are equivalent for P ∈ M:
(i) P is projective.
(ii) The additive functor

HomM(P,−) : M→ Ab

is exact.
(iii) Any short exact sequence (2.5.1) with M ′′ = P is split.

Proof. Exercise. �

Definition 2.5.5. We say M has enough projectives if every M ∈ M admits an
epimorphism P →M from a projective object P .

Exercise 2.5.6. Let A be a ring.
(1) Prove that an A-module P is projective iff it is a direct summand of a free

module; i.e. P ⊕ P ′ ∼= Q for some module P ′ and free module Q.
(2) Prove that the category ModA has enough projectives.

Exercise 2.5.7. Let M be the category of finite abelian groups. Prove that the
only projective object in M is 0. So M does not have enough projectives. (Hint:
use Proposition 2.5.4.)

Example 2.5.8. Consider the scheme X := P1
K, the projective line over a field

K. (If the reader prefers, he/she can assume K is algebraically closed, so X is
a classical algebraic variety.) The structure sheaf (sheaf of functions) is OX . The
category CohOX of coherent OX -modules is abelian (it is a full abelian subcategory
of ModOX , cf. Example 2.3.18). One can show that the only projective object of
CohOX is 0, but this is quite involved.

Let us only indicate why OX is not projective. Denote by t0, t1 the homogeneous
coordinates of X. These belong to Γ(X,OX(1)), so each determines a homomor-
phism of sheaves tj : OX(i)→ OX(i+ 1). We get a sequence

0→ OX(−2) [ t0 t1 ]−−−−→ OX(−1)2

[−t1
t0

]
−−−−→ OX → 0

in CohOX , which is known to be exact. Because Γ(X,OX) = K, and Γ(X,OX(−1))
= 0, this sequence is not split.
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2.6. Injective Objects. In this subsection M is an abelian category.

Definition 2.6.1. An object I ∈ M is called an injective object if for any morphism
γ : M → I and anymonomorphism ψ : M � N , there exists a morphism γ̃ : N → I
such that γ̃ ◦ ψ = γ.

This is depicted in the following commutative diagram in M :

I

M

γ

OO

//
ψ
// N

γ̃

``

Proposition 2.6.2. The following conditions are equivalent for I ∈ M:
(i) I is injective.
(ii) The additive functor

HomM(−, I) : Mop → Ab
is exact.

(iii) Any short exact sequence (2.5.1) with M ′ = I is split.

Exercise 2.6.3. Prove Proposition 2.6.2.

Recall that Op : M→ Mop is an exact functor.

Proposition 2.6.4. An object J ∈ M is injective if and only if the object Op(J) ∈
Mop is projective.

Exercise 2.6.5. Prove Proposition 2.6.4.

Example 2.6.6. Let A be a ring. Unlike projectives, the structure of injective
objects in ModA is very complicated, and not much is known (except that they
exist). However if A is a commutative noetherian ring then we know this: every
injective module I is a direct sum of indecomposable injective modules; and the
indecomposables are parametrized by Spec(A), the set of prime ideals of A. These
facts are due to Matlis; see Subsection 13.3 in the book.

Definition 2.6.7. We say M has enough injectives if every M ∈ M admits a
monomorphism M → I to an injective object I.

Here are a few results about injective objects. Recall that modules over a ring
are always left modules by default.

Proposition 2.6.8. Let f : A → B be a ring homomorphism, and let I be an
injective A-module. Then J := HomA(B, I) is an injective B-module.

Proof. Note that B is a left A-module via f , and a right B-module. This makes J
into a left B-module. In a formula: for φ ∈ J and b, b′ ∈ B we have (b ·φ)(b′) =
φ(b′ · b).

Now given any N ∈ ModB there is an isomorphism
(2.6.9) HomB(N, J) = HomB(N,HomA(B, I)) ∼= HomA(N, I).
This is a natural isomorphism (of functors in N). So the functor HomB(−, J) is
exact, and hence J is injective. �
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Theorem 2.6.10 (Baer Criterion). Let A be a ring and I an A-module. Assume
that every A-module homomorphism a → I from a left ideal a ⊆ A extends to a
homomorphism A→ I. Then the module I is injective.

Proof. Consider an A-module M , a submodule N ⊆ M , and a homomorphism
γ : N → I. We have to prove that γ extends to a homomorphism M → I. Look
at the pairs (N ′, γ′) consisting of a submodule N ′ ⊆ M that contains N , and a
homomorphism γ′ : N ′ → I that extends γ. The set of all such pairs is ordered by
inclusion, and it satisfies the conditions of Zorn’s Lemma. Therefore there exists a
maximal pair (N ′, γ′). We claim that N ′ = M .

Otherwise, there is an element m ∈ M that does not belong to N ′. Define
N ′′ := N ′ +A ·m, so N ′ ( N ′′ ⊆M . Let

a := {a ∈ A | a ·m ∈ N ′},
which is a left ideal of A. There is a short exact sequence

0→ a
α−→ N ′ ⊕A→ N ′′ → 0

of A-modules, where α(a) := (a ·m,−a). Let φ : a → I be the homomorphism
φ(a) := γ′(a ·m). By assumption, it extends to a homomorphism φ̃ : A → I. We
get a homomorphism

γ′ + φ̃ : N ′ ⊕A→ I

that vanishes on the image of α. Thus there is an induced homomorphism γ′′ :
N ′′ → I. This contradicts the maximality of (N ′, γ′). �

Lemma 2.6.11. The Z-module Q/Z is injective.

Proof. By the Baer criterion, it is enough to consider a homomorphism γ : a→ Q/Z
for an ideal a = n ·Z ⊆ Z. We may assume that n 6= 0. Say γ(n) = r + Z with
r ∈ Q. Then we can extend γ to γ̃ : Z→ Q/Z with γ̃(1) := r/n+ Z. �

Lemma 2.6.12. Let {Ix}x∈X be a collection of injective objects of M. If the product∏
x∈X Ix exists in M, then it is an injective object.

Proof. Exercise. �

Theorem 2.6.13. Let A be any ring. The category ModA has enough injectives.

Proof. Step 1. Here A = Z. Take any nonzero Z-module M and any nonzero m ∈
M . Consider the cyclic submodule M ′ := Z ·m ⊆ M . There is a homomorphism
γ′ : M ′ → Q/Z s.t. γ′(m) 6= 0. Indeed, if M ′ ∼= Z, then we take any r ∈ Q − Z;
and if M ′ ∼= Z/(n) for some n > 0, then we take r := 1/n. In either case, we
define γ′(m) := r + Z ∈ Q/Z. Since Q/Z is an injective Z-module, γ′ extends to a
homomorphism γ : M → Q/Z. By construction we have γ(m) 6= 0.
Step 2. Now A is any ring, M is any nonzero A-module, and m ∈ M a nonzero
element. Define the A-module I := HomZ(A,Q/Z), which, according to Lemma
2.6.11 and Proposition 2.6.8, is an injective A-module. Let γ : M → Q/Z be a Z-
linear homomorphism such that γ(m) 6= 0. Such γ exists by step 1. Let θ : I → Q/Z
be the Z-linear homomorphism that sends an element χ ∈ I to χ(1) ∈ Q/Z. The
adjunction formula (2.6.9) gives an A-module homomorphism ψ : M → I s.t.
θ ◦ ψ = γ. We note that (θ ◦ ψ)(m) = γ(m) 6= 0, and hence ψ(m) 6= 0.
Step 3. Here A and M are arbitrary. Let I be as in step 2. For any nonzero
m ∈ M there is an A-linear homomorphism ψm : M → I such that ψm(m) 6= 0.
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For m = 0 let ψ0 : M → I be an arbitrary homomorphism (e.g. ψ0 = 0). Define the
A-module J :=

∏
m∈M I. There is a homomorphism ψ :=

∏
m∈M ψm : M → J , and

it is easy to check that ψ is a monomorphism. By Lemma 2.6.12, J is an injective
A-module. �

Exercise 2.6.14. At the price of getting a bigger injective module, we can make
the construction of injective resolutions functorial. Let I := HomZ(A,Q/Z) as
above. Given an A-module M , consider the set

X(M) := HomA(M, I) ∼= HomZ(M,Q/Z).
Let J(M) :=

∏
ψ∈X(M) I. There is a “tautological” homomorphism φM : M →

J(M). Show that φM is a monomorphism, J : M 7→ J(M) is a functor, and
φ : Id→ J is a natural transformation.

Is the functor J : ModA→ ModA additive?

Example 2.6.15. Let N be the category of torsion abelian groups, and M the
category of finite abelian groups. Then N ⊆ Ab and M ⊆ N are full abelian
subcategories. M has no projectives nor injectives except 0 (see Exercise 2.5.7
regarding projectives). The only projective in N is 0. However, it can be shown
that N has enough injectives; see [Har, Lemma III.3.2] or [Ye1, Proposition 4.6].

Proposition 2.6.16. If A is a left noetherian ring, then any direct sum of injective
A-modules is an injective module.

Exercise 2.6.17. Prove Proposition 2.6.16. (Hint: use the Baer criterion.)

Exercise 2.6.18. Here we study injectives in the category Ab = ModZ. By Lemma
2.6.11, the module I := Q/Z is injective. For a (positive) prime number p, we denote
by Ẑp the ring of p-adic integers, and by Q̂p its field of fractions (namely the p-adic
completions of Z and Q respectively). Define the abelian group Ip := Q̂p/Ẑp.

(1) Show that Ip is an injective object of Ab.
(2) Show that Ip is indecomposable (i.e. it is not the direct sum of two nonzero

objects).
(3) Show that I ∼=

⊕
p Ip.

(4) The theory (see Subsection 13.3) tells us that there is another indecompos-
able injective object in Ab, besides the Ip. Try to identify it.

Remark 2.6.19. Let K be a field and A := K[t], the polynomial ring in one
variable. As we very well know, the categories ModA and ModZ share many
properties. Let A∗ := HomK(A,K), which is an injective A-module (because K is
an injective K-module). The structure of A∗, as a direct sum of indecomposable
injectives, was used to cook up a counterexample in [Ye5, Section 6].

The abelian category ModA associated to a ringed space (X,A) was introduced
in Example 2.3.18.

Proposition 2.6.20. Let (X,A) be a ringed space. The category ModA has enough
injectives.

Proof. Let M be an A-module. Take a point x ∈ X. The stalk Mx is a module
over the ring Ax, and by Theorem 2.6.13 we can find an embedding φx :Mx → Ix
into an injective Ax-module. Let gx : {x} → X be the inclusion, which we may view
as a map of ringed spaces from ({x},Ax) to (X,A). Define Ix := gx∗(Ix), which is
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an A-module (in fact it is a constant sheaf supported on the closed set {x} ⊆ X).
The adjunction formula gives rise to a sheaf homomorphism ψx : M→ Ix. Since
the functor g∗x : ModA → ModAx is exact, the adjunction formula shows that Ix
is an injective object of ModA.

Finally let J :=
∏
x∈X Ix. This is an injective A-module. There is a homo-

morphism ψ :=
∏
x∈X ψx : M → J in ModA. This is a monomorphism, since

for every point x, letting Jx be the stalk of the sheaf J at x, the composition
Mx

ψx−−→ Jx
px−→ Ix is the embedding φx :Mx → Ix. �

Remark 2.6.21. Let A be a ring, and consider the abelian category M = ModA,
the category of A-modules. A reasonable question to ask is this: Are the abelian
categories M and Mop equivalent? The answer is most likely negative, but we do
not know a reference for it.

We do know that this is false for A = Z. Note that in this case ModZ = Ab.
Here is a proof that there does not exist an additive equivalence F : Abop → Ab.
Suppose we had such an equivalence. Consider the object M := Z ∈ Ab, and let
N := F (M) ∈ Ab. Because M is an indecomposable projective object, and F :
Ab→ Ab is a contravariant equivalence, the object N has to be an indecomposable
injective. The endomorphism rings are

EndAb(N) ∼= EndAb(M)op = Zop = Z.
However, the structure theorem for injectives over commutative noetherian rings
(Theorem 13.3.14) says that the only indecomposable injectives in ModZ = Ab are
N = Q̂p/Ẑp and N = Q; and their endomorphism rings are Ẑp and Q respectively.
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3. Differential Graded Algebra

In this section we fix a nonzero commutative base ring K (e.g. the ring of integers
Z or a field). Throughout, “DG” stands for “differential graded”.

There is some material about DG algebra in a few published references, such as
the book [Mac1] and the papers [Kel] and [To]. However, for our purposes we need
a much more detailed understanding of this theory, and this is what the present
section provides.

3.1. Graded Algebra. Before entering the DG world, it is good to understand
the graded world.

A graded K-module is a K-module M equipped with a decomposition M =⊕
i∈ZM

i into K-submodules. The K-module M i is called the degree i component
of M . The elements of M i are called homogeneous elements of degree i.

Suppose M and N are graded K-modules. For any integer i let

(M ⊗K N)i :=
⊕
j∈Z

(M j ⊗K N
i−j).

Then

(3.1.1) M ⊗K N =
⊕
i∈Z

(M ⊗K N)i,

is a graded K-module.
A K-linear homomorphism φ : M → N is said to be of degree i if φ(M j) ⊆ N j+i

for all j. We denote by HomK(M,N)i the K-module of degree i homomorphisms
M → N . In other words

HomK(M,N)i =
∏
j∈Z

HomK(M j , N j+i).

Then

(3.1.2) HomK(M,N) :=
⊕
i∈Z

HomK(M,N)i

is a graded K-module. A degree 0 homomorphism φ : M → N is sometimes called
a strict homomorphism of graded K-modules.

If M0,M1,M2 are graded K-modules, and φk : Mk−1 →Mk are K-linear homo-
morphisms of degrees ik, then φ2 ◦ φ1 : M0 → M2 is a K-linear homomorphism of
degree i1 + i2. The identity automorphism 1M : M →M has degree 0.

A graded ring is a ring A, equipped with a decomposition as an abelian group
A =

⊕
i∈ZA

i, such that the unit element 1 ∈ A0, and Ai ·Aj ⊆ Ai+j . A central
graded K-ring is a graded ring A, together with a ring homomorphism K → A0,
such that the image of K is central in A (i.e. λ · a = a ·λ for all λ ∈ K and a ∈ A).
A homomorphism of central graded K-rings f : A → B is a ring homomorphism
that respects the gradings and the homomorphisms from K. As always for ring
homomorphisms, f must preserve units, i.e. f(1A) = 1B .

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Example 3.1.3. Let M be a graded K-module. Then the graded module

EndK(M) := HomK(M,M),

with the operation of composition, is a central graded K-ring.

Let A be a graded ring. A pair of homogeneous elements a ∈ Ai and b ∈ Aj are
said to graded-commute with each other if

(3.1.4) b · a = (−1)i · j · a · b.

This formula is the prototype of the Koszul sign rule, which is a heuristic that helps
generate consistent multilinear formulas in the graded setting. The Koszul sign rule
is best demonstrated in examples.

Example 3.1.5. Suppose that for k = 0, 1 we are given graded K-module homo-
morphisms φk : Mk → Nk of degrees ik. Then the homomorphism

φ0 ⊗ φ1 ∈ HomK(M0 ⊗K M1, N0 ⊗K N1)i0+i1

acts on a tensor m0 ⊗m1 ∈M0 ⊗K M1, with mk ∈M jk
k , like this:

(φ0 ⊗ φ1)(m0 ⊗m1) := (−1)i1 · j0 ·φ0(m0)⊗ φ1(m1) ∈ N0 ⊗K N1.

The sign is because φ1 and m0 were transposed.

Example 3.1.6. Suppose we are given graded K-module homomorphisms φ0 :
N0 →M0 and φ1 : M1 → N1 of degrees i0 and i1. Then the homomorphism

Hom(φ0, φ1) ∈ HomK
(
HomK(M0,M1),HomK(N0, N1)

)i0+i1

acts on γ ∈ HomK(M0,M1)j as follows: for an element n0 ∈ Nk
0 we have

Hom(φ0, φ1)(γ)(n0) := (−1)i0 · (i1+j)(φ1 ◦ γ ◦ φ0)(n0) ∈ Nk+i0+i1+j
1 .

The sign is because φ0 jumped across φ1 and γ.

Example 3.1.7. Let A and B be central graded K-rings. Then A⊗KB is a central
graded K-ring, with multiplication

(a0 ⊗ b0) · (a1 ⊗ b1) := (−1)i1 · j0 · (a0 · a1)⊗ (b0 · b1)

for elements ak ∈ Aik and bk ∈ Bjk .

Example 3.1.8. The Koszul sign rule influences the meaning of commutativity for
graded rings. A graded ring A is called weakly commutative if any two homogeneous
elements in it graded-commute with each other.

There is a stronger notion of commutativity, that is not directly related to the
Koszul sign rule. We call a graded ring A strongly commutative if besides being
weakly commutative, it also has this property: if a ∈ Ai and i is odd, then a2 = 0.
See Definition 14.5.5 and the remark following it.

Exercise 3.1.9. LetA be a central gradedK-ring. A homogeneous element a ∈ A is
called graded-central if it graded-commutes with all other homogeneous elements.
The graded center of A is the K-linear span of all graded-central homogeneous
elements in A. Let us denote it by Cent(A). Show that Cent(A) is a graded
subring of A; it is weakly commutative; and it contains the image of K.
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Let A be a central graded K-ring. A graded left A-module is a left A-module
M , equipped with a K-module decomposition M =

⊕
i∈ZM

i, such that Ai ·M j ⊆
M i+j . We can also talk about graded right A-modules, and graded bimodules. But
our default option is that modules are left modules.

If M is a graded K-module, A is a central graded K-ring, and f : A→ EndK(M)
is a graded K-ring homomorphism, then M becomes a graded A-module, with
action a ·m := f(a)(m). Any graded A-module structure on M arises this way.

Lemma 3.1.10. Let A be a central graded K-ring, let M be a right graded A-
module, and let N be a left graded A-module. Then the K-module M ⊗A N has a
direct sum decomposition

M ⊗A N =
⊕
i∈Z

(M ⊗A N)i,

where (M ⊗A N)i is the K-linear span of the tensors m ⊗ n with m ∈ M j and
n ∈ N i−j.

Proof. There is a canonical surjection of K-modules
M ⊗K N →M ⊗A N.

Its kernel is the K-submodule L ⊆M ⊗K N generated by the elements
(m · a)⊗ n−m⊗ (a ·n),

for m ∈ M j , n ∈ Nk and a ∈ Al. So L is a graded submodule of M ⊗K N ,
and therefore so is the quotient. Finally, by formula (3.1.1) the i-th homogeneous
component of M ⊗A N is precisely (M ⊗A N)i. �

Definition 3.1.11. Let A be a central graded K-ring, and let M,N be graded
A-modules. For any i ∈ Z define HomA(M,N)i to be the subset of HomK(M,N)i
consisting of the homomorphisms φ : M → N such that

φ(a ·m) = (−1)i · k · a ·φ(m)
for all a ∈ Ak. Next let

HomA(M,N) :=
⊕
i∈Z

HomA(M,N)i.

Suppose C is a K-linear category (Definition 2.1.1). Since the composition of
morphisms is K-bilinear, for any triple of objects M0,M1,M2 ∈ C, composition can
be expressed as a K-linear homomorphism

HomC(M1,M2)⊗K HomC(M0,M1) −→ HomC(M0,M2)
φ1 ⊗ φ0 7→ φ1 ◦ φ0.

We refer to it as the composition homomorphism. It will be used in the following
definition.

Definition 3.1.12. A graded K-linear category is a K-linear category C, endowed
with a grading on each of the K-modules HomC(M0,M1). The conditions are these:

(a) For any object M , the identity automorphism 1M has degree 0.
(b) For any triple of objects M0,M1,M2 ∈ C, the composition homomorphism

HomC(M1,M2)⊗K HomC(M0,M1) −→ HomC(M0,M2)
is a strict homomorphism of graded K-modules.

37



Derived Categories | Amnon Yekutieli 24 June 2017 | part1_170617d3.tex

In item (b) we use the graded module structure on a tensor product from equation
(3.1.1). A morphism φ ∈ HomC(M0,M1)i is called a morphism of degree i.

Definition 3.1.13. Let C be a graded K-linear category. The strict subcategory of
C is the subcategory C0 on all objects of C, but the morphisms are only the degree
0 morphisms.

Example 3.1.14. Let A be a central graded K-ring. Define GModA to be the
category whose objects are the graded A-modules. For M,N ∈ GModA, the set of
morphisms is the graded K-module

HomGModA(M,N) := HomA(M,N)
from Definition 3.1.11. Then GModA is a graded K-linear category. The morphisms
in the subcategory GMod0A := (GModA)0 are the strict homomorphisms of graded
A-modules, as defined earlier in thie subsection. We often write G(A) := GModA
and G0(A) := GMod0A.

Definition 3.1.15. Let C and D be graded K-linear categories. A functor F : C→
D is called a graded K-linear functor if it satisfies this condition:

B For any pair of objects M0,M1 ∈ C, the function
F : HomC(M0,M1)→ HomD

(
F (M0), F (M1)

)
is a strict homomorphism of graded K-modules.

Example 3.1.16. Let A be a central graded K-ring. We can view A as a category
A with a single object, and it is a K-linear graded category. If f : A → B is a
homomorphism of central graded K-rings, then passing to single-object categories
we get a K-linear graded functor F : A→ B.

Recall that “morphism of functors” is synonymous with “natural transforma-
tion”.

Definition 3.1.17. Let F,G : C→ D be K-linear graded functors between K-linear
graded categories, and let i ∈ Z. A degree i morphism of graded functors η : F → G
is a collection η = {ηM}M∈C of morphisms

ηM ∈ HomD
(
F (M), G(M)

)i
,

such that for any morphism φ ∈ HomC(M0,M1)j , there is equality

G(φ) ◦ ηM0 = (−1)i · j · ηM1 ◦ F (φ)
inside

HomD
(
F (M0), G(M1)

)i+j
.

Definition 3.1.18. Let M be a K-linear abelian category. A graded object in M is
a collection {M i}i∈Z of objects M i ∈ M.

Because we did not assume that M has countable direct sums, the graded objects
are “external” to M; cf. Example 3.1.22.

Suppose M = {M i}i∈Z and N = {N i}i∈Z are graded objects in M. For any
integer i we define the K-module

(3.1.19) HomM(M,N)i :=
∏
j∈Z

HomM(M j , N j+i).
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We get a graded K-module

(3.1.20) HomM(M,N) :=
⊕
i∈Z

HomM(M,N)i.

Definition 3.1.21. Let M be a K-linear abelian category. The category of graded
objects in M is the K-linear graded category G(M), whose objects are the graded
objects in M, and the morphism sets are the graded modules

HomG(M)(M,N) := HomM(M,N)
from equation (3.1.20). The composition operation is the obvious one.

Example 3.1.22. Suppose M = ModA, the category of modules over a central
K-ring A. For any M = {M i}i∈Z ∈ G(M) let F (M) :=

⊕
i∈ZM

i. Then F (M) is a
graded A-module, as discussed earlier, so F (M) is an object of the category G(A)
from Example 3.1.14. It is not hard to verify that

F : G(M)→ G(A)
is an isomorphism of K-linear graded categories.

In the next definition we combine graded rings and linear categories, to concoct
a new hybrid.

Definition 3.1.23. Let M be a K-linear abelian category, and let A be a central
graded K-ring. A graded A-module in M is an object M ∈ G(M), together with
graded K-ring homomorphism f : A→ EndM(M).

What the definition says is that any element a ∈ Ai gives rise to a degree i
endomorphism f(a) of the graded object M = {M i}i∈Z. In turn, this means that
for every j, f(a) : M j → M j+i is a morphism in M. The operation f satisfies
f(1A) = 1M and f(a1 · a2) = f(a1) ◦ f(a2)

Example 3.1.24. If A = K, then G(A,M) = G(M); and if M = ModK, then
G(A,M) = G(A).

The next definition is a variant of Definition 3.1.11.

Definition 3.1.25. Let M be a K-linear abelian category, and let A be a central
graded K-ring. For M,N ∈ G(A,M) and i ∈ Z we define HomA,M(M,N)i to be the
subset of HomM(M,N)i consisting of the morphisms φ : M → N such that

φ ◦ fM (a) = (−1)i · k · fN (a) ◦ φ
for all a ∈ Ak. Next let

HomA,M(M,N) :=
⊕
i∈Z

HomA,M(M,N)i.

This is a graded K-module.

Definition 3.1.26. Let M be a K-linear abelian category, and let A be a central
graded K-ring. The category of graded A-modules in M is the K-linear graded
category G(A,M) whose objects are the graded A-modules in M, and the morphism
sets are the graded K-modules

HomG(A,M)(M0,M1) := HomA,M(M0,M1)
from Definition 3.1.25.
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Notice that forgetting the action of A is a faithful K-linear graded functor
G(A,M)→ G(M). As in any graded category, there is the subcategory G0(A,M) ⊆
G(A,M) of strict morphisms.

Exercise 3.1.27. Show that G0(A,M) is an abelian category.

Remark 3.1.28. The reader may have noticed that we can talk about the graded
category G(M) for any K-linear category M, regardless if it is abelian or not. We
chose to restrict attention to the abelian case for a pedagogical reason: this will
hopefully reduce confusion between the many sorts of graded (and later DG) cate-
gories that occur in our discussion.

3.2. DG K-modules.

Definition 3.2.1. A DG K-module is a graded K-moduleM =
⊕

i∈ZM
i, together

with a K-linear operator dM : M →M of degree 1, called the differential, satisfying
dM ◦ dM = 0.

When there is no danger of confusion, we may write d instead of dM .

Definition 3.2.2. Let M and N be DG K-modules. A strict homomorphism of
DG K-modules is a K-linear homomorphism φ : M → N that commutes with
the differentials and respects the gradings. The resulting category is denoted by
DGModstrK.

It is easy to see that DGModstrK is a K-linear abelian category. We shall some-
times use the notation Cstr(K) := DGModstrK.

Remark 3.2.3. The name “strict morphism of DG modules”, and the correspond-
ing notation DGModstrK, are new. We introduced them to distinguish the abelian
category DGModstrK from the DG category DGModK that contains it; cf. Defini-
tions 3.4.1 and 3.4.4.

Suppose M and N are DG K-modules. Their tensor product M ⊗K N was
defined, as a graded module, in equation (3.1.1). We put on it the differential

(3.2.4) d(m⊗ n) := dM (m)⊗ n+ (−1)i ·m⊗ dN (n)
for m ∈ M i and n ∈ N j . In this way M ⊗K N becomes a DG K-module. We
sometimes write dM⊗KN for the differential.

The graded module HomK(M,N) was introduced in equation (3.1.2). There is
a differential on it:
(3.2.5) d(φ) := dN ◦ φ− (−1)i ·φ ◦ dM
for φ ∈ HomK(M,N)i. When we need to emphasize where d acts, we sometimes
denote it by dHomK(M,N).

Let M be a DG K-module. The module of degree i cocycles of M is
(3.2.6) Zi(M) := Ker(d|Mi) ⊆M i,

and the module of degree i coboundaries is
(3.2.7) Bi(M) := Im(d|Mi−1) ⊆M i.

Since d ◦ d = 0 we have Bi(N) ⊆ Zi(N). The i-th cohomology is

(3.2.8) Hi(M) := Zi(M)/Bi(M).
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These are all K-modules, and in fact they are functors
Zi,Bi,Hi : DGModstrK→ ModK.

Rephrasing Definition 3.2.2, for DG K-modules M and N there is equality
(3.2.9) HomDGModstr K(M,N) = Z0(HomK(M,N)

)
of submodules of HomK(M,N).

3.3. DG Rings and Modules.
Definition 3.3.1. A DG ring is a graded ring A =

⊕
i∈ZA

i, together with an
operator dA : A → A of degree 1 called the differential, satisfying the equation
dA ◦ dA = 0, and the graded Leibniz rule

dA(a · b) = dA(a) · b+ (−1)i · a ·dA(b)
for all a ∈ Ai and b ∈ Aj .

We sometimes write d instead of dA.
Definition 3.3.2. Let A and B be DG rings. A homomorphism of DG rings
f : A → B is a ring homomorphism that commutes with the differentials and
respects the gradings. The resulting category is denoted by DGRing.

Rings are viewed as DG rings concentrated in degree 0 (and with trivial differ-
entials). Thus the category of rings Ring is a full subcategory of DGRing.
Definition 3.3.3. We say that A is a central DG K-ring if there is a given DG
ring homomorphism K→ A, whose image is central in A.

We denote by DGRing /ceK the category of central DG K-rings, in which the
morphisms f : A → B are the homomorphisms in DGRing that respect the given
structural homomorphisms from K.

Of course for K = Z we have DGRing /ceK = DGRing.
Let A be a central DG K-ring. From the definition it follows that the differential

dA is K-linear. Hence the image of K is contained in the Z0(A).
Here are few examples of DG rings. First a silly example.

Example 3.3.4. Let A be a central graded K-ring. Then A, with the trivial
differential, is a central DG K-ring.
Example 3.3.5. Let X be a differentiable (i.e. of type C∞) manifold over R. The
de Rham complex A of X is a central DG R-ring, with the wedge product and
the exterior differential. See [KaSc1, Section 2.9.7] for details. This is a strongly
commutative DG ring, in the sense of Example 3.1.8.

The next example is the algebraic analogue of the previous one.
Example 3.3.6. Let C be a commutative K-ring. Then the algebraic de Rham
complex A := ΩC/K =

⊕
p≥0 ΩpC/K is a central DG K-ring. It is also a strongly

commutative DG ring. See [Eis, Exercise 16.15] or [Mats, Section 25] for details.
Example 3.3.7. Let M be a DG K-module. Consider the DG K-module

EndK(M) := HomK(M,M).
Composition of endomorphisms is an associative multiplication on EndK(M) that
respects the grading, and the graded Leibniz rule holds. We see that EndK(M) is
a central DG K-ring.
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Example 3.3.8. Let C be a commutative ring and let c ∈ C be an element. The
Koszul complex of c is the DG C-module K(C; c) defined as follows. In degree 0
we let K0(C; c) := C. In degree −1, K−1(C; c) is a free C-module of rank 1, with
basis element x. All other homogeneous components are trivial. The differential
d is determined by what it does to the basis element x ∈ K−1(C; c), and we let
d(x) := c ∈ K0(C; c).

We want to make K(C; c) into a strongly commutative DG ring (in the sense of
Example 3.1.8). Since x is an odd element, this dictates the relation x2 = 0.
Example 3.3.9. Let A and B be central DG K-rings. The graded ring A ⊗K B
from Example 3.1.7, with the differential (3.2.4), is a central DG K-ring.
Example 3.3.10. Let C be a commutative ring and let c = (c1, . . . , cn) be a
sequence of elements in C. By combining Examples 3.3.8 and 3.3.9 we obtain the
Koszul complex

K(C; c) := K(C; c1)⊗C · · · ⊗C K(C; cn).
This is a strongly commutative DG C-ring. In the classical literature the multi-
plicative structure of K(C; c) has usually been ignored; see [Eis] and [Mats].
Definition 3.3.11. Let A be a central DG K-ring. The opposite DG ring Aop is
the same DG K-module as A, but the multiplication ·op is reversed and twisted by
signs:

a ·op b := (−1)i · j · b · a
for a ∈ Ai and b ∈ Aj .
Exercise 3.3.12. Verify that Aop is a central DG K-ring.

Note that A is weakly commutative iff A = Aop.
Definition 3.3.13. Let A be a central DG K-ring. A left DG A-module is a graded
left A-module M =

⊕
i∈ZM

i, with an operator dM : M → M of degree 1 called
the differential, satisfying dM ◦ dM = 0 and

dM (a ·m) = dA(a) ·m+ (−1)i · a ·dM (m)
for a ∈ Ai and m ∈M j .

Right DG A-modules are defined likewise, but we won’t deal with them much.
This is because right DG A-modules are left DG modules over the opposite DG
ring Aop. More precisely, if M is a right DG A-module, then the formula
(3.3.14) a ·m := (−1)i · j ·m · a,
for a ∈ Ai and m ∈M j , makes M in to a left DG Aop-module.

So we make this convention for the rest of the book, extending Convention
1.2.3(2):
Convention 3.3.15. By default, DG modules are left DG modules.
Proposition 3.3.16. Let A be a central DG K-ring, and let M be a DG K-module.

(1) Suppose f : A → EndK(M) is a DG K-ring homomorphism. Then the
formula a ·m := f(a)(m), for a ∈ Ai and m ∈ M j, makes M into a DG
A-module.

(2) Conversely, any DG A-module structure on M , that’s compatible with the
DG K-module structure, arises in this way from a DG K-ring homomor-
phism f : A→ EndK(M).

42



Derived Categories | Amnon Yekutieli 24 June 2017 | part1_170617d3.tex

Exercise 3.3.17. Prove this proposition.

Definition 3.3.18. Let M and N be DG A-modules. A strict homomorphism
of DG A-modules is a K-linear homomorphism φ : M → N that respects the
differentials, the gradings and the action of A. The resulting category is denoted
by DGModstrA.

We shall sometimes write Cstr(A) := DGModstrA.

Exercise 3.3.19. Let A be a DG ring. Show that the cocycles Z(A) :=
⊕

i∈Z Zi(A)
are a graded subring of A, and the coboundaries B(A) :=

⊕
i∈Z Bi(A) are a two-

sided ideal of Z(A). Conclude that the cohomology H(A) :=
⊕

i∈Z Hi(A) is a graded
ring.

Let f : A→ B be a homomorphism of DG rings. Show that H(f) : H(A)→ H(B)
is a graded ring homomorphism.

Exercise 3.3.20. Let A be a DG ring. Given a DG A-module M , show that its
cohomology H(M) is a graded H(A)-module. If φ : M → N is a homomorphism in
Cstr(A), then H(φ) : H(M)→ H(N) is a homomorphism in G0(H(A)).

Definition 3.3.21. Let A be a central DG K-ring, letM be a right DG A-module,
and let N be a left DG A-module. By Lemma 3.1.10,M⊗AN is a graded K-module.
We make it into a DG K-module with the differential from formula (3.2.4).

Definition 3.3.22. Let A be a central DG K-ring, and let M,N be left DG A-
modules. The graded K-module HomA(M,N) from Definition 3.1.11 is made into
a DG K-module with the differential from (3.2.5).

Generalizing formula (3.2.9), for DG A-modules M and N there is equality

HomCstr(A)(M,N) = Z0(HomA(M,N)
)
.

3.4. DG Categories. In Definition 3.1.12 we saw graded categories. Here is the
DG version.

Definition 3.4.1. A K-linear DG category is a K-linear category C, endowed with
a DG K-module structure on each of the morphism K-modules HomC(M0,M1).
The conditions are these:

(a) For any object M , the identity automorphism 1M is a degree 0 cocycle in
HomC(M,M).

(b) For any triple of objects M0,M1,M2 ∈ C, the composition homomorphism

HomC(M1,M2)⊗K HomC(M0,M1) −→ HomC(M0,M2)

is a strict homomorphism of DG K-modules.

Definition 3.4.2. Let C be a K-linear DG category.
(1) A morphism φ ∈ HomC(M,N)i is called a degree i morphism.
(2) A morphism φ ∈ HomC(M,N) is called a cocycle if d(φ) = 0.
(3) A morphism φ : M → N in C is called a strict morphism if it is a degree 0

cocycle.

Lemma 3.4.3. Let C be a K-linear DG category, and for i = 0, 1, 2 let φi : Mi →
Mi+1 be a morphism in C of degree ki.
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(1) The morphism φ1 ◦ φ0 has degree k0 + k1, and
d(φ1 ◦ φ0) = d(φ1) ◦ φ0 + (−1)k1 ·φ1 ◦ d(φ0).

(2) If φ0 and φ1 are cocycles, then so is φ1 ◦ φ0.
(3) If φ1 is a coboundary, and φ0 and φ2 are cocycles, then φ2 ◦ φ1 ◦ φ0 is a

coboundary.

Proof. (1) This is just a rephrasing of item (b) in Definition 3.4.1.
(2) This is immediate from (1).
(3) Say φ1 = d(ψ1) for some degree k1 − 1 morphism ψ1 : M1 →M2. Then

φ2 ◦ φ1 ◦ φ0 = d
(
(−1)k2 ·φ2 ◦ ψ1 ◦ φ0

)
.

�

The previous lemma makes the next definition possible.

Definition 3.4.4. Let C be a K-linear DG category.
(1) The strict category of C is the category Str(C) = Cstr, with the same objects

as C, but with strict morphisms only. Thus
HomStr(C)(M,N) = Z0(HomC(M,N)

)
.

(2) The homotopy category of C is the category Ho(C), with the same objects
as C, and with morphism sets

HomHo(C)(M,N) := H0(HomC(M,N)
)
.

(3) We denote by
P : Str(C)→ Ho(C)

the functor which is the identity on objects, and sends a strict morphism
to its homotopy class.

The categories Str(C) and Ho(C) are K-linear. The inclusion functor Str(C)→ C
and the functor P : Str(C)→ Ho(C) are K-linear. The first is faithful (injective on
morphisms), and the second is full (surjective on morphisms).

Example 3.4.5. If A is a K-linear DG category, then for every object x ∈ A, its set
of endomorphisms A := EndA(x) is a central DG K-ring. Conversely, any central
DG K-ring A can be viewed as a K-linear DG category with a single object.

Example 3.4.6. Let A be a central DG K-ring. The set of DG A-modules forms
a K-linear DG category DGModA, in which the morphism DG modules are

HomDGModA(M,N) := HomA(M,N)
from Definition 3.3.22. We shall often write C(A) := DGModA.

The strict category here is
Str(DGModA) = DGModstrA;

cf. Definition 3.3.18.

Here is a useful result, to be used later.

Proposition 3.4.7. Let φ : M → N be a degree i isomorphism in the K-linear DG
category C. Assume φ is a cocycle, namely d(φ) = 0. Then its inverse φ−1 : N →M
is also a cocycle.
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Proof. According the Leibniz rule (Lemma 3.4.3(1)), and the fact that 1M is a
cocycle, we have

0 = d(1M ) = d(φ−1 ◦ φ) = d(φ−1) ◦ φ+ (−1)−i ·φ−1 ◦ d(φ) = d(φ−1) ◦ φ.
Because φ is an isomorphism, we conclude that d(φ−1) = 0. �

Remark 3.4.8. The fact that the concept of “DG category” includes both DG
rings (Example 3.4.5) and DG modules over them (Example 3.4.6) is a source of
frequent confusion. See Remarks 3.1.28 and 3.7.7.

Remark 3.4.9. For other accounts of DG categories see the relatively old refer-
ences [Kel], [BoKa], or the recent [To]. An internet search can give plenty more
information, including the relation to simplicial and infinity categories.

In this book we shall be exclusively concerned with the categories C(A,M), to
be introduced in Subsection 3.7, that have a lot more structure than other DG
categories. See Remark 3.7.7 regarding the DG category C(A) = C(A,ModK) of
left DG modules over a K-linear DG category A, in the sense of [Kel].

3.5. DG Functors. Here C and D areK-linear DG categories (see Definition 3.4.1).
When we forget differentials, C and D become K-linear graded categories. So we
can talk about graded functors C→ D, as in Definition 3.1.15.

The differential of the DG K-module HomC(M0,M1), for objects M0,M1 ∈ C,
will be denoted by dC. Likewise in D.

Recall the meaning of a strict homomorphism of DG K-modules: it has degree
0 and commutes with the differentials.

Definition 3.5.1. Let C and D be K-linear DG categories. A functor F : C → D
is called a K-linear DG functor if it satisfies this condition:

B For any pair of objects M0,M1 ∈ C, the function
F : HomC(M0,M1)→ HomD

(
F (M0), F (M1)

)
is a strict homomorphism of DG K-modules.

In other words, F is a DG functor if it is a graded functor, and
(3.5.2) dD ◦ F = F ◦ dC

as degree 1 homomorphisms
HomC(M0,M1)→ HomD

(
F (M0), F (M1)

)
.

Example 3.5.3. Let f : A→ B be a homomorphism of central DG K-rings. Define
the DG categories C and D as follows: Ob(C) := {x}, EndC(x) := A, Ob(D) := {y}
and EndD(y) := B. Then f becomes a K-linear DG functor F : C→ D.

Other examples of DG functors, more relevant to our study, will be given in
Subsection 4.6.

Definition 3.5.4. Let F,G : C→ D be K-linear DG functors.
(1) A degree i morphism of DG functors η : F → G is a degree i morphism of

graded functors, as in Definition 3.1.17.
(2) Let η : F → G be a degree i morphism of DG functors. For any object

M ∈ C there is a degree i+ 1 morphism
dD(ηM ) : F (M)→ G(M)

45



Derived Categories | Amnon Yekutieli 24 June 2017 | part1_170617d3.tex

in D. We let
dD(η) :=

{
dD(ηM )

}
M∈C.

(3) A strict morphism of DG functors is a degree 0 morphism of graded functors
η : F → G such that dD(η) = 0.

Proposition 3.5.5. In the situation of Definition 3.5.4, the collection of mor-
phisms dD(η) is a degree i+ 1 morphism of DG functors F → G.

Exercise 3.5.6. Prove this proposition.

The categories Str(C) = Cstr and Ho(C) were introduced in Definition 3.4.4.

Proposition 3.5.7. Let F : C → D be a K-linear DG functor. Then F induces
K-linear functors

Str(F ) : Str(C)→ Str(D)
and

Ho(F ) : Ho(C)→ Ho(D).

Proof. Because F is a DG functor, it sends 0-cocycles in HomC(M0,M1) to 0-
cocycles in HomD(F (M0), F (M1)). The same for 0-coboundaries. �

By abuse of notation, and when there is no danger for confusion, we will some-
times write F instead of Str(F ) or Ho(F ).

Exercise 3.5.8. Let A and C be K-linear DG categories, and assume A is small.
Define DGFun(A,C) to be the set of K-linear DG functors F : A → C. Show that
DGFun(A,C) is a K-linear DG category, where the morphisms are from Definition
3.5.4(1), and their differentials are from Definition 3.5.4(2).

3.6. Complexes in Abelian Categories. Here we recall facts about complexes
from the classical homological theory, and place them within our context. In this
subsection M is a K-linear abelian category.

A complex of objects of M, or a complex in M, is a diagram

(3.6.1)
(
· · · →M−1 d−1

M−−→M0 d0
M−−→M1 d1

M−−→M2 → · · ·
)

of objects and morphisms in M, such that di+1
M ◦ diM = 0. The collection of objects

M := {M i}i∈Z is nothing but a graded object of M, as defined in Subsection 3.1.
The collection of morphisms dM := {diM}i∈Z is called a differential, or a coboundary
operator. Thus a complex is a pair (M, dM ) made up of a graded object M and a
differential dM on it. We sometimes write d instead of dM or diM . At other times
we leave the differential implicit, and just refer to the complex as M .

Let N be another complex in M. A strict morphism of complexes φ : M → N is
a collection φ = {φi}i∈Z of morphisms φi : M i → N i in M, such that
(3.6.2) diN ◦ φi = φi+1 ◦ diM .
Note that a strict morphism φ : M → N can be viewed as a commutative diagram

· · · // M i
diM //

φi

��

M i+1 //

φi+1

��

· · ·

· · · // N i
diN // N i+1 // · · ·

in M. The identity automorphism 1M of the complex M is a strict morphism.
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Remark 3.6.3. In most textbooks, what we call “strict morphism of complexes”
is simply called a “morphism of complexes”. See Remark 3.2.3 for an explanation.

Let us denote by Cstr(M) the category of complexes in M, with strict morphisms.
This is a K-linear abelian category. Indeed, the direct sum of complexes is the
degree-wise direct sum, i.e. (M ⊕ N)i = M i ⊕ N i. The same for kernels and
cokernels. If N is a full abelian subcategory of M, then Cstr(N) is a full abelian
subcategory of Cstr(M).

Any single object M ∈ M can be viewed as a complex

M ′ :=
(
· · · → 0→M → 0→ · · ·

)
,

where M is in degree 0; the differential of this complex is of course zero. The
assignment M 7→M ′ is a fully faithful K-linear functor M→ Cstr(M).

Let M,N be complexes in M. As in (3.1.20) there is a graded K-module
HomM(M,N). It is a DG K-module with differential d given by the formula

(3.6.4) d(φ) := dN ◦ φ− (−1)i ·φ ◦ dM
for φ ∈ HomM(M,N)i. It is easy to check that d ◦ d = 0. We sometimes denote
this differential by dHomM(M,N).

Thus, an element φ ∈ HomM(M,N)i is a collection φ = {φj}j∈Z of morphisms
φj : M j → N j+i. In a diagram, for i = 2, it looks like this:

· · · // M j d //

φj

((

M j+1 d //

φj+1

((

M j+2 d // M j+3 // · · ·

· · · // N j d // N j+1 d // N j+2 d // N j+3 //

Warning: since φ does not have to commute with the differentials, this is usually
not a commutative diagram!

For a triple of complexes M0,M1,M2 and degrees i0, i1 there are K-linear homo-
morphisms

HomM(M1,M2)i1 ⊗K HomM(M0,M1)i0 −→ HomM(M0,M2)i0+i1 ,

φ1 ⊗ φ0 7→ φ1 ◦ φ0.

Lemma 3.6.5. The composition homomorphism

HomM(M1,M2)⊗K HomM(M0,M1) −→ HomM(M0,M2)

is a strict homomorphism of DG K-modules.

Exercise 3.6.6. Prove the lemma.

The lemma justifies the next definition.

Definition 3.6.7. Let C(M) be the K-linear DG category whose objects are the
complexes in M, and the morphism DG K-modules are HomM(M,N) from formulas
(3.1.20) and (3.6.4).

It is clear, from comparing formulas (3.6.4) and (3.6.2), that the strict morphisms
of complexes defined at the top of this subsection are the same as those from
Definition 3.4.4(1). In other words, Str(C(M)) = Cstr(M).
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Remark 3.6.8. A possible ambiguity could arise in the meaning of HomM(M,N)
if M,N ∈ M: does it mean the K-module of morphisms in the category M ? Or,
if we view M and N as complexes by the canonical embedding M ⊆ C(M), does
HomM(M,N) mean the complex of K-modules defined for complexes? It turns out
that there is no actual difficulty: since the complex of K-modules HomM(M,N) is
concentrated in degree 0, we may view it as a single K-module, and this is precisely
the K-module of morphisms in the category M.

When M = ModA for a ring A, there is no essential distinction between com-
plexes and DG modules. The next proposition is the DG version of Example 3.1.22.

Proposition 3.6.9. Let A be a central K-ring. Given a complex M ∈ C(ModA),
with notation as in (3.6.1), define the DG A-module

F (M) :=
⊕
i∈Z

M i,

with differential d :=
∑
i∈Z diM . Then the functor

F : C(ModA)→ DGModA
is an isomorphism of K-linear DG categories.

Exercise 3.6.10. Prove this proposition. (Hint: choose good notation.)

3.7. The DG Category C(A,M). We now combine material from previous sub-
sections. The concept introduced in the definition below is new. It is the DG
version of Definition 3.1.23.

Definition 3.7.1. Let M be a K-linear abelian category, and let A be a central
DG K-ring. A DG A-module in M is an object M ∈ C(M), together with a DG
K-ring homomorphism f : A→ EndM(M).

If M is a DG A-module in M, then after forgetting the differentials, M becomes
a graded A-module in M.

Definition 3.7.2. Let M be a K-linear abelian category, let A be a central DG
K-ring, and let M,N be DG A-modules in M. In Definition 3.1.25 we introduced
the graded K-module HomA,M(M,N). This is made into a DG K-module with
differential

d(φ) := dN ◦ φ− (−1)i ·φ ◦ dM
for φ ∈ HomA,M(M,N)i.

When we have to be specific, we denote the differential of HomA,M(M,N) by
dHom, dA,M, or dHomA,M(M,N).

As we have seen before (in Lemmas 3.6.5 and 3.4.3), given morphisms
φk ∈ HomA,M(Mk,Mk+1)ik

for k ∈ {0, 1}, we have
φ1 ◦ φ0 ∈ HomA,M(M0,M2)i0+i1 ,

and
d(φ1 ◦ φ0) = d(φ1) ◦ φ0 + (−1)i1 ·φ1 ◦ d(φ0).

Also the identity automorphism 1M = idM belongs to HomA,M(M,M)0, and
d(1M ) = 0. Therefore the next definition is legitimate.
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Definition 3.7.3. Let M be a K-linear abelian category, and let A be a central DG
K-ring. The K-linear DG category of DG A-modules in M is denoted by C(A,M).
The morphism DG modules are

HomC(A,M)(M0,M1) := HomA,M(M0,M1)
from Definition 3.7.2. The composition is that of C(M).

Notice that forgetting the action ofA is a faithfulK-linear DG functor C(A,M)→
C(M). On the other hand, forgetting the differentials is a fully faithful K-linear
graded functor C(A,M)→ G(A,M).
Example 3.7.4. If A = K, then C(A,M) = C(M); and if M = ModK, then
C(A,M) = C(A) = DGModA.
Definition 3.7.5. In the situation of Definition 3.7.3:

(1) The strict category of C(A,M) (see Definition 3.4.4(1)) is denoted by
Cstr(A,M).

(2) The homotopy category of C(A,M) (see Definition 3.4.4(2)) is denoted by
K(A,M).

The next proposition is merely an interpretation of the definitions; but it is worth
recording.
Proposition 3.7.6. Let φ : M → N be a morphism in C(A,M). The next two
conditions are equivalent:

(i) φ is strict.
(ii) φ has degree 0 and φ ◦ dM = dN ◦ φ.

Remark 3.7.7. Here is a generalization of Definition 3.7.3. Instead of a central
DG K-ring A we can take a small K-linear DG category A. We then define the
K-linear DG category

C(A,M) := DGFun(A,C(M))
as in Exercise 3.5.8.

This is indeed a generalization of Definition 3.7.3: when A has a single object x,
and we write A := EndA(x), then the functor M 7→M(x) is an isomorphism of DG
categories C(A,M) '−→ C(A,M).

In the special case of M = ModK, the DG category C(A,M) is what Keller [Kel]
calls the DG category of left DG A-modules.

Practically everything we do in this book for C(A,M) holds in the more general
context of C(A,M). However, in the more general context a lot of the intuition is
lost, and some aspects become pretty cumbersome. This is the reason we decided
to stick with the less general context.
3.8. Contravariant DG Functors. In this subsection we address the issue of
reversing arrows in DG categories. As before we work over a commutative base
ring K.
Definition 3.8.1. Let C and D be K-linear DG categories. A contravariant K-
linear DG functor F : C→ D consists of a function

F : Ob(C)→ Ob(D),
and for each pair M0,M1 ∈ Ob(C) a homomorphism

F : HomC(M0,M1)→ HomD
(
F (M1), F (M0)

)
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in Cstr(K). The conditions are:
(a) Units: F (1M ) = 1F (M).
(b) Graded reversed composition: given morphisms

φk ∈ HomC(Mk,Mk+1)ik

for k ∈ {0, 1}, there is equality
F (φ1 ◦ φ0) = (−1)i0 · i1 ·F (φ0) ◦ F (φ1)

inside
HomD

(
F (M2), F (M0)

)i0+i1
.

Warning: a contravariant DG functor is not literally a contravariant functor.
Indeed, when the degrees i0 and i1 are odd, we could fail to have equality between
the morphisms F (φ1 ◦ φ0) and F (φ0) ◦ F (φ1).

Here is the categorical version of Definition 3.3.11.

Definition 3.8.2. Let C be a K-linear DG category. The opposite DG category
Cop has the same set of objects. The morphism DG modules are

HomCop(M0,M1) := HomC(M1,M0).
The composition ◦op of Cop is reversed and multiplied by signs:

φ0 ◦op φ1 := (−1)i0 · i1 ·φ1 ◦ φ0

for morphisms
φk ∈ HomC(Mk,Mk+1)ik .

One needs to verify that this is indeed a DG category. This is basically the same
verification as in Exercise 3.3.12.

As before, we define the operation Op : C → Cop to be the identity on objects,
and the identity on morphisms in reversed order, i.e.

Op = id : HomC(M0,M1) '−→ HomCop(M1,M0).
Note that (Cop)op = C, and we denote the inverse operation Cop → C also by Op.

Proposition 3.8.3. Let C and D be K-linear DG categories.
(1) The operations Op : C→ Cop and Op : Cop → C are contravariant K-linear

DG functors.
(2) If F : C→ D is a contravariant K-linear DG functor, then the composition

F ◦Op : Cop → D is a K-linear DG functor; and vice versa.

Exercise 3.8.4. Prove the previous proposition.

Definitions 3.8.2 and 3.8.1 make sense for graded categories, by forgetting differ-
entials. Thus for graded categories C and D we can talk about contravariant graded
functors C→ D, and about the graded category Cop.

We already met G(M), the category of graded objects in a K-linear abelian
category M; see Definition 3.1.21. It is a K-linear graded category. Its objects are
collections M = {M i}i∈Z of objects M i ∈ M.

Let M and N be a K-linear abelian categories, and let F : M→ N be a contravari-
ant K-linear functor. For a graded object M = {M i}i∈Z ∈ G(M) let us define the
graded object
(3.8.5) G(F )(M) := {N i}i∈Z ∈ G(N), N i := F (M−i) ∈ N .
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Next consider a pair of objects M0,M1 ∈ G(M) and a degree i morphism φ :
M0 →M1 in G(M). Thus

φ = {φj}j∈Z ∈ HomG(M)(M0,M1)i,
where, as in formula (3.1.19), the j-th component of φ is

φj ∈ HomM(M j
0 ,M

j+i
1 ).

We have objects Nk := G(F )(Mk) ∈ G(N), for k ∈ {0, 1}, defined by (3.8.5).
Explicitly, Nk = {N i

k}i∈Z and N i
k = F (M−ik ). For any j ∈ Z define the morphism

(3.8.6) ψj := (−1)i · j ·F (φ−j−i) ∈ HomN
(
N j

1 , N
j+i
0
)
.

Collecting them we obtain a morphism
(3.8.7) G(F )(φ) := {ψj}j∈Z ∈ HomG(N)(N1, N0)i.

Lemma 3.8.8. The assignments (3.8.5) and (3.8.7) produce a contravariant K-
linear graded functor

G(F ) : G(M)→ G(N).

Proof. Since for morphisms of degree 0 there is no sign twist, the identity au-
tomorphism 1M = {1Mi}i∈Z of M = {M i}i∈Z in G(M) is sent to the identity
automorphism of G(F )(M) in G(N).

Next we look at morphisms
φ0 = {φj0}j∈Z ∈ HomG(M)(M0,M1)i0

and
φ1 = {φj1}j∈Z ∈ HomG(M)(M1,M2)i1 .

The composition φ1 ◦ φ0 has degree i0 + i1, and the j-th component of φ1 ◦ φ0 is
φj+i01 ◦ φj0. Therefore the j-th component of G(F )(φ1 ◦ φ0) is

(3.8.9)
G(F )(φ1 ◦ φ0)j = (−1)j · (i0+i1) ·F (φ−j−i11 ◦ φ−j−(i0+i1)

0 )

= (−1)j · (i0+i1) ·F (φ−j−(i0+i1)
0 ) ◦ F (φ−j−i11 ).

On the other hand, the j-th component of G(F )(φk) is
G(F )(φk)j = (−1)j · ik ·F (φ−j−ikk ).

So the j-th component of
(−1)i0 · i1 ·G(F )(φ0) ◦ G(F )(φ1)

is

(3.8.10)
(−1)i0 · i1 ·

(
G(F )(φ0) ◦ G(F )(φ1)

)j
= (−1)i0 · i1 · (−1)(j+i1) · i0 ·F (φ−(j+i1)−i0

0 ) ◦ (−1)j · i1 ·F (φ−j−i11 ).
We see that the morphisms (3.8.9) and (3.8.10) are equal. �

Now we consider a complex (M,dM ) ∈ C(M). This is made up of a graded
object M = {M i}i∈Z ∈ G(M) together with a differential dM = {diM}i∈Z, where
diM : M i →M i+1. We can view dM as an element of

EndG(M)(M)1 = HomG(M)(M,M)1.

We specify a differential dC(F )(M) on the graded object G(F )(M) ∈ G(N) as follows:

(3.8.11) dC(F )(M) := −G(F )(dM ) ∈ EndG(N)
(
G(F )(M)

)1
.
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To be explicit, the component

diC(F )(M) : G(F )(M)i = F (M−i)→ F (M−i−1) = G(F )(M)i+1

of dC(F )(M) is, by (3.8.6),

diC(F )(M) = (−1)i+1 ·F (d−i−1
M ).

This shows that our formula coincides with the one in [KaSc1, Remark 1.1.88].

Lemma 3.8.12. The assignments (3.8.5), (3.8.7) and (3.8.11) produce a con-
travariant K-linear DG functor

C(F ) : C(M)→ C(N).

Proof. We must prove that for a pair of DG modules (M0,dM0) and (M1,dM1) in
C(M) the strict homomorphism of graded K-modules

G(F ) : HomG(M)(M0,M1)→ HomG(N)
(
G(F )(M1),G(F )(M0)

)
respects differentials. Take any

φ ∈ HomG(M)(M0,M1)i.

By definition we have

d(φ) = dM1 ◦ φ− (−1)i ·φ ◦ dM0 .

Using the fact that G(F ) is a contravariant graded functor, we obtain these equal-
ities:

G(F )(d(φ))
= (−1)i ·G(F )(φ) ◦ G(F )(dM1)− (−1)i · (−1)i ·G(F )(dM0) ◦ G(F )(φ)
= dC(F )(M0) ◦ G(F )(φ)− (−1)i ·G(F )(φ) ◦ dC(F )(M1)

= d(G(F )(φ)).

�

The sign appearing in formula (3.8.11) might seem arbitrary. Besides being the
only sign for which Lemma 3.8.12 holds, there is another explanation, which can
be seen in the next exercise.

Exercise 3.8.13. Take M = N := ModK, and consider the contravariant additive
functor F := HomK(−,K) from M to itself. Let M ∈ C(M); we can view M as a
complex of K-modules or as a DG K-module, as done in Proposition 3.6.9. Show
that

C(F )(M) ∼= HomK(M,K)
in Cstr(K), where the second object is the graded module from formula (3.1.20),
with the differential d from formula (3.2.5).

The next theorem will help us later when studying contravariant triangulated
functors.

Theorem 3.8.14. Let A be a central DG K-ring and let M be a K-linear abelian
category. There is a canonical K-linear isomorphism of DG categories

Flip : C(A,M)op '−→ C(Aop,Mop).
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Proof. According to Proposition 3.8.3 there is a contravariant DG functor
Op : C(A,M)op → C(A,M).

It is bijective on objects and morphisms. We are going to construct a contravariant
DG functor

E : C(A,M)→ C(Aop,Mop)
which is also bijective on objects and morphisms. The composed DG functor

Flip := E ◦Op : C(A,M)op → C(Aop,Mop)
will have the desired properties.

Let us construct E. We start with the contravariant additive functor
F := Op : M→ Mop .

Lemma 3.8.12 says that
C(F ) : C(M)→ C(Mop)

is a contravariant DG functor. Recall that an object of C(A,M) is a triple
(M,dM , fM ), where M ∈ G(M); dM is a differential on the graded object M ;
and

fM : A→ EndC(M)(M)
is a DG ring homomorphism. See Definitions 3.1.25, 3.7.1 and 3.7.3. Define

(N, dN ) := C(F )(M,dM ) ∈ C(Mop).
Since

C(F ) : EndC(M)(M,dM )→ EndC(Mop)(N, dN )
is a DG ring anti-homomorphism (by which we mean the single object version of a
contravariant DG functor), and Op : Aop → A is also such an anti-homomorphism,
it follows that

fN := C(F ) ◦ fM ◦Op : Aop → EndC(Mop)(N, dN )
is a DG ring homomorphism. Thus

E(M,dM , fM ) := (N, dN , fN )
is an object of C(Aop,Mop). In this way we have a function

E : Ob
(
C(A,M)

)
→ Ob

(
C(Aop,Mop)

)
,

and it is clearly bijective.
The operation of E on morphisms is of course that of C(F ). It remains to verify

that the resulting morphisms in C(Mop) respect the action of elements of Aop.
Namely that the condition in Definition 3.1.25 is satisfied. Take any morphism

φ ∈ HomC(A,M)
(
(M0,dM0 , fM0), (M1,dM1 , fM1)

)i
and any element a ∈ (Aop)j ; and write

(Nk,dNk , fNk) := E(Mk,dMk
, fMk

)
and

ψ := G(F )(φ) ∈ HomC(Mop)
(
(N1,dN1), (N0,dN0)

)i
.

We have to prove that
ψ ◦ fN1(a) = (−1)i · j · fN0(a) ◦ ψ.
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This is done using Lemma 3.8.8, like in the proof of Lemma 3.8.12; and we leave
this final touch to the reader. �

Remark 3.8.15. Combined with Proposition 3.8.3, Theorem 3.8.14 allows us to
replace a contravariant DG functor

F : C(A,M)→ D
with a usual, covariant, DG functor

F ◦ Flip−1 : C(Aop,Mop)→ D .

This replacement is going to be very useful when discussing formal properties, such
as existence of derived functors etc.

However, in practical terms (e.g. for producing resolutions of DG modules), the
category C(Aop,Mop) is not very helpful. The reason is that the opposite abelian
category Mop is almost always a synthetic construction (it does not “really exist in
concrete terms”). See Remark 2.6.21, that explains why Abop is not equivalent to
Ab.

We are going to manoeuvre between the two approaches for reversal of mor-
phisms, each time choosing the more useful approach.
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4. Translations and Standard Cones

As before, we fix a K-linear abelian category M, and a central DG K-ring A.
In this section we study the translation functor and the standard cone of a strict
morphism, all in the context of the DG category C(A,M).

We then study properties of DG functors
F : C(A,M)→ C(B,N)

between such DG categroies. In view of Theorem 3.8.14 it suffices to look at
covariant DG functors (and not to worry about contravariant DG functors).

comment: This section is merged with the section “Properties of DG Functors”
that existed in older versions, and is now Subsections 4.3 - 4.6 here.

4.1. The Translation Functor. The translation functor goes back to the begin-
nings of derived categories – see Remark 4.1.11. The treatment in this subsection
(with the operator t) is taken from [Ye11, Section 1].

Definition 4.1.1. Let M = {M i}i∈Z be a graded module in M, i.e. an object of
G(M). The translation of M is the object

T(M) = {T(M)i}i∈Z ∈ G(M)
defined as follows: the graded component of degree i of T(M) is T(M)i := M i+1.

Definition 4.1.2 (The little t operator). Let M = {M i}i∈Z be a graded module
in M, i.e. an object of G(M). We define

tM : M → T(M)
to be the degree −1 morphism of graded objects of M, that for every i is identity
morphism

(tM )|Mi := idMi : '−→M i = T(M)i−1

of the object M i in M.

Note that the morphism

tM ∈ HomG(M)
(
M,T(M)

)−1

is invertible, with inverse

t−1
M ∈ HomG(M)

(
T(M),M

)1
.

Definition 4.1.3. Let M = {M i}i∈Z be a DG A-module in M, i.e. an object of
C(A,M). The translation of M is the object

T(M) ∈ C(A,M)
defined as follows.

(1) As graded object of M, it is as specified in Definition 4.1.1.
(2) The differential dT(M) is defined by the formula

dT(M) := − tM ◦dM ◦ t−1
M .

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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(3) Let fM : A → EndM(M) be the DG ring homomorphism that determines
the action of A on M . Then

fT(M) : A→ EndM(T(M))
is defined by

fT(M)(a) := (−1)j · tM ◦ fM (a) ◦ t−1
M

for a ∈ Aj .

Thus, the differential dT(M) = {diT(M)}i∈Z makes this diagram in M commutative
for every i :

T(M)i
diT(M)

// T(M)i+1

M i+1

tM

OO

−di+1
M // M i+2

tM

OO

And the left A-module structure makes this diagram in M commutative for every i
and every a ∈ Aj :

T(M)i
fT(M)(a)

// T(M)i+j

M i+1

tM

OO

(−1)j · fM (a)
// M i+j+1

tM

OO

Warning: tM is not a morphism in Cstr(A,M), because it has degree −1.

Proposition 4.1.4. The morphisms tM and t−1
M are cocycles, in the DG K-modules

HomA,M
(
M,T(M)

)
and HomA,M

(
T(M),M

)
respectively.

Proof. We use the notation dHom for the differential in the DG module
HomA,M

(
M,T(M)

)
. Let us calculate. Because tM has degree −1, we have
dHom(tM ) = dT(M) ◦ tM + tM ◦ dM

= (− tM ◦dM ◦ t−1
M ) ◦ tM + tM ◦ dM = 0.

As for t−1
M : this is done using the graded Leibniz rule, just like in the proof

Proposition 3.4.7. �

Definition 4.1.5. Given a morphism
φ ∈ HomA,M(M,N)i,

we define the morphism

T(φ) ∈ HomA,M
(
T(M),T(N)

)i
to be

T(φ) := (−1)i · tN ◦φ ◦ t−1
M .

To clarify this definition, let us write φ = {φj}j∈Z, so that φj : M j → N j+i is a
morphism in M. Then

T(φ)j : T(M)j → T(N)j+i

is
T(φ)j = (−1)i · tN ◦φj+1 ◦ t−1

M .
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The corresponding commutative diagram in M, for each i, j, is:

(4.1.6) T(M)j
T(φ)j

// T(N)j+i

M j+1

tM

OO

(−1)i ·φj+1
// N j+i

tN

OO

Theorem 4.1.7. Let M be K-linear abelian category and let A be a central DG
K-ring.

(1) The assignments M 7→ T(M) and φ 7→ T(φ) are a K-linear DG functor

T : C(A,M)→ C(A,M).

(2) The collection t := {tM}M∈C(A,M) is a degree −1 isomorphism

t : Id→ T

of DG functors from C(A,M) to itself.

Proof. (1) Take morphisms φ1 : M0 →M1 and φ2 : M1 →M2, of degrees i1 and i2
respectively. Then

T(φ2 ◦ φ1) = (−1)i1+i2 · tM2 ◦ (φ2 ◦ φ1) ◦ t−1
M0

= (−1)i1+i2 · tM2 ◦φ2 ◦ (t−1
M1
◦ tM1) ◦ φ1 ◦ t−1

M0

=
(
(−1)i2 · tM2 ◦φ2 ◦ t−1

M1

)
◦
(
(−1)i1 · tM1 ◦φ1 ◦ t−1

M0

)
= T(φ2) ◦ T(φ1).

Clearly T(1M ) = 1M , and

T(λ ·φ+ ψ) = λ · T(φ) + T(ψ)

for all λ ∈ K and φ, ψ ∈ HomA,M(M0,M1)i. So T is a K-linear graded functor.
By Proposition 4.1.4 we know that d ◦ t = − t ◦ d and d ◦ t−1 = − t−1 ◦ d, This

implies that for any morphism φ in C(A,M), we have T(d(φ)) = d(T(φ)). So T is
a DG functor.

(2) Take any φ ∈ HomA,M(M0,M1)i. We have to prove that

tM1 ◦φ = (−1)i · T(φ) ◦ tM0

as elements of HomA,M(M0,T(M1))i+1. But by Definition 4.1.5 we have

T(φ) ◦ tM0 =
(
(−1)i · tM1 ◦φ ◦ t−1

M0

)
◦ tM0 = (−1)i · tM1 ◦φ.

�

Definition 4.1.8. We call T the translation functor of the DG category C(A,M).

Corollary 4.1.9.
(1) The functor T is an automorphism of the category C(A,M).
(2) For any k, l ∈ Z there is an equality of functors Tl ◦Tk = Tl+k.
(3) For any k the functor

Tk : C(A,M)→ C(A,M)

is an auto-equivalence of DG categories.
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Proof. (1) This is because the functor T is bijective on the set of objects of C(A,M)
and on the sets of morphisms.

(2) By part (1) of this corollary, the inverse T−1 is a uniquely defined functor (not
just up to an isomorphism of functors).

(3) By part (1) of the theorem above. �

Proposition 4.1.10. Consider any M ∈ C(A,M).
(1) There is equality

tT(M) = −T(tM )

of degree −1 morphisms T(M)→ T2(M) in C(A,M).
(2) There is equality

tT−1(M) = −T−1(tM )
of degree −1 morphisms

T−1(M)→ T(T−1(M)) = M = T−1(T(M))

in C(A,M).

Proof. (1) This is an easy calculation, using Definition 4.1.5:

T(tM ) = − tT(M) ◦ tM ◦ t−1
M = − tT(M) .

(2) A similar calculation. �

Remark 4.1.11. There are several names in the literature for the translation
functor T : twist, shift and suspension. There are also several notations: T(M) =
M [1] = ΣM . In the later part of this book we shall use the notationM [k] := Tk(M)
for the k-th translation.

4.2. The Standard Cone of a Strict Morphism. As before, we fix a K-linear
abelian category M, and a central DG K-ring A. Here is the cone construction in
C(A,M), as it looks using the operator t.

Definition 4.2.1. Let φ : M → N be a strict morphism in C(A,M). The standard
cone of φ is the object Cone(φ) ∈ C(A,M) defined as follows. As a graded A-module
in M we let

Cone(φ) := N ⊕ T(M).
The differential dCone is this: if we express the graded module as a column

Cone(φ) =
[

N

T(M)

]
,

then dCone is left multiplication by the matrix

dCone :=
[

dN φ ◦ t−1
M

0 dT(M)

]
of degree 1 morphisms of graded A-module in M.
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In other words,
diCone : Cone(φ)i → Cone(φ)i+1

is
diCone = diN + diT(M) + φi+1 ◦ t−1

M ,

where φi+1 ◦ t−1
M is the composed morphism

T(M)i
t−1
M−−→M i+1 φi+i−−−→ N i+1.

Let us denote by

(4.2.2) eφ : N → N ⊕ T(M)

the embedding, and by

(4.2.3) pφ : N ⊕ T(M)→ T(M)

the projection. Thus, as matrices we have

eφ =
[

1N
0

]
and pφ =

[
0 1T(M)

]
.

The standard cone of φ sits in the exact sequence

(4.2.4) 0→ N
eφ−→ Cone(φ) pφ−→ T(M)→ 0

in the abelian category Cstr(A,M).

Definition 4.2.5. Let φ : M → N be a morphism in Cstr(A,M). The diagram

M
φ−→ N

eφ−→ Cone(φ) pφ−→ T(M)

in Cstr(A,M) is called the standard triangle associated to φ.

The cone construction is functorial, in the following sense.

Proposition 4.2.6. Let

M0
φ0 //

ψ

��

N0

χ

��

M1
φ1 // N1

be a commutative diagram in Cstr(A,M). Then

(4.2.7) (χ,T(ψ)) : Cone(φ0)→ Cone(φ1)

is a morphism in Cstr(A,M), and the diagram

M0
φ0 //

ψ

��

N0
eφ0 //

χ

��

Cone(φ0)
pφ0 //

(χ,T(ψ))

��

T(M0)

T(ψ)

��

M1
φ1 // N1

eφ1 // Cone(φ1)
pφ1 // T(M1)

in Cstr(A,M) is commutative.

Proof. This is a simple consequence of the definitions. �
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4.3. The Gauge of a Graded Functor. The next definition is new.

Definition 4.3.1. Let
F : C(A,M)→ C(B,N)

be a K-linear graded functor. For any object M ∈ C(A,M) let

γF,M := dF (M) − F (dM ) ∈ HomB,N
(
F (M), F (M)

)1
.

The collection of morphisms

γF := {γF,M}M∈C(A,M)

is called the gauge of F .

The next theorem is due to R. Vyas.

Theorem 4.3.2. The following two conditions are equivalent for a K-linear graded
functor

F : C(A,M)→ C(B,N).

(i) F is a DG functor.
(ii) The gauge γF is a degree 1 morphism of graded functors γF : F → F .

Proof. Recall that F is a DG functor (condition (i)) iff

(4.3.3) (F ◦ dA,M)(φ) = (dB,N ◦ F )(φ)

for every φ ∈ HomA,M(M0,M1)i. And γF is a degree 1 morphism of graded functors
(condition (ii)) iff

(4.3.4) γF,M1 ◦ F (φ) = (−1)i ·F (φ) ◦ γF,M0

for every such φ.
Here is the calculation. Because F is a graded functor, we get

(4.3.5)
F
(
dA,M(φ)

)
= F

(
dM1 ◦ φ− (−1)i ·φ ◦ dM0

)
= F (dM1) ◦ F (φ)− (−1)i ·F (φ) ◦ F (dM0)

and

(4.3.6) dB,N
(
F (φ)

)
= dF (M1) ◦ F (φ)− (−1)i ·F (φ) ◦ dF (M0).

Using equations (4.3.5) and (4.3.6), and the definition of γF , we obtain

(4.3.7)
(F ◦ dA,M − dB,N ◦ F )(φ) = F

(
dA,M(φ)

)
− dB,N

(
F (φ)

)
=
(
F (dM1)− dF (M1)

)
◦ F (φ)− (−1)i ·F (φ) ◦

(
F (dM0)− dF (M0)

)
= −γF,M1 ◦ F (φ) + (−1)i ·F (φ) ◦ γF,M0 .

Finally, the vanishing of the first expression in (4.3.7) is the same as equality
in (4.3.3); whereas the vanishing of the last expression in (4.3.7) is the same as
equality in (4.3.4). �
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4.4. The Translation Isomorphism of a DG Functor. The translation functor
of C(A,M) will be denoted here by TA,M. Recall that for an object M ∈ C(A,M),
we have the little t operator

tM ∈ HomA,M
(
M,TA,M(M)

)−1
.

This is an isomorphism in C(A,M). Likewise for the DG category C(B,N).

Definition 4.4.1. Let
F : C(A,M)→ C(B,N)

be a K-linear DG functor. For an object M ∈ C(A,M), let

τF,M : F (TA,M(M))→ TB,N(F (M))

be the isomorphism
τF,M := tF (M) ◦F (tM )−1

in C(B,N), called the translation isomorphism of the functor F at the object M .

The isomorphism τF,M sits in the following commutative diagram

F (TA,M(M))
τF,M

// TB,N(F (M))

F (M)

F (tM )

OO

tF (M)

77

of isomorphisms in the category C(B,N).

Proposition 4.4.2. τF,M is an isomorphism in Cstr(B,N).

Proof. We know that τF,M is an isomorphism in C(B,N). It suffices to prove that
both τF,M and its inverse τ−1

F,M are strict morphisms. Now by Proposition 4.1.4, tM
and t−1

M are cocycles. Therefore, F (tM ) and F (tM )−1 = F (t−1
M ) are cocycles. For

the same reason, tF (M) and t−1
F (M) are cocycles. But τF,M = tF (M) ◦F (tM )−1, and

τ−1
F,M = F (tM ) ◦ t−1

F (M). �

Theorem 4.4.3. Let
F : C(A,M)→ C(B,N)

be a K-linear DG functor. Then the collection τF := {τF,M}M∈C(A,M) is an iso-
morphism

τF : F ◦ TA,M
'−→ TB,N ◦F

of functors
Cstr(A,M)→ Cstr(B,N).

The slogan summarizing this theorem is “A DG functor commutes with transla-
tions”.

Proof. In view of Proposition 4.4.2, all we need to prove is that τF is a morphism
of functors (i.e. it is a natural transformation).
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Let φ : M0 →M1 be a morphism in Cstr(A,M). We must prove that the diagram

(F ◦ TA,M)(M0)
τF,M0 //

(F◦TA,M)(φ)
��

(TB,N ◦F )(M0)

(TB,N ◦F )(φ)
��

(F ◦ TA,M)(M1)
τF,M1 // (TB,N ◦F )(M1)

in Cstr(B,N) is commutative. This will be true if the next diagram

(F ◦ TA,M)(M0)

(F◦TA,M)(φ)
��

F (M0)
F (tM0 )
oo

tF (M0)
//

F (φ)
��

(TB,N ◦F )(M0)

(TB,N ◦F )(φ)
��

(F ◦ TA,M)(M1) F (M1)
F (tM1 )
oo

tF (M1)
// (TB,N ◦F )(M1)

in C(B,N), whose horizontal arrows are isomorphisms, is commutative. For this to
be true, it is enough to prove that both squares in this diagram are commutative.
This is true by Theorem 4.1.7(2) �

Recall that the translation T and all its powers are DG functors. To finish this
subsection, we calculate their translation isomorphisms.

Proposition 4.4.4. For any integer k, the translation isomorphism of the DG
functor Tk is

τTk = (−1)k · idTk+1 ,

where idTk+1 is the identity automorphism of the functor Tk+1.

Proof. By Definition 4.4.1 and Proposition 4.1.10(1), for k = 1 the formula is

τT,M = tT(M) ◦T(tM )−1 = − idT2(M),

where idT2(M) is the identity automorphism of the DG module T2(M). Hence
τT = − idT2 . For other integers k the calculation is similar. �

4.5. Cones and DG Functors.

Definition 4.5.1. The subcategory C0(A,M) of C(A,M) is defined to be the sub-
category on all objects, but with degree 0 morphisms only.

There are inclusions of categories (faithful functors, identities on objects)

Cstr(A,M) ⊆−→ C0(A,M) ⊆−→ C(A,M).

Forgetting the differentials is a fully faithful functor

(4.5.2) C0(A,M)→ G0(A,M);

see Definition 3.1.13.
Let

F : C(A,M)→ C(B,N)
be a K-linear DG functor. Given a morphism φ : M0 →M1 in Cstr(A,M), we have
a morphism

F (φ) : F (M0)→ F (M1)
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in Cstr(B,N), and objects F (ConeA,M(φ)) and ConeB,N(F (φ)) in C(B,N). By def-
inition (and the fully faithful functor (4.5.2)) there is a canonical isomorphism

(4.5.3) ConeA,M(φ) ∼= M1 ⊕ TA,M(M0)

in C0(A,M). Since F is an additive functor, it commutes with finite direct sums,
and therefore there is a canonical isomorphism

(4.5.4) F (ConeA,M(φ)) ∼= F (M1)⊕ F (TA,M(M0))

in C0(B,N). And by definition there is a canonical isomorphism

(4.5.5) ConeB,N(F (φ)) ∼= F (M1)⊕ TB,N(F (M0))

in C0(B,N). Warning: the isomorphisms (4.5.3), (4.5.4) and (4.5.5) are usually
not strict! They are degree 0 isomorphisms of graded modules, but they might not
commute with the differentials; see Proposition 3.7.6. The differentials on the right
sides are diagonal matrices, but on the left sides they are upper-triangular matrices
(see Definition 4.2.1).

Lemma 4.5.6. Let
F,G : C(A,M)→ C(B,N)

be K-linear graded functors, and let η : F → G be a degree j morphism of graded
functors. Suppose M ∼= M0 ⊕M1 in C0(A,M), with embeddings ei : Mi → M and
projections pi : M →Mi. Then

ηM =
(
G(e0), G(e1)

)
◦ (ηM0 , ηM1) ◦

(
F (p0), F (p1)

)
,

as degree j morphisms F (M)→ G(M) in C(B,N).

The lemma says that the diagram

F (M)
(
F (p0),F (p1)

)
//

ηM

��

F (M0)⊕ F (M1)

(ηM0 ,ηM1 )

��

G(M) G(M0)⊕G(M1)
(
G(e0),G(e1)

)
oo

in C(B,N) is commutative.

Proof. It suffices to prove that the diagram below is commutative for i = 0, 1 :

F (Mi)
F (ei)

//

ηMi

��

id

��

F (M)
F (pi)

//

ηM

��

F (Mi)

ηMi

��

G(Mi)
G(ei)

//

id

CC
G(M)

G(pi)
// G(Mi)

This is true because η is a morphism of functors (a natural transformation). �
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Theorem 4.5.7. Let
F : C(A,M)→ C(B,N)

be a K-linear DG functor, and let φ : M0 → M1 be a morphism in Cstr(A,M).
Define the isomorphism

cone(F, φ) : F (ConeA,M(φ))→ ConeB,N(F (φ))

in C0(B,N) to be
cone(F, φ) := (idF (M1), τF,M0).

Then:
(1) The isomorphism cone(F, φ) is strict; namely it commutes with the differ-

entials.
(2) The diagram

F (M0)
F (φ)

//

=

��

F (M1)
F (eφ)

//

=

��

F (ConeA,M(φ))
F (pφ)

//

cone(F,φ)

��

F (TA,M(M0))

τF,M0

��

F (M0)
F (φ)

// F (M1)
eF (φ)

// ConeB,N(F (φ))
pF (φ)

// TB,N(F (M0))

in Cstr(B,N) is commutative.

When defining cone(F, φ) above, we are using the decompositions (4.5.4) and
(4.5.5) in the category C0(B,N), and the isomorphism τF,M0 from Definition 4.4.1.

The slogan summarizing this theorem is “A DG functor sends standard triangles
to standard triangles”.

Proof. (1) To save space let us write θ := cone(F, φ). We have to prove that
dB,N(θ) = 0. Let’s write P := ConeA,M(φ) and Q := ConeB,N(F (φ)). Recall that

dB,N(θ) = dQ ◦ θ − θ ◦ dF (P ).

We have to prove that this is the zero element in HomB,N
(
F (P ), Q

)1.
Writing the cones as column modules:

P =
[

M1

TA,M(M0)

]
and Q =

[
F (M1)

TB,N(F (M0))

]
,

the matrices representing the morphisms in question are

θ =
[

idF (M1) 0
0 τF,M0

]
, dP =

[
dM1 φ ◦ t−1

M0

0 dTA,M(M0)

]
and

dQ =
[

dF (M1) F (φ) ◦ t−1
F (M0)

0 dTB,N(F (M0))

]
.

Let us write γ := γF for simplicity. According to Theorem 4.3.2, the gauge
γ : F → F is a degree 1 morphism of functors C(A,M) → C(B,N). Because the
decomposition (4.5.3) is in the category C0(A,M), Lemma 4.5.6 tells us that γP
decomposes too, i.e.

γP =
[
γM1 0

0 γTA,M(M0)

]
.
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By definition of γP we have

dF (P ) = F (dP ) + γP ∈ HomB,N
(
F (P ), F (P )

)1
.

It follows that
dF (P ) = F (dP ) + γP

=
[
F (dM1) F (φ ◦ t−1

M0
)

0 F (dTA,M(M0))

]
+
[
γM1 0

0 γTA,M(M0)

]

=
[
F (dM1) + γM1 F (φ ◦ t−1

M0
)

0 F (dTA,M(M0)) + γTA,M(M0)

]

=
[

dF (M1) F (φ ◦ t−1
M0

)
0 dF (TA,M(M0))

]
.

Finally we will check that θ◦dF (P ) and dQ◦θ are equal as matrices of morphisms.
We do that in each matrix position separately. The two left positions in the matrices
θ ◦ dF (P ) and dQ ◦ θ agree trivially. The bottom right positions in these matrices
are τF,M0 ◦ dF (TA,M(M0)) and dTB,N(F (M0)) ◦ τF,M0 respectively; they are equal by
Proposition 4.4.2. And in the top right positions we have F (φ ◦ t−1

M0
) and F (φ) ◦

t−1
F (M0) ◦ τF,M0 respectively. Now F (φ ◦ t−1

M0
) = F (φ)◦F (t−1

M0
); so it suffices to prove

that F (t−1
M0

) = t−1
F (M0) ◦ τF,M0 . This is immediate from the definition of τF,M0 .

(2) By definition of θ = cone(F, φ), the diagram is commutative in C0(B,N). But
by part (1) we know that all morphisms in it lie in Cstr(B,N). �

Corollary 4.5.8. In the situation of Theorem 4.5.7, the diagram

F (M0)
F (φ)

//

=

��

F (M1)
F (eφ)

//

=

��

F (ConeA,M(φ))
τF,M0◦F (pφ)

//

cone(F,φ)

��

TB,N(F (M0))

=

��

F (M0)
F (φ)

// F (M1)
eF (φ)

// ConeB,N(F (φ))
pF (φ)

// TB,N(F (M0))

is an isomorphism of triangles in Cstr(B,N).
Proof. Just rearrange the diagram in item (2) of the theorem. �

4.6. Examples of DG Functors. Recall that M and N are K-linear categories,
and A and B are central DG K-rings. Here are three examples of DG functors, of
various types. We work out in detail the transition isomorphism, the cone isomor-
phism and the gauge in each example. These examples should serve as templates
for constructing other DG functors.
Example 4.6.1. Here A = B = K, so C(A,M) = C(M) and C(B,N) = C(N). Let
F : M→ N be a K-linear functor. It extends to a functor

C(F ) : C(M)→ C(N)
as follows: on objects, a complex

M =
(
{M i}i∈Z, {diM}i∈Z

)
∈ C(M)

goes to the complex
C(F )(M) :=

(
{F (M i)}, {F (diM )}

)
∈ C(N).
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A morphism φ = {φj} in C(M) goes to the morphism C(φ) := {F (φj)} in C(N). A
slightly tedious calculation shows that C(F ) is a K-linear DG functor.

Given a complex M ∈ C(M), let N := C(F )(M) ∈ C(N). Then the translations
are

TN(N) = C(F )
(
TM(M)

)
;

and C(F )(tM ) = tN . So the translation isomorphism

τC(F ) : C(F ) ◦ TM
'−→ TN ◦C(F )

of functors Cstr(M)→ Cstr(N) is equality.
Let φ : M0 → M1 be a morphism in Cstr(M), whose image under C(F ) is the

morphism ψ : N0 → N1 in Cstr(N). Then
Cone(ψ) = N1 ⊕ TN(N0) = C(F )

(
Cone(φ)

)
as graded objects of N, with differential

dCone(ψ) =
[

dN1 ψ ◦ t−1
N0

0 dT(N0)

]
= C(F )

([dM1 φ ◦ t−1
M0

0 dT(M0)

])
= C(F )

(
dCone(φ)

)
.

We see that the cone isomorphism cone(F, φ) is equality, and the gauge γC(F ) is
zero.

The next example is much more complicated, and we work out the full details
(only once – later on, such details will be left to the reader).

Example 4.6.2. Let A and B be central DG K-rings, and fix some
N ∈ DGMod(B ⊗K A

op).
In other words, N is a DG B-A-bimodule. For any M ∈ DGModA we have a DG
K-module

F (M) := N ⊗AM,

as in Definition 3.3.21. The differential of F (M) is
(4.6.3) dF (M) = dN ⊗ idM + idN ⊗dM .
See Example 3.1.5 regarding the Koszul sign rule that’s involved. But F (M) has a
structure of a DG B-module: for any b ∈ B, n ∈ N and m ∈M , the action is

b · (n⊗m) := (b ·n)⊗m.
Clearly

F : C(A) = DGModA→ C(B) = DGModB
is a K-linear functor. We will show that it is actually a DG functor.

Let M0,M1 ∈ C(A), and consider the K-linear homomorphism
(4.6.4) F : HomA(M0,M1)→ HomB(N ⊗AM0, N ⊗AM1).
Take any φ ∈ HomA(M0,M1)i. Then

F (φ) ∈ HomB(N ⊗AM0, N ⊗AM1)
is the homomorphism that on a homogeneous tensor n⊗m ∈ (N ⊗AM0)k+j , with
n ∈ Nk and m ∈M j

0 , has the value
F (φ)(n⊗m) = (−1)ik ·n⊗ φ(m) ∈ (N ⊗AM1)k+j+i.

In other words,
(4.6.5) F (φ) = idN ⊗φ.
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We see that the homomorphism F (φ) has degree i. So F is a graded functor.
Let us calculate γF , the gauge of F . From (4.6.5) and (4.6.3) we get

γF,M = dN ⊗ idM ,
which is often a nonzero endomorphism of F (M). Still, take any degree i morphism
φ : M0 →M1 in C(A). Then

γM1 ◦ F (φ) = (dN ⊗ idM1) ◦ (idN ⊗φ)
= dN ⊗ φ = (−1)i · (idN ⊗φ) ◦ (dN ⊗ idM0) = (−1)i ·F (φ) ◦ γM0 .

We see that γF satisfies the condition of Definition 3.5.4(1), which is really Defi-
nition 3.1.17. By Theorem 4.3.2, F is a DG functor. (It is possible to calculate
directly that F is a DG functor, but this takes more work.)

Finally let us figure out what is the translation isomorphism τF of the functor
F . Take M ∈ C(A). Then

τF,M : F (TA(M))→ TB(F (M))
is an isomorphism in Cstr(B). By Definition 4.4.1 we have τF,M := tF (M) ◦F (tM )−1.
Take any n ∈ Nk and m ∈M j+1, so that

n⊗ tM (m) ∈ (N ⊗A TA(M))k+j = F (TA(M))k+j ,

a typical degree k + j element of F (TA(M)). But

n⊗ tM (m) = (−1)k · (idN ⊗ tM )(n⊗m) = (−1)k ·F (tM )(n⊗m).
Therefore

τF,M (n⊗ tM (m)) = (−1)k · tF (M)(n⊗m) ∈ TB(F (M))k+j .

Observe that when N is concentrated in degree 0, we are back in the situation of
Example 4.6.1, in which there are no sign twists, and τF,M is “equality”.

Example 4.6.6. Let A and B be central DG K-rings, and fix some
N ∈ DGMod(A⊗K B

op).
For any M ∈ DGModA we define

F (M) := HomA(N,M).
This is a DG B-module: for any b ∈ Bi and φ ∈ HomA(N,M)j , the homomorphism
b ·φ ∈ HomA(N,M)i+j has value

(b ·φ)(n) := (−1)i · (j+k) ·φ(n · b) ∈M i+j+k

on n ∈ Nk. As in the previous example,
F : C(A) = DGModA→ C(B) = DGModB

is a K-linear graded functor.
The value of the gauge γF at M ∈ C(A) is

γF,M = Hom(dN , idM ).
See Example 3.1.6 regarding this notation. Namely for

ψ ∈ F (M)j = HomA(N,M)j

we have
γF,M (ψ) = (−1)j ·ψ ◦ dN .
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It is not too hard to check that γF is a degree 1 morphism of functors. Hence, by
Theorem 4.3.2, F is a DG functor.

The formula for the translation isomorphism τF is as follows. Take M ∈ C(A).
Then

τF,M : F (TA(M)) = HomA(N,TA(M))→ TB(F (M)) = TB(HomA(N,M))
is, by definition, τF,M = tF (M) ◦F (tM )−1. Now

F (tM )−1 = Hom(idN , t−1
M ).

So given any ψ ∈ F (TA(M))k, we have
τF,M (ψ) = tF (M)(t−1

M ◦ψ) ∈ TB(F (M))k.

comment: Insert a contravariant example
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5. Triangulated Categories and Functors

In this section we introduce triangulated categories and triangulated functors.
There is one result here that seems to be new: Theorem 5.4.15, which asserts that a
DG functor between DG module categories induces a triangulated functor between
the associated homotopy categories.

As in previous sections, we fix a base commutative ring K. All linear categories
and linear functors here are implicitly assumed to be K-linear. In particular, this
assumption says that all DG rings are central K-rings, and all DG ring homomor-
phisms are K-linear.

5.1. T-Additive Categories. Recall that a functor is called an isomorphism of
categories if it is bijective of sets of objects and on sets of morphisms; see Example
1.5.2.
Definition 5.1.1. Let K be an additive category. A translation on K is an additive
automorphism T of K, called the translation functor. The pair (K,T) is called a
T-additive category.
Remark 5.1.2. Some texts give a more relaxed definition: T is only required to
be an additive auto-equivalence of K. The resulting theory is more complicated (it
is 2-categorical, but most texts try to suppress this fact).

Later in the book we will writeM [k] := Tk(M), the k-th translation of an object
M .
Definition 5.1.3. Suppose (K,TK) and (L,TL) are T-additive categories. A T-
additive functor between them is a pair (F, τ), consisting of an additive functor
F : K→ L, together with an isomorphism

τ : F ◦ TK
'−→ TL ◦F

of functors K→ L, called a translation isomorphism.
Definition 5.1.4. Let (Ki,Ti) be T-additive categories, for i = 0, 1, 2, and let

(Fi, τi) : (Ki−1,Ti−1)→ (Ki,Ti)
be T-additive functors. The composition

(F, τ) = (F2, τ2) ◦ (F1, τ1)
is the T-additive functor (K0,T0) → (K2,T2) defined as follows: the functor is
F := F2 ◦ F1, and the translation isomorphism

τ : F ◦ T0
'−→ T2 ◦ F

is τ := τ2 ◦ F2(τ1).
Definition 5.1.5. Suppose (K,TK) and (L,TL) are T-additive categories, and

(F, τ), (G, ν) : (K,TK)→ (L,TL)
are T-additive functors. A morphism of T-additive functors

η : (F, τ)→ (G, ν)

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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is a morphism of functors η : F → G, such that for every objectM ∈ K this diagram
in L is commutative:

F (TK(M)) τM //

ηTK(M)

��

TL(F (M))

TL(ηM )
��

G(TK(M)) νM // TL(G(M)) .

We now look at the contravariant situation.

Definition 5.1.6. Suppose (K,TK) and (L,TL) are T-additive categories. A con-
travariant T-additive functor between them is a pair (F, τ), consisting of a con-
travariant additive functor F : K→ L, together with an isomorphism

τ : F ◦ T−1
K

'−→ TL ◦F

of contravariant functors K→ L, called a translation isomorphism.

For an additive category K there is a canonical contravariant functor op : K →
Kop, that is the identity on objects, and reverses the arrows. Note that op is an
additive anti-isomorphism of categories (i.e. a contravariant isomorphism), so its
inverse op−1 is unique.

Definition 5.1.7. Let (K,TK) be a T-additive category. The opposite category
Kop is made into a T-additive category with translation functor

Top := op ◦T ◦ op−1 .

Note that this definition is designed to make

(op, id) : (K,TK)→ (Kop,Top)

into a contravariant isomorphism of T-additive categories.

Proposition 5.1.8. If
(F, τ) : (K,TK)→ (L,TL)

is a contravariant T-additive functor, then

(F ◦ op, τ) : (Kop,Top
K )→ (L,TL)

is a T-additive functor. And vice-versa.

Exercise 5.1.9. Prove Proposition 5.1.8.

The proposition above, together with Definition 5.1.5 , tell us what is a morphism
between contravariant T-additive functors.

5.2. Triangulated Categories.

Definition 5.2.1. Let (K,T) be a T-additive category. A triangle in (K,T) is a
diagram

L
α−→M

β−→ N
γ−→ T(L)

in K.
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Definition 5.2.2. Let (K,T) be a T-additive category. Suppose

L
α−→M

β−→ N
γ−→ T(L)

and
L′

α′−→M ′
β′−→ N ′

γ′−→ T(L′)

are triangles in (K,T). A morphism of triangles between them is a commutative
diagram

L
α //

φ

��

M
β
//

ψ

��

N
γ
//

χ

��

T(L)

T(φ)
��

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

in K.
The morphism of triangles (φ, ψ, χ) is called an isomorphism if φ, ψ and χ are

all isomorphisms.

Remark 5.2.3. Why “triangle”? This is because sometimes a triangle

L
α−→M

β−→ N
γ−→ T(L)

is written as a diagram
N

γ

~~

L
α // M

β
aa

Here γ is a morphism of degree 1.

Definition 5.2.4. A triangulated category is a T-additive category (K,T),
equipped with a set of triangles called distinguished triangles. The following axioms
have to be satisfied:
(TR1) (a) Any triangle that is isomorphic to a distinguished triangle is also a

distinguished triangle.
(b) For every morphism α : L→M in K there is a distinguished triangle

L
α−→M −→ N −→ T(L).

(c) For every object M the triangle

M
1M−−→M → 0→ T(M)

is distinguished.
(TR2) A triangle

L
α−→M

β−→ N
γ−→ T(L)

is distinguished iff the triangle

M
β−→ N

γ−→ T(L) −T(α)−−−−→ T(M)

is distinguished.
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(TR3) Suppose

L
α //

φ

��

M
β
//

ψ

��

N
γ
// T(L)

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

is a commutative diagram in K in which the rows are distinguished triangles.
Then there exists a morphism χ : N → N ′ such that the diagram

L
α //

φ

��

M
β
//

ψ

��

N
γ
//

χ

��

T(L)

T(φ)
��

L′
α′ // M ′

β′
// N ′

γ′
// T(L′) .

is a morphism of triangles.
(TR4) Suppose we are given these three distinguished triangles:

L
α−→M

γ−→ P −→ T(L),

M
β−→ N

ε−→ R −→ T(M),

L
β◦α−−→ N

δ−→ Q −→ T(L).
Then there is a distinguished triangle

P
φ−→ Q

ψ−→ R
ρ−→ T(P )

making the diagram

L
α //

1
��

M
γ
//

β

��

P //

φ

��

T(L)

1
��

L
β◦α

//

α

��

N
δ //

1
��

Q //

ψ

��

T(L)

T(α)
��

M
β
//

γ

��

N
ε //

δ

��

R //

1
��

T(M)

T(γ)
��

P
φ
// Q

ψ
// R

ρ
// T(P )

commutative.

Remark 5.2.5. The numbering of the axioms we use is taken from [RD]; the
numbering in [Scp], [KaSc1] [KaSc2] and [Ne1] is different.

In the situation that we care about, namely K = K(A,M), the distinguished
triangles will be those triangles that are isomorphic, in K(A,M), to the standard
triangles in C(A,M) from Definition 4.2.5. See Definition 5.4.3 below for the precise
statement.

The object N in item (b) of axiom (TR1) is referred to as a cone on α : L→M .
We should think of the cone as something combining “the cokernel” and “the kernel”
of α.
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Axiom (TR2) says that if we “turn” a distinguished triangle we remain with a
distinguished triangle.

Axiom (TR3) says that a commutative square (φ, ψ) induces a morphism χ on
the cones of the horizontal morphisms, that fits into a morphism of distinguished
triangles (φ, ψ, χ). Note however that the new morphism χ is not unique; in other
words, cones are not functorial. This fact has some deep consequences in many
applications. However, in the situations that will interest us, namely when K =
K(A,M), the cones come from the standard cones in C(A,M); and the standard
cones in C(A,M) are functorial (Definition 4.2.6).

Remark 5.2.6. The axiom (TR4) is called the octahedral axiom. It is supposed
to replace the isomorphism

(N/L)/(M/L) ∼= N/M

for objects L ⊆M ⊆ N is an abelian category M. The octahedral axiom is needed
for the theory of t-structures: it is used, in [BBD], to show that the heart of a t-
structure is an abelian category. This axiom is also needed to form Verdier quotients
of triangulated categories. See the book [Ne1] for a detailed discussion.

A T-additive category (K,T) that only satisfies axioms (TR1)-(TR3) is called
a pretriangulated category. (The reader should not confuse “pretriangulated cat-
egory”, as used here, with the “pretriangulated DG category” from [BoKa]; see
Remark 5.4.17.) It is not known whether the octahedral axiom is a consequence of
the other axioms; there was a recent paper by Maccioca (arxiv:1506.00887) claiming
that, but it had a fatal error in it.

In our book the octahedral axiom does not play any role. For this reason we
had excluded it from an earlier version of the book, in which we had discussed
pretriangulated categories only. Our decision to include this axiom in the current
version of the book, and thus to talk about triangulated categories (rather than
about pretriangulated ones) is just to be more in line with the mainstream usage.
With the exception of a longer proof of Theorem 5.4.4 – stating that K(A,M) is a
triangulated category – there is virtually no change in the content of the book, and
almost all definitions and results are valid for pretriangulated categories.

Proposition 5.2.7. Let K be a triangulated category. If

L
α−→M

β−→ N
γ−→ T(L)

is a distinguished triangle in K, then β ◦ α = 0.

Proof. By axioms (TR1) and (TR3) we have a commutative diagram

L
1L //

1L
��

L //

α

��

0 //

��

T(L)

T(1L)
��

L
α // M

β
// N

γ
// T(L) .

We see that β ◦ α factors through 0. �

Let (K,T) be a T-additive category. According to Definition 5.1.7 the opposite
category Kop is equipped with a translation functor Top. Thus (Kop,Top) is a
T-additive category.
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Proposition 5.2.8. Let K be a triangulated category. For any any distinguished
triangle

L
α−→M

β−→ N
γ−→ T(L)

in K, we declare the triangle

N
op(β)−−−→M

op(α)−−−→ L
op(−T−1(γ))−−−−−−−−−→ Top(N)

in Kop to be distinguished. Then Kop is a triangulated category.
Exercise 5.2.9. Prove the last proposition. (Hint: look at the proof of Proposition
5.3.3 below.)
5.3. Triangulated and Cohomological Functors. Suppose K and L are T-
additive categories, with translation functors TK and TL respectively. The notion
of T-additive functor F : K → L was defined in Definition 5.1.3 In that definition
we also introduced the notion of morphism η : F → G between T-additive functors.
Definition 5.3.1. Let K and L be triangulated categories.

(1) A triangulated functor from K to L is a T-additive functor
(F, τ) : K→ L

that satisfies this condition: for any distinguished triangle

L
α−→M

β−→ N
γ−→ TK(L)

in K, the triangle

F (L) F (α)−−−→ F (M) F (β)−−−→ F (N) τL◦F (γ)−−−−−−→ TL(F (L))
is a distinguished triangle in L.

(2) Suppose (G, ν) : K → L is another triangulated functor. A morphism
of triangulated functors η : (F, τ) → (G, ν) is a morphism of T-additive
functors, as in Definition 5.1.5 .

Sometimes we keep the translation isomorphism τ implicit, and refer to F as a
triangulated functor.
Definition 5.3.2. Let K be a triangulated category, and let M be an abelian
category. A cohomological functor F : K→ M is an additive functor, such that for
every distinguished triangle

L
α−→M

β−→ N
γ−→ T(L)

in K, the sequence
F (L) F (α)−−−→ F (M) F (β)−−−→ F (N)

is exact in M.
Proposition 5.3.3. Let F : K→ M be a cohomological functor, and let

L
α−→M

β−→ N
γ−→ T(L)

be a distinguished triangle in K. Then the sequence

· · · → F (Ti(L)) F (Ti(α))−−−−−−→ F (Ti(M)) F (Ti(β))−−−−−−→ F (Ti(N)) F (Ti(γ))−−−−−−→ F (Ti+1(L))
F (Ti+1(α))−−−−−−−→ F (Ti+1(M))→ · · ·

in M is exact.
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Proof. By axiom (TR2) we have distinguished triangles

Ti(L) (−1)i · Ti(α)−−−−−−−−→ Ti(M) (−1)i · Ti(β)−−−−−−−−→ Ti(N) (−1)i · Ti(γ)−−−−−−−−→ Ti+1(L),

Ti(M) (−1)i · Ti(β)−−−−−−−−→ Ti(N) (−1)i · Ti(γ)−−−−−−−−→ Ti+1(L) (−1)i+1 · Ti+1(α)−−−−−−−−−−−→ Ti+1(M)
and

Ti(N) (−1)i · Ti(γ)−−−−−−−−→ Ti+1(L) (−1)i+1 · Ti+1(α)−−−−−−−−−−−→ Ti+1(M) (−1)i+1 · Ti+1(β)−−−−−−−−−−−→ Ti+1(N).
Now use the definition, noting that multiplying morphisms in an exact sequence by
−1 preserves exactness. �

Proposition 5.3.4. Let K be a triangulated category. For any P ∈ K the functors
HomK(−, P ) : Kop → Ab

and
HomK(P,−) : K→ Ab

are cohomological functors.

Proof. We will prove the covariant statement; the contravariant statement is an
immediate consequence, since

HomK(M,P ) = HomKop(P,M),
and Kop is triangulated (with the correct triangulated structure to make this true).

Consider a distinguished triangle

L
α−→M

β−→ N
γ−→ T(L)

in K. We have to prove that the sequence

HomK(P,L) Hom(1P ,α)−−−−−−−→ HomK(P,M) Hom(1P ,β)−−−−−−−→ HomK(P,N)
is exact. In view of Proposition 5.2.7, all we need to show is that for any ψ : P →M
s.t. β ◦ ψ = 0, there is some φ : P → L s.t. ψ = α ◦ φ. In a picture, we must show
that the diagram below (solid arrows)

P
1 //

φ

��

P //

ψ

��

0 //

��

T(P )

T(φ)
��

L
α // M

β
// N

γ
// T(L) .

can be completed (dashed arrow). This is true by (TR2) (= turning) and and
(TR3) (= extending). �

Proposition 5.3.5. Let K be a triangulated category, and let

L
α //

φ

��

M
β
//

ψ

��

N
γ
//

χ

��

T(L)

T(φ)
��

L′
α′ // M ′

β′
// N ′

γ′
// T(L′) .

be a morphism of distinguished triangles. If φ and ψ are isomorphisms, then χ is
also an isomorphism.
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Proof. Take an arbitrary P ∈ K, and let F := HomK(P,−). We get a commutative
diagram

F (L)
F (α)

//

F (φ)

��

F (M)
F (β)

//

F (ψ)

��

F (N)
F (γ)

//

F (χ)

��

F (T(L))

F (T(φ))

��

F (T(α))
// F (T(M))

F (T(ψ))

��

F (L′)
F (α′)

// F (M ′)
F (β′)

// F (N ′)
F (γ′)

// F (T(L′))
F (T(α′))

// F (T(M ′))

in Ab. By Proposition 5.3.4(2) the rows in the diagram are exact sequences. Since
the other vertical arrows are isomorphisms, it follows that

F (χ) : HomK(P,N)→ HomK(P,N ′)
is an isomorphism of abelian groups. By forgetting structure, we see that F (χ) is
an isomorphism of sets.

We now use the Yoneda Lemma. Let us write YN := HomK(−, N) and YN ′ :=
HomK(−, N ′), viewed as functors Kop → Set. For any object P ∈ K we have isomor-
phisms of sets YN (P ) ∼= F (N) and YN ′(P ) ∼= F (N ′). The calculation above shows
that the morphism of functors Y (χ) : YN → YN ′ is an isomorphism. According to
Proposition 1.7.1(2), the morphism χ : N → N ′ in K is an isomorphism. �

Proposition 5.3.6. Let K be a triangulated category, and let

L
α−→M

β−→ N
γ−→ T(L)

be a distinguished triangle in it. The two conditions below are equivalent:
(i) α : L→M is an isomorphism.
(ii) N ∼= 0.

Proof. Exercise. (Hint: use Proposition 5.3.5.) �

Question 5.3.7. Let K and L be triangulated categories, and let F : K → L be
an additive functor. Is it true that there is at most one isomorphism of functors
τ : F ◦ TK

'−→ TL ◦F such that the pair (F, τ) is a triangulated functor?

We end this subsection with a discussion of the contravariant case. Contravariant
T-additive functors were introduced in Definition 5.1.6.

Definition 5.3.8. Let K and L be triangulated categories. A contravariant trian-
gulated functor

(F, τ) : K→ L
is a contravariant T-additive functor, such that for every distinguished triangle

L
α−→M

β−→ N
γ−→ T(L)

in K, the triangle

F (N) F (β)−−−→ F (M) F (α)−−−→ F (L)
τN◦F (−T−1

K (γ))
−−−−−−−−−−−→ TL(F (N))

L is distinguished.

According to Proposition 5.2.8, the opposite category Kop is triangulated.

Proposition 5.3.9. Let K and L be triangulated categories.
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(1) The contravariant T-additive functor
(op, id) : K→ Kop

is a contravariant triangulated functor.
(2) If

(F, τ) : K→ L
is a contravariant triangulated functor, then

(F ◦ op, τ) : Kop → L
is a triangulated functor; and vice-versa.

Proof. Both assertions are immediate from comparing Definition 5.3.8 to Proposi-
tion 5.2.8. �

5.4. The Homotopy Category is Triangulated. In this subsection we consider
an abelian category M and a DG ring A (everything central over the commutative
base ring K). These ingredients give rise to the K-linear DG category C(A,M) of
DG A-module in M, as in Subsection 3.7.

The strict category Cstr(A,M) and the homotopy category K(A,M) were in-
troduced in Definition 3.7.5. Recall that these lK-inear categories have the same
objects as C(A,M). The morphisms K-modules are

HomCstr(A,M)(M0,M1) = Z0(HomC(A,M)(M0,M1)
)

and
HomK(A,M)(M0,M1) = H0(HomC(A,M)(M0,M1)

)
.

Thus the morphisms M0 →M1 in K(A,M) are the homotopy classes φ̄ : M0 →M1
of the morphisms φ : M0 →M1 in Cstr(A,M).

Recall the full additive functor
(5.4.1) P : Cstr(A,M)→ K(A,M)
from Definition 3.4.4, that is the identity on objects, and on morphisms it is P(φ) :=
φ̄.

Consider the translation functor T from Definition 4.1.8. Since T is a DG functor
from C(A,M) to itself (see Corollary 4.1.9), it restricts to a linear functor from
Cstr(A,M) to itself, and it induces a linear functor T̄ from K(A,M) to itself, such
that P ◦ T = T̄ ◦ P .

Proposition 5.4.2.
(1) The category Cstr(A,M), equipped with the translation functor T, is a T-

additive category.
(2) The category K(A,M), equipped with the translation functor T̄, is a T-

additive category.
(3) Let τ : P ◦T '−→ T̄ ◦ P be equality. Then the pair

(P, τ) : Cstr(A,M)→ K(A,M)
is a T-additive functor.

Proof. (1) We need to prove that Cstr(A,M) is additive. Of course the zero complex
is a zero object. Next we consider finite direct sums. Let M1, . . . ,Mr be a finite
collection of objects in C(A,M). Each Mi is a DG A-module in M, and we write
it as Mi = {M j

i }j∈Z. In each degree j the direct sum M j :=
⊕r

i=1M
j
i exists
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in M. Let M := {M j}j∈Z be the resulting graded object in M. The differential
dM : M j → M j+1 exists by the universal property of direct sums; so we obtain a
complex M ∈ C(M). The DG A-module structure on M is defined similarly: for
a ∈ Ak, there is an induced degree k morphism f(a) : M → M in C(M). Thus
M becomes an object of C(A,M). But the embeddings ei : Mi → M are strict
morphisms, so (M, {ei}) is a coproduct of the collection {Mi} in Cstr(A,M).
(2) Now consider the category K(A,M). Because the functor P : Cstr(A,M) →
K(A,M) is additive, and is bijective on objects, part (1) above and Proposition
2.4.2 say that K(A,M) is an additive category.
(3) Clear. �

From now on we denote by T, instead of by T̄, the translation functor of K(A,M).

Definition 5.4.3. A triangle

L
ᾱ−→M

β̄−→ N
γ̄−→ T(L)

in K(A,M) is said to be a distinguished triangle if there is a standard triangle

L′
α′−→M ′

β′−→ N ′
γ′−→ T(L′)

in Cstr(A,M), as in Definition 4.2.5, and an isomorphism of triangles

L′
P(α′)

//

φ̄

��

M ′
P(β′)

//

ψ̄

��

N ′
P(γ′)

//

χ̄

��

T(L′)

T(φ̄)
��

L
ᾱ // M

β̄
// N

γ̄
// T(L) .

in K(A,M).

Theorem 5.4.4. The T-additive category K(A,M), with the set of distinguished
triangles defined above, is a triangulated category.

The proof is after three lemmas.

Lemma 5.4.5. Let M ∈ C(A,M), and consider the cone N := Cone(1M ). Then
the DG module N is null-homotopic, i.e. 0→ N is an isomorphism in K(A,M).

Proof. We shall exhibit a homotopy θ from 0N to 1N . Recall from Subsection 4.2
that

N = Cone(1M ) = M ⊕ T(M) =
[

M

T(M)

]
as graded modules, with differential whose matrix presentation is

dN =
[

dM t−1
M

0 dT(M)

]
.

And by the definition in Subsection 4.1 we have
dT(M) = − tM ◦ dM ◦ t−1

M .

Define θ : N → N to be the degree −1 morphism with matrix presentation

θ :=
[

0 0
tM 0

]
.
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Then, using the formulas above for dN and dT(M), we get

dN ◦ θ + θ ◦ dN =
[

1M 0
0 1T(M)

]
= 1N .

�

Exercise 5.4.6. Here is a generalization of Lemma 5.4.5. Consider a morphism
φ : M0 →M1 in Cstr(A,M). Show that the three conditions below are equivalent:

(i) φ is a homotopy equivalence.
(ii) φ̄ is an isomorphism in K(A,M).
(iii) The DG module Cone(φ) is null-homotopic.

Try to do this directly, not using Proposition 5.3.4(2) and Theorem 5.4.4.

The next lemma is based on [KaSc1, Lemma 1.4.2].

Lemma 5.4.7. Consider a morphism α : L → M in Cstr(A,M), the standard
triangle

L
α−→M

β−→ N
γ−→ T(L)

associated to α, and the standard triangle

M
β−→ N

φ−→ P
ψ−→ T(M)

associated to β, all in Cstr(A,M). So N = Cone(α) and and P = Cone(β). There
is a morphism ρ : T(L) → P in Cstr(A,M) s.t. ρ̄ is an isomorphism in K(A,M),
and the diagram

M
β̄

//

1̄M
��

N
γ̄
//

1̄N
��

T(L)
−T(ᾱ)

//

ρ̄

��

T(M)

1̄T(M)

��

M
β̄

// N
φ̄

// P
ψ̄
// T(M)

commutes in K(A,M).

Proof. Note that N = M ⊕ T(L) and P = N ⊕ T(M) = M ⊕ T(L) ⊕ T(M) as
graded module. Thus P and dP have the following matrix presentations:

P =

 M

T(L)
T(M)

 , dP =

dM α ◦ t−1
L t−1

M

0 dT(L) 0
0 0 dT(M)

 .

Define morphisms ρ : T(L) → P and χ : P → T(L) in Cstr(A,M) by the matrix
presentations

ρ :=

 0
1T(L)

−T(α)

 , χ :=
[
0 1T(L) 0

]
.

Direct calculations show that:
• χ ◦ ρ = 1T(L).
• ρ ◦ γ = ρ ◦ χ ◦ φ.
• ψ ◦ ρ = −T(α).
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It remains to prove that ρ ◦χ is homotopic to 1P . Define a degree −1 morphism
θ : P → P by the matrix

θ :=

 0 0 0
0 0 0

tM 0 0

 .
Then a direct calculation, using the equalities

tM ◦ dM + dT(M) ◦ tM = 0

and
T(α) = tM ◦α ◦ t−1

L

gives
θ ◦ dP + dP ◦ θ = 1P − ρ ◦ χ.

�

Lemma 5.4.8. Consider a standard triangle

L
α−→M

β−→ N
γ−→ T(L)

in Cstr(A,M). For any integer k, the triangle

Tk(L) Tk(α)−−−−→ Tk(M) Tk(β)−−−−→ Tk(N) (−1)k · Tk(γ)−−−−−−−−−→ Tk+1(L)

is isomorphic, in Cstr(A,M), to a standard triangle.

Proof. Combine Corollary 4.1.9, Corollary 4.5.8 with F = T, and Proposition 4.4.4.
�

Proof of Theorem 5.4.4. We essentially follow the proof of [KaSc1, Proposition
1.4.4], adding some details.

(TR1): By definition the set of distinguished triangles in K(A,M) is closed under
isomorphisms. This establishes item (a).

As for item (b): consider any morphism ᾱ : L→M in K(A,M). It is represented
by a morphism α : L → M in Cstr(A,M). Take the standard triangle on α in
Cstr(A,M). Its image in K(A,M) has the desired property.

Finally, Lemma 5.4.5 shows that the triangle

M
1̄M−−→M → 0→ T(M)

is isomorphic in K(A,M) to the triangle

M
1̄M−−→M

ē−→ Cone(1M ) p̄−→ T(M).

The latter is the image of a standard triangle, and so it is distinguished.

(TR2): Consider the triangles

(5.4.9) L
ᾱ−→M

β̄−→ N
γ̄−→ T(L)

and

(5.4.10) M
β̄−→ N

γ̄−→ T(L) −T(ᾱ)−−−−→ T(M)

in K(A,M). If (5.4.9) is distinguished, then by Lemma 5.4.7 so is (5.4.10).
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Conversely, if (5.4.10) is distinguished, then by turning it 5 times, and using the
previous step (namely by Lemma 5.4.7), we see that the triangle

T2(L) T2(ᾱ)−−−−→ T2(M) T2(β̄)−−−−→ T2(N) T2(γ̄)−−−−→ T3(L)
is distinguished. According to Lemma 5.4.8 (with k = −2), the triangle gotten by
applying T−2 to this is distinguished. But this is just the triangle (5.4.9).
(TR3): Consider a commutative diagram in K(A,M) :

(5.4.11) L̄
ᾱ //

φ̄

��

M̄
β̄
//

ψ̄

��

N̄
γ̄
// T(L̄)

L̄′
ᾱ′ // M̄ ′

β̄′
// N̄ ′

γ̄′
// T(L̄′)

where the horizontal triangles are distinguished. By definition the rows in (5.4.11)
are isomorphic in K(A,M) to the images under the functor P of standard triangles in
C(A,M). These are the rows in diagram (5.4.12) below. The vertical morphisms in
(5.4.11) are also induced from morphisms in C(A,M), i.e. φ̄ = P(φ) and ψ̄ = P(ψ).
Thus (5.4.11) is isomorphic to the image under P of the following diagram:

(5.4.12) L
α //

φ

��

M
β
//

ψ

��

N
γ
// T(L)

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

Warning: the diagram (5.4.12) is only commutative up to homotopy in C(A,M).
Since the rows in (5.4.12) are standard triangles (see Definition 4.2.5), the objects

N and N ′ are cones: N = Cone(α) and N ′ = Cone(α′). The commutativity up to
homotopy of this diagram means that there is a degree −1 morphism θ : L → M ′

in C(A,M) such that
α′ ◦ φ = ψ ◦ α+ d(θ).

Define the morphism

χ : N =
[
M

T(L)

]
→ N ′ =

[
M ′

T(L′)

]
by the matrix presentation

χ :=
[
ψ θ ◦ t−1

L

0 T(φ)

]
.

An easy calculation shows that χ is a morphism in Cstr(A,M), and that there are
equalities T(φ)◦γ = γ′ ◦χ and χ◦β = β′ ◦ψ. Therefore, when we apply the functor
P, and conjugate by the original isomorphism between (5.4.11) and the image of
(5.4.12), we obtain a commutative diagram

L̄
ᾱ //

φ̄

��

M̄
β̄
//

ψ̄

��

N̄
γ̄
//

χ̄

��

T(L̄)

T(φ̄)
��

L̄′
ᾱ′ // M̄ ′

β̄′
// N̄ ′

γ̄′
// T(L̄′)
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in K(A,M), where χ̄ is conjugate to P(χ).

(TR4): We may assume that the three given distinguished triangles are standard
triangles in Cstr(A,M). Namely, we can assume that α : L → M and β : M → N
are morphisms in Cstr(A,M); the DG modules P,Q,R are P = Cone(α), Q =
Cone(β ◦ α) and R = Cone(β); and the morphisms γ, δ, ε in Cstr(A,M) are γ = eα,
δ = eβ◦a and ε = eβ . All this in the notation of Subsection 4.2.

In matrix notation we have

P =
[
M

T(L)

]
, Q =

[
N

T(L)

]
, R =

[
N

T(M)

]
.

We define the morphisms φ : P → Q and ψ : Q → R in Cstr(A,M) by the matrix
presentations

φ :=
[
β 0
0 idT(L)

]
, ψ :=

[
idN 0
0 T(α)

]
.

(We leave to to the reader to verify that φ and ψ commute with the differentials
dP , dQ and dR; this is just linear algebra, using the matrix presentations of the
differentials of the cones from Definition 4.2.1.) Define the morphism ρ : R→ T(Q)
in Cstr(A,M) to be the composition of the morphisms R→ T(M) T(γ)−−−→ T(Q). Then
the big diagram in Cstr(A,M) is commutative.

It remains to prove that the triangle

(5.4.13) P
φ̄−→ Q

ψ̄−→ R
ρ̄−→ T(P )

in K(A,M) is distinguished. Let C := Cone(φ); so we have a standard triangle

(5.4.14) P
φ−→ Q

eφ−→ C
pφ−→ T(P )

in Cstr(A,M). We are going to prove that the triangles (5.4.13) and (5.4.14) are
isomorphic in K(A,M), by producing an isomorphism χ̄ : C '−→ R in K(A,M) that
makes the diagram

P
φ̄
//

id
��

Q
ēφ
//

id
��

C
p̄φ
//

χ̄

��

T(P )

id
��

P
φ̄
// Q

ψ̄
// R

ρ̄
// T(P )

commutative.
Here are the matrices for the object C, the morphism χ : C → R, and another

morphism ω : R→ C, both in Cstr(A,M).

C =


N

T(L)
T(M)
T2(L)

 , χ :=
[

idN 0 0 0
0 T(α) idT(M) 0

]
, ω :=


idN 0
0 0
0 idT(M)

0 0

 .
Again, we leave it to the reader to check that χ and ω commute with the differen-
tials. It is easy to see that ω ◦ ψ = eφ, ρ ◦ χ = pφ and χ ◦ ω = idR.
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Finally we must find a homotopy between ω ◦ χ and idC . Consider the degree
−1 endomorphisms θ of C :

θ :=


0 0 0 0
0 0 0 0
0 0 0 0
0 tT(L) 0 0

 .
Then

dC ◦ θ + θ ◦ dC = idC −ω ◦ χ.
�

We now add a second DG ring B, and a second additive category N. DG functors
were introduced in Subsection 3.5.

Consider a DG functor

F : C(A,M)→ C(B,N).

From Theorem 4.4.3 we know that the translation isomorphism is an isomorphism
of DG functors

τF : F ◦ TA,M
'−→ TB,N ◦F.

Therefore, when we pass to the homotopy categories, and writing F̄ := Ho(F ), we
get a T-additive functor

(F̄ , τ̄F ) : K(A,M)→ K(B,N).

Theorem 5.4.15. Let
F : C(A,M)→ C(B,N)

be a DG functor, with translation isomorphism τF . Then the T-additive functor

(F̄ , τ̄F ) : K(A,M)→ K(B,N)

is a triangulated functor.

Proof. Take a distinguished triangle

L
ᾱ−→M

β̄−→ N
γ̄−→ T(L)

in K(A,M). Since we are only interested in triangles up to isomorphism, we can
assume that this is the image under the functor P of a standard triangle

L
α−→M

β−→ N
γ−→ T(L)

in Cstr(A,M). According to Theorem 4.5.7 and Corollary 4.5.8, there is a standard
triangle

L′
α′−→M ′

β′−→ N ′
γ′−→ T(L′)

in Cstr(B,N), and a commutative diagram

F (L)
F (α)

//

φ

��

F (M)
F (β)

//

ψ

��

F (N)
τF,L◦F (γ)

//

χ

��

T(F (L))

T(φ)

��

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)
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in Cstr(B,N), in which the vertical arrows are isomorphisms. (Actually, we can
take L′ = F (L), φ = idF (L), etc.) After applying the functor P to this diagram, we
see that the condition in Definition 5.3.1(1) is satisfied. �

Corollary 5.4.16. For any integer k, the pair
(
Tk, (−1)k · idTk+1

)
is a triangulated

functor from K(A,M) to itself.

Proof. Combine Theorems 5.4.15 and Proposition 4.4.4. �

Remark 5.4.17. In [BoKa], Bondal and Kapranov introduce the concept of pretri-
angulated DG category. This is a DG category C for which the homotopy category
Ho(C) is canonically triangulated (the details of the definition are too complicated
to mention here). Our DG categories C(A,M) are pretriangulated in the sense of
[BoKa]; but they have a lot more structure (e.g. the objects have cohomologies too).

Suppose C and C′ are pretriangulated DG categories. In [BoKa] there is a (rather
complicated) definition of pre-exact DG functor F : C→ C′. It is stated there that
if F is a pre-exact DG functor, then Ho(F ) : Ho(C) → Ho(C′) is a triangulated
functor. This is analogous to our Theorem 5.4.15. Presumably, Theorems 4.4.3
and 4.5.7 imply that any DG functor F : C(A,M) → C(A′,M′) is pre-exact in the
sense of [BoKa]; but we did not verify this.
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6. Localization of Categories

Most of this section is devoted to the general theory of Ore localization of cate-
gories. In the last subsection we talk about localization of a pretriangulated cate-
gory K with respect to a denominator set of cohomological origin S ⊆ K.

6.1. The Formalism of Localization. We will start with a category A, without
even assuming it is linear. Still we use the notation A, because it will be suggestive
to think about a linear category A with a single object, which is just a ring A. The
reason is that our localization procedure is the same as that in noncommutative
ring theory (the only change being that we allow multiple objects).

The emphasis will be on morphisms rather than on objects. Thus it will be
convenient to write

A(M,N) := HomA(M,N)

for M,N ∈ Ob(A). We sometimes use the notation a ∈ A for a morphism a ∈
A(M,N), leaving the objects implicit. When we write b◦a for a, b ∈ A, we implicitly
mean that these morphisms are composable.

For heuristic purposes, we can think of A as a linear category (e.g. living inside
some category of modules), with objects M,N, . . .. For any given object M , we
then have a genuine ring A(M) := A(M,M).

Definition 6.1.1. Let A be a category. A multiplicatively closed set of morphisms
in A is a subcategory S ⊆ A such that Ob(S) = Ob(A).

In other words, for any pair of objects M,N ∈ A there is a subset S(M,N) ⊆
A(M,N), such that 1M ∈ S(M,M), and such that for any s ∈ S(L,M) and t ∈
S(M,N), the composition t ◦ s ∈ S(L,N).

Using our shorthand, we can write the definition like this: 1M ∈ S, and s, t ∈ S
implies t ◦ s ∈ S.

If A = A is a single object linear category, namely a ring, then S = S is a
multiplicatively closed set in the sense of ring theory.

There are various notions of localization in the literature. We restrict attention
to two of them.

Definition 6.1.2. Let S be a multiplicatively closed set of morphisms in a category
A. A localization of A with respect to S is a pair (AS,Q), consisting of a category
AS and a functor Q : A → AS, called the localization functor, having the following
properties:

(L1) There is equality Ob(AS) = Ob(A), and Q is the identity on objects.
(L2) For every s ∈ S, the morphism Q(s) ∈ AS is invertible (i.e. it is an isomor-

phism).
(L3) Suppose B is a category, and F : A → B is a functor such that F (s) is

invertible for every s ∈ S. Then there is a unique functor FS : AS → B such
that FS ◦Q = F as functors A→ B.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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In a commutative diagram:

S inc // A F //

Q

��

B

AS

FS

<<

In the ring case, F : A→ B is a ring homomorphism, etc.

Proposition 6.1.3. A localization (in the sense of Definition 6.1.2) is unique up
to a unique isomorphism. Namely if (A′S,Q′) is another localization, then there
is a unique functor G : AS → A′S which is the identity on objects, bijective on
morphisms, and G ◦Q = Q′.

Proof. Exercise. �

A localization in this general sense always exists, but often it is of little value,
because there is no practical way to describe the morphisms in it.

6.2. Ore Localization. There is a better notion of localization. The references
here are [RD], [GaZi], [We], [KaSc1], [Ste] and [Row]. The first four references talk
about localization of categories; and the last two talk about noncommutative rings.
It seems that historically, this noncommutative calculus of fractions was discovered
by Ore and Asano in ring theory, around 1930. There was progress in the categorical
side, notably by Gabriel around 1960.

In this subsection we mostly follow the treatment of [Ste]; but we sometimes use
diagrams instead of formulas involving letters – this is the only way the author was
able to understand the proofs!

Definition 6.2.1. Let S be a multiplicatively closed set of morphisms in a category
A. A right Ore localization of A with respect to S is a pair (AS,Q), consisting of a
category AS and a functor Q : A→ AS, having the following properties:
(RO1) There is equality Ob(AS) = Ob(A), and Q is the identity on objects.
(RO2) For every s ∈ S, the morphism Q(s) ∈ AS is an isomorphism.
(RO3) Every morphism q ∈ AS can be written as q = Q(a)◦Q(s)−1 for some a ∈ A

and s ∈ S.
(RO4) Suppose a, b ∈ A satisfy Q(a) = Q(b). Then a ◦ s = b ◦ s for some s ∈ S.

The letters “RO” stand for “right Ore”. We refer to the expression q = Q(a) ◦
Q(s)−1 as a right fraction representation of q.

Remark 6.2.2. There is an obvious notion of left Ore localization, with properties
(LO1)-(LO4) that are identical to (RO1)-(RO4) respectively, except that in the last
two the compositions are reversed: q = Q(s)−1 ◦ Q(a) and s ◦a = s ◦ b. The results
to follow in this section all have “left” versions, with identical proofs (just a matter
of reversing some arrows or compositions), and so they will be omitted.

To reinforce the last remark, we give:

Proposition 6.2.3. Let S be a multiplicatively closed set in a category A, and let
Q : A → AS be a functor. Prove that Q : A → AS is a right Ore localization of A
with respect to S if and only if Qop : Aop → (Aop)Sop is a left Ore localization of
Aop with respect to Sop.
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Exercise 6.2.4. Prove Proposition 6.2.3.

Lemma 6.2.5. Let (AS,Q) be a right Ore localization, let a1, a2 ∈ A and s1, s2 ∈ S.
The following conditions are equivalent:

(i) Q(a1) ◦Q(s1)−1 = Q(a2) ◦Q(s2)−1 in AS.
(ii) There are b1, b2 ∈ A s.t. a1 ◦ b1 = a2 ◦ b2, and s1 ◦ b1 = s2 ◦ b2 ∈ S.

Proof. (ii) ⇒ (i): Since Q(si) and Q(si ◦ bi) are invertible, it follows that Q(bi) are
invertible. So

Q(a1) ◦Q(s1)−1 = Q(a1) ◦Q(b1) ◦Q(b1)−1 ◦Q(s1)−1

= Q(a2) ◦Q(b2) ◦Q(b2)−1 ◦Q(s2)−1 = Q(a2) ◦Q(s2)−1.

(i) ⇒ (ii): By property (RO3) there are c ∈ A and u ∈ S s.t.
(6.2.6) Q(s2)−1 ◦Q(s1) = Q(c) ◦Q(u)−1.

Rewriting this equation we get
(6.2.7) Q(s1 ◦ u) = Q(s2 ◦ c).
It is given that

Q(a1) = Q(a2) ◦Q(s2)−1 ◦Q(s1).
Plugging (6.2.6) into it we obtain

Q(a1) = Q(a2) ◦Q(c) ◦Q(u)−1.

Rearranging this equation we get
(6.2.8) Q(a1 ◦ u) = Q(a2 ◦ c).
By property (RO4) there is v ∈ S s.t.

a1 ◦ u ◦ v = a2 ◦ c ◦ v.
Likewise, from equation (6.2.7) and property (RO4), there is v′ ∈ S s.t.

s1 ◦ u ◦ v′ = s2 ◦ c ◦ v′.
Again using property (RO3), there are d ∈ A and w ∈ S s.t.

Q(v)−1 ◦Q(v′) = Q(d) ◦Q(w)−1.

Rearranging we get
Q(v′ ◦ w) = Q(v ◦ d).

By property (RO4) there is w′ ∈ S s.t.
v′ ◦ w ◦ w′ = v ◦ d ◦ w′.

Define
b1 := u ◦ v ◦ d ◦ w′ , b2 := c ◦ v ◦ d ◦ w′ .

Then
s1 ◦ b1 = s1 ◦ u ◦ v ◦ d ◦ w′ = s1 ◦ u ◦ v′ ◦ w ◦ w′

= s2 ◦ c ◦ v′ ◦ w ◦ w′ = s2 ◦ b2,
and it is in S. Also

a1 ◦ b1 = a1 ◦ u ◦ v ◦ d ◦ w′ = a2 ◦ c ◦ v ◦ d ◦ w′ = a2 ◦ b2.
�
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Proposition 6.2.9. A right Ore localization (AS,Q) is a localization in the sense
of Definition 6.1.2.

Proof. Say B is a category, and F : A → B is a functor such that F (s) is an
isomorphism for every s ∈ S.

The uniqueness of a functor FS : AS → B satisfying FS ◦ Q = F is clear from
property (RO3). We have to prove existence.

Define FS to be F on objects, and

FS(q) := F (a1) ◦ F (s1)−1,

where
q = Q(a1) ◦Q(s1)−1 ∈ AS, a1 ∈ A, s1 ∈ S

is any presentation of q as a right fraction, that exists by (RO3). We have to
prove that this is well defined. So suppose that q = Q(a2) ◦ Q(s2)−1 is another
presentation of q. Let b1, b2 ∈ A be as in Lemma 6.2.5. Since F (si) and F (si ◦ bi)
are invertible, then so is F (bi). We get

F (a2) = F (a1) ◦ F (b1) ◦ F (b2)−1

and
F (s2) = F (s1) ◦ F (b1) ◦ F (b2)−1.

Hence
F (a2) ◦ F (s2)−1 = F (a1) ◦ F (s1)−1.

It remains to prove that FS is a functor. Since the identity 1M of the object M
in AS can be presented as 1M = Q(1M ) ◦Q(1M )−1, we see that FS(1M ) = 1F (M).

Next let q1 and q2 be morphisms in AS, such that composition q2 ◦ q1 exists
(i.e. the target of q1 is the source of q2). We have to show that FS(q2 ◦ q1) equals
FS(q2) ◦ FS(q1). Choose presentations qi = Q(ai) ◦Q(si)−1, so that

(6.2.10) FS(q2) ◦ FS(q1) = F (a2) ◦ F (s2)−1 ◦ F (a1) ◦ F (s1)−1.

By property (R03) there is a right fraction presentation

(6.2.11) Q(s2)−1 ◦Q(a1) = Q(b) ◦Q(t)−1

for some b ∈ A and t ∈ S. Because

Q(a1 ◦ t) = Q(s2 ◦ b),

by (RO4) there is some r ∈ S such that

a1 ◦ t ◦ r = s2 ◦ b ◦ r.

Therefore
F (a1 ◦ t ◦ r) = F (s2 ◦ b ◦ r),

which implies, by canceling the invertible morphism F (r) and rearranging, that

(6.2.12) F (s2)−1 ◦ F (a1) = F (b) ◦ F (t)−1

in B.
Let us continue. Using equation (6.2.11) we have

q2 ◦ q1 = Q(a2) ◦Q(s2)−1 ◦Q(a1) ◦Q(s1)−1

= Q(a2) ◦Q(b) ◦Q(t)−1 ◦Q(s1)−1 = Q(a2 ◦ b) ◦Q(s1 ◦ t)−1.
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Using this presentation of q2 ◦ q1, and the equality (6.2.12), we obtain

FS(q2 ◦ q1) = F (a2 ◦ b) ◦ F (s1 ◦ t)−1 = F (a2) ◦ F (b) ◦ F (t)−1 ◦ F (s1)−1

= F (a2) ◦ F (s2)−1 ◦ F (a1) ◦ F (s1)−1.

This is the same as (6.2.10). �

Corollary 6.2.13. Let S be a multiplicatively closed set of morphisms in a cate-
gory A. Assume that (AS,Q) and (A′S,Q′) are either right Ore localizations or left
Ore localizations of A with respect to S. Then there is a unique isomorphism of
localizations

(AS,Q) ∼= (A′S,Q′),
as in Proposition 6.1.3.

Proof. By Proposition 6.2.9 (in its right or left versions, as the case may be), both
(AS,Q) and (A′S,Q′) are localizations in the sense of Definition 6.1.2. Hence, by
Proposition 6.1.3, there is a unique isomorphism (AS,Q) ∼= (A′S,Q′). �

Definition 6.2.14. Let S be multiplicatively closed set of morphisms in a category
A. We say that S is a right denominator set if it satisfies these two conditions:
(RD1) (Right Ore condition) Given a ∈ A and s ∈ S, there exist b ∈ A and t ∈ S

such that a ◦ t = s ◦ b.
(RD2) (Right Cancellation condition) Given a, b ∈ A and s ∈ S such that s ◦ a =

s ◦ b, there exists t ∈ S such that a ◦ t = b ◦ t.

In commutative diagrams:

K
t

~~

b

  

M

a
  

N

s
~~

L

K

t
��

M

a
!!

b
}}

N

s
��

L

There is a similar left version of this definition, with conditions (LD1) and (LD2).
Here is the main theorem regarding Ore localization.

Theorem 6.2.15. The following conditions are equivalent for a category A and a
multiplicatively closed set of morphisms S ⊆ A.

(i) The right Ore localization (AS,Q) exists.
(ii) S is a right denominator set.

The proof of Theorem 6.2.15 is after some preparation. The hard part is proving
that (ii) ⇒ (i). The general idea is the same as in commutative localization: we
consider the set of pairs of morphisms A×S, and define a relation ∼ on it, with
the hope that this is an equivalence relation, and that the quotient set AS will be
a category, and it will have the desired properties.
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Let’s assume that S is a right denominator set. For any M,N ∈ Ob(A) consider
the set

(A×S)(M,N) :=
∐

L∈Ob(A)

A(L,N)× S(L,M).

Remark 6.2.16. The set (A×S)(M,N) could be big, namely not an element of
the initial universe U. This would require the introduction of a larger universe, say
V, in which U is an element. And the resulting category AS will be a V-category.

We will ignore this issue. Moreover, in many cases of interest (derived categories
where there are DG enhancements, such as the K-injective enhancement), there
will be an alternative presentation of AS as a U-category. We will refer to this when
we get to it.

An element (a, s) ∈ (A×S)(M,N) can be pictured as a diagram

(6.2.17) L
s

~~

a

  

M N

in A. This diagram will eventually represent the right fraction
Q(a) ◦Q(s)−1 : M → N.

Definition 6.2.18. We define a relation ∼ on the set A×S like this:
(a1, s1) ∼ (a2, s2)

if there exist b1, b2 ∈ A s.t.
a1 ◦ b1 = a2 ◦ b2 and s1 ◦ b1 = s2 ◦ b2 ∈ S .

Note that the relation ∼ imposes condition (ii) of Lemma 6.2.5.
Here it is in a commutative diagram, in which we have made the objects explicit:

(6.2.19) K

b1

~~

b2

  

L1

s1

�� a1 ((

L2

s2

ww

a2

��

M N

The arrows ending at M are in S.
Lemma 6.2.20. If the right Ore condition holds then the relation ∼ is an equiva-
lence.
Proof. Reflexivity: take K := L and bi := 1L : L→ L. Symmetry is trivial.

Now to prove transitivity. Suppose we are given (a1, s1) ∼ (a2, s2) and (a2, s2) ∼
(a3, s3). So we have the solid part of the first diagram in Figure 2, and it is
commutative. The arrows ending at M are in S.

By condition (RD1) applied to K →M ← J there are t ∈ S and d ∈ A s.t.
(s3 ◦ c3) ◦ d = (s1 ◦ b1) ◦ t.

Comparing arrows I →M in this diagram, we see that
s2 ◦ (b2 ◦ t) = s1 ◦ b1 ◦ t = s3 ◦ c3 ◦ d = s2 ◦ (c2 ◦ d).
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H

u

��

I

t

~~

d

  
K

b1

��

b2

  

J

c2

~~

c3

��

L1

s1

��
a1

''

L2

s2

~~

a2

  

L3

s3

ww

a3

��

M N

H

b1◦t◦u

		

c3◦d◦u

��

L1

s1

��
a1

''

L3

s3
ww

a3

��

M N

Figure 2.

By (RD2) there is u ∈ S s.t.
(b2 ◦ t) ◦ u = (c2 ◦ d) ◦ u.

So all paths H → M are equal and belong to S, and all paths H → N are equal.
Now delete the object L2 and the arrows going through it. Then delete the objects
I, J,K, but keep the paths going through them. We get the second diagram in
Figure 2. It is commutative, and all arrows ending at M are in S. This is evidence
for (a1, s1) ∼ (a3, s3). �

Proof of Theorem 6.2.15.
Step 1. In this step we prove (i) ⇒ (ii). Take a ∈ A and s ∈ S. Consider
q := Q(s)−1 ◦Q(a). By (RO3) there are b ∈ A and t ∈ S s.t. q = Q(b) ◦Q(t)−1. So

Q(s ◦ b) = Q(a ◦ t).
By (RO4) there is u ∈ S s.t.

(s ◦ b) ◦ u = (a ◦ t) ◦ u.
We read this as

s ◦ (b ◦ u) = a ◦ (t ◦ u),
and note that t ◦ u ∈ S. So (RD1) holds.

Next a, b ∈ A and s ∈ S s.t. s ◦ a = s ◦ b. Then Q(s ◦ a) = Q(s ◦ b). But Q(s)
is invertible, so Q(a) = Q(b). By (RO4) there is t ∈ S s.t. a ◦ t = b ◦ t. We have
proved (RD2).
Step 2. Now we assume that condition (ii) holds, and we define the morphism sets
AS(M,N), composition between them, and the identity morphisms.
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K

u

}}

c

!!

L1

s1

}}
a1

!!

L2

s2

}}

a2

!!

M0 M1 M2

Figure 3.

J1

b1

��

b′1

  

K

u
~~

c

''

K ′

u′

ww
c′   

J2

b2

~~

b′2

��

L1

s1

��
a1

''

L′1

s′1~~

a′1

  

L2

s2

~~
a2

  

L′2

s′2
ww

a′2

��

M0 M1 M2

Figure 4.

For any M,N ∈ Ob(A) let

AS(M,N) := (A×S)(M,N)
∼

,

where ∼ is the relation from Definition 6.2.18, which is an equivalence relation by
Lemma 6.2.20.

We define composition like this. Given q1 ∈ AS(M0,M1) and q2 ∈ AS(M1,M2),
choose representatives (ai, si) ∈ (A×S)(Mi−1,Mi)). We use the notation qi =
(ai, si) to indicate this. By (RD1) there are c ∈ A and u ∈ S s.t. s2 ◦ c = a1 ◦ u.
The composition

q2 ◦ q1 ∈ AS(M0,M2)

is defined to be

q2 ◦ q1 := (a2 ◦ c, s1 ◦ u) ∈ (A×S)(M0,M2)).

The idea behind the formula can be seen in the diagram in Figure 3.
We have to verify that this definition is independent of the representatives. So

suppose we take other representatives qi = (a′i, s′i), and we choose morphisms u′, c′
to construct the composition. This is the solid part of the diagram in Figure 4, and
it is a commutative diagram. We must prove that

(a2 ◦ c, s1 ◦ u) = (a′2 ◦ c′, s′1 ◦ u′).
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I1
v1

~~

d1

  

J1

b1   

K

u
~~

L1

I2

ṽ
��

Ĩ2
ṽ2

~~

d̃2

  

K ′

c′   

J2

b′2~~

L′2

s′2
��

M1

I2
v2

~~

d2

  

K ′

c′   

J2

b′2��

L′2

Figure 5.

There are morphisms bi, b′i the are evidence for (ai, si) ∼ (a′i, s′i). They are
depicted as the dashed arrows in Figure 4. That whole diagram is commutative.
The morphisms J1 →M0, K →M0, K ′ →M0 and J2 →M1 are all in S.

Choose v1 ∈ S and d1 ∈ A s.t. the first diagram in Figure 5 is commutative. This
can be done by (RD1).

Consider the solid part of the middle diagram in Figure 5. Since J2 →M1 is in
S, by (RD1) there are ṽ2 ∈ S and d̃2 ∈ A s.t. the two paths Ĩ2 →M1 are equal. By
(RD2) there is ṽ ∈ S s.t. the two paths I2 → L′2 are equal. We get the commutative
diagram in the middle of Figure 5. Next, defining d2 := d̃2 ◦ ṽ and v2 := ṽ2 ◦ ṽ ∈ S,
we obtain the third commutative diagram in Figure 5.

We now embed the first and third diagrams from Figure 5 into the diagram in
Figure 4. This gives us the solid diagram in Figure 6, and it is commutative. The
morphisms I1 →M0 belong to S.

Choose w ∈ S and e ∈ A, starting at an object H, to fill the diagram I1 →
M0 ← I2, using (RD1). The path H → I1 →M0 is in S, and all the paths H →M0
are equal. But we could have failure of commutativity in the paths H → L′1 and
H → L2.

The two paths H → L′1 in Figure 6 satisfy

s′1 ◦ (b′1 ◦ v1 ◦ w) = s′1 ◦ (u′ ◦ v2 ◦ e).

Therefore there is w′ ∈ S s.t.

(b′1 ◦ v1 ◦ w) ◦ w′ = (u′ ◦ v2 ◦ e) ◦ w′.

Next, the two paths H ′ → L2 satisfy

s2 ◦ (c ◦ d1 ◦ w ◦ w′) = s2 ◦ (b2 ◦ d2 ◦ e ◦ w′);

this is because we can take a detour through L′1. Therefore there is w′′ ∈ S s.t.

(c ◦ d1 ◦ w ◦ w′) ◦ w′′ = (b2 ◦ d2 ◦ e ◦ w′) ◦ w′′.

Now all paths H ′′ →M2 in Figure 6 are equal. All paths H ′′ →M0 are equal and
are in S.
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H ′′
w′′ // H ′

w′ // H

w

~~

e

  

I1

v1

~~

d1

��

I2

v2

��

d2

  

J1

b1

��

b′1

  

K

u
~~

c

''

K ′

u′

ww
c′   

J2

b2

~~

b′2

��

L1

s1

��
a1

((

L′1

s′1~~

a′1

  

L2

s2

~~
a2

  

L′2

s′2
ww

a′2

��

M0 M1 M2

Figure 6.

Erase the objects M1, J1, J2 and all arrows touching them from Figure 6. Then
eraseH,H ′, but keep the paths through them. We obtain the commutative diagram
in Figure 7. This is evidence for

(a2 ◦ c, s1 ◦ u) ∼ (a′2 ◦ c′, s′1 ◦ u′).

The proof that composition is well-defined is done.
The identity morphism 1M of an object M is (1M , 1M ).

Step 3. We have to verify the associativity and the identity properties of composition
in AS. Namely that AS is a category. This seems to be not too hard, given Step 2,
and we leave it as an exercise!

Step 4. The functor Q : A → AS is defined to be Q(M) := M on objects, and
Q(a) := (a, 1M ) for a : M → N in A. We have to verify this is a functor... Again,
an exercise.

Step 5. Finally we verify properties (RO1)-(RO4). (RO1) is clear. The inverse of
Q(s) is (1, s), so (RO2) holds.

It is not hard to see that

(a, s) = (a, 1) ◦ (1, s);

this is (RO3).
If Q(a1) = Q(a2), then (a1, 1M ) ∼ (a2, 1M ); so there are b1, b2 ∈ A s.t. a1 ◦ b1 =

a2 ◦ b2 and 1 ◦ b1 = 1 ◦ b2 ∈ S. Writing s := b1 ∈ S, we get a1 ◦ s = a2 ◦ s. This
proves (RO4). �
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H ′′

w◦w′◦w′′

~~

e◦w′◦w′′

!!

I1

d1

��

I2

v2

��

K

u~~

c

((

K ′

u′

vv c′   

L1

s1

��

L′1

s′1~~

L2

a2   

L′2

a′2

��

M0 M2

Figure 7.

Proposition 6.2.21. Let A be a category, let S be a right denominator set in A, and
let (AS,Q) be the right Ore localization. For any two morphisms q1, q2 : M → N in
AS there is a common denominator. Namely we can write

qi = Q(ai) ◦Q(s)−1

for suitable ai ∈ A and s ∈ S.

Proof. Choose representatives qi = Q(a′i) ◦ Q(s′i)−1. By (RD1) applied to L1 →
M ← L2, there are b ∈ A and t ∈ S s.t. the diagram above M commutes:

L

t

~~

b

  

L1

s′1
��

a′1
''

L2

s′2

ww

a′2
��

M N

Write s := s′1 ◦ t = s′2 ◦ b, a1 := a′1 ◦ t and a2 := a′2 ◦ b. By Lemma 6.2.5 we get
qi = Q(ai) ◦Q(s)−1. �

Exercise 6.2.22. Let A be a category, let S be a right denominator set in A. Let
Y be a subset of Ob(A), and let B and T be the full subcategories of A and S
respectively on the set of objects Y .

(1) Is T a right denominator set in B ?
(2) Show that if T is a right denominator set in B, then the inclusion functor

F : B→ A extends uniquely to a functor FT : BT → AS.
(3) Assume that T is a right denominator set in B. Is the functor FT full or

faithful?
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We will return to these questions later.

6.3. Localization of Linear Categories. Until now in this section we dealt with
arbitrary categories. In this and the subsequent subsection, our categories will be
linear over some commutative base ring K (that will be implicit in everything).
This includes the case K = Z of course.

For convenience we only talk about right denominator sets here. All the state-
ments hold equally for left denominator sets; cf. Remark 6.2.2 and Proposition
6.2.3.

Theorem 6.3.1. Let A be a K-linear category, let S be a right denominator set in
A, and let (AS,Q) be the right Ore localization.

(1) The category AS has a unique K-linear structure, such that Q : A → AS is
a K-linear functor.

(2) Suppose B is another K-linear category, and F : A → B is a K-linear
functor s.t. F (s) is invertible for every s ∈ S. Let FS : AS → B be the
localization of F . Then FS is a K-linear functor.

(3) If A is an additive category, then so is AS.

Proof. (1) Let qi : M → N be morphisms in AS. Choose common denominator
presentations qi = Q(ai) ◦ Q(s)−1. Since Q must be an additive functor, we have
to define

(6.3.2) Q(a1) + Q(a2) := Q(a1 + a2).

By the distributive law (bilinearity of composition) we must define

q1 + q2 := Q(a1 + a2) ◦Q(s)−1.

For λ ∈ K we must define

λ · qi := Q(λ · ai) ◦Q(s)−1.

The usual tricks are then used to prove independence of representatives. For
instance, to prove that (6.3.2) is independent of choices, suppose that Q(a1) =
Q(a′1) and Q(a2) = Q(a′2). Then, by (RO4), there are t1, t2 ∈ S such that a1 ◦ t1 =
a′1 ◦ t1 and a2 ◦ t2 = a′2 ◦ t2. By (RD1) there exist b ∈ A and v ∈ S s.t. t1 ◦ b = t2 ◦ v.
Let t3 := t2 ◦ v ∈ S. Then

(a1 + a2) ◦ t3 = (a′1 + a′2) ◦ t3,

and hence
Q(a1 + a2) = Q(a′1 + a′2).

In this way AS is a K-linear category, and Q is a K-linear functor.

(2) The only option for FS is FS(qi) := F (ai) ◦ F (s)−1. The usual tricks are used
to prove independence of representatives.

(3) Clear from Propositions 2.4.2 and 2.4.5. �

Example 6.3.3. Let A be a ring, which we can think of as a one object linear
category A. In this context, Theorem 6.3.1 is one of the most important results in
ring theory. See [Row, Ste].
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Example 6.3.4. Suppose A is a commutative ring, and S is a multiplicatively
closed set in it. Because A is commutative, the denominator conditions hold auto-
matically. The localized category AS is the single object category, with endomor-
phism set AS . This is simply the usual commutative localization.

Note that if S contains a nilpotent element, then the ring AS is trivial.

The observation above should serve as a warning: localization can sometimes
kill everything. This is the singularity effect: dividing by zero!

Fortunately, the localization procedure (7.0.1), that gives rise to the derived
category, does not cause any catastrophe, as we shall see in Proposition 6.4.10.

Remark 6.3.5. Suppose A is a ring and S is a right denominator set in it. Then
the right Ore localization AS is flat as left A-module. See [Row, Theorem 3.1.20].
I have no idea if something like this is true for linear categories with more than one
object.

Proposition 6.3.6. Let (K,T) be a T-additive K-linear category, let S be a right
denominator set in K such that T(S) = S, and let Q : K → KS be the localization
functor.

(1) There is a unique K-linear automorphism TS of the category KS, such that
TS ◦Q = Q ◦T

as functors K→ KS.
(2) Let τ be the identity automorphism of the functor Q ◦T. Then

(Q, τ) : (K,T)→ (KS,TS)
is a T-additive functor.

Proof. (1) By the assumption the functor Q ◦T : K → KS sends the morphisms
in S to isomorphism. By the property (L3) of localization in Definition 6.1.2, the
functor TS : KS → KS satisfying TS ◦Q = Q ◦T exists and is unique. Similarly,
there is a unique functor T−1

S : KS → KS satisfying T−1
S ◦Q = Q ◦T−1. An easy

calculation shows that
T−1

S ◦TS = Id = TS ◦T−1
S .

Hence TS is an automorphism of KS.
(2) This is clear. �

The composition of T-additive functors was defined in Definition 5.1.4.

Proposition 6.3.7. In the situation of Proposition 6.3.6, suppose (K′,T′) is an-
other T-additive K-linear category, and

(F, ν) : (K,T)→ (K′,T′)
is a T-additive K-linear functor, such that F (s) is invertible for any s ∈ S. Let
FS : KS → K′ be the localized functor. Then there is a unique isomorphism

νS : FS ◦ TS
'−→ T′ ◦FS

of functors KS → K′, such that
(F, ν) = (FS, νS) ◦ (Q, τ)

as T-additive functors (K,T)→ (K′,T′).

Exercise 6.3.8. Prove Proposition 6.3.7.
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6.4. Localization of Pretriangulated Categories. Let K be a pretriangulated
category, with translation functor T.

Proposition 6.4.1. Suppose H : K → M is a cohomological functor, where M is
some abelian category. Let

S := {s ∈ K | H(Ti(s)) is invertible for all i ∈ Z}.
Then S is a left and right denominator set in K.

Proof. It is clear that S is closed under composition and contains the identity
morphisms. So it is a multiplicatively closed set.

Let’s prove that condition (RD1) of Definition 6.2.14 holds. Suppose we are given
morphisms L a−→ N

s←− M with s ∈ S. We need to find morphisms L t←− K
b−→ M

with t ∈ S and such that a ◦ t = s ◦ b.
Consider the solid commutative diagram

K
t //

b

��

L
c◦a //

a

��

P //

=

��

T(K)

T(b)
��

M
s // N

c // P // T(M)

where the bottom row is a distinguished triangle built onM s−→ N , and and the top
row is a distinguished triangle built on L

c◦a−−→ P , then turned 120◦ to the right.
By axiom (TR3) there is a morphism b making the diagram commutative. Thus
a◦t = s◦b. Since H(Ti(s)) are invertible for all i ∈ Z, it follows that H(Ti(P )) = 0.
But then H(Ti(t)) are invertible for all i ∈ Z, so t ∈ S.

Next we prove condition (RD2) of Definition 6.2.14. Because we are in an addi-
tive category, this condition is simplified: given a ∈ K and s ∈ S satisfying s◦a = 0,
we have to find t ∈ S satisfying a ◦ t = 0.

Say the objects involved are L a−→ M
s−→ N . Take a distinguished triangle built

on s and then turned:
P

b−→M
s−→ N −→ T(P ).

We get an exact sequence

HomK(L,P ) b ◦−−−−→ HomK(L,M) s ◦−−−−→ HomK(L,N).
Since s ◦ a = 0, there is c : L → P s.t. a = b ◦ c. Now look at a distinguished
triangle built on c, and then turned:

K
t−→ L

c−→ P −→ T(K).
We know that c ◦ t = 0; hence a ◦ t = b ◦ c ◦ t = 0. But (s ∈ S) ⇒ (H(Ti(P )) = 0
for all i) ⇒ (t ∈ S).

The left versions (LD1) and (LD2) are proved the same way. �

Definition 6.4.2. A denominator set of cohomological origin in K is a denominator
set S ⊆ K that arises from a cohomological functor H, as in Proposition 6.4.1. The
morphisms in S are called quasi-isomorphisms relative to H.

Theorem 6.4.3. Let (K,T) be a pretriangulated category, let S be a denominator
set of cohomological origin in K, and let

(Q, τ) : (K,T)→ (KS,TS)
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be the T-additive functor from Proposition 6.3.6. The T-additive category (KS,TS)
has a unique pretriangulated structure such that these two properties hold:

(i) The pair (Q, τ) is a triangulated functor.
(ii) Suppose (K′,T′) is another pretriangulated category, and

(F, ν) : (K,T)→ (K′,T′)

is a triangulated functor, such that F (s) is invertible for every s ∈ S. Let

(FS, νS) : (KS,TS)→ (K′,T′)

be the T-additive functor from Proposition 6.3.7. Then (FS, νS) is a trian-
gulated functor.

Proof. Since S is of cohomological origin we have T(S) = S. Recall that the trans-
lation isomorphism τ is the identity automorphism of the functor Q ◦T; see Propo-
sition 6.3.6. So we will ignore it.

Step 1. The distinguished triangles in KS are defined to be those triangles that are
isomorphic to the images under Q of distinguished triangles in K. Let us verify the
axioms of pretriangulated category.

(TR1). By definition every triangle that’s isomorphic to a distinguished triangle is
distinguished; and the triangle

M
1M−−→M → 0→ T(M)

in KS is clearly distinguished.
Suppose we are given a morphism α : L → M in KS. We have to build a

distinguished triangle on it. Choose a fraction presentation α = Q(a) ◦ Q(s)−1.
Using condition (LD1) we can find b ∈ K and t ∈ S such that t ◦ a = b ◦ s. These
fit into the solid commutative diagram

L

α

##

b
��

K
soo a // M

t
~~

K̃

in K. (The dashed arrow α is in KS.)
Consider the solid commutative diagram below, where the rows are distinguished

triangles built on a and b respectively.

(6.4.4) K
a //

s

��

M
e //

t

��

N
c //

u

��

T(K)

T(s)
��

L
b // K̃ // P

d // T(L)

By (TR3) there is a morphism u that makes the whole diagram commutative.
Since s, t ∈ S and H is a cohomological functor, it follows that u ∈ S. Applying the
functor Q to (6.4.4), and using the isomorphism Q(t) : M → K̃ to replace K̃ with
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M , we get the commutative diagram

K
Q(a)

//

Q(s)

��

M
Q(e)

//

Q(1M )

��

N
Q(c)

//

Q(u)

��

T(K)

T(Q(s))

��

L
α // M

Q(u◦e)
// P

Q(d)
// T(L)

in KS. The top row is a distinguished triangle, and the vertical arrows are isomor-
phisms. So the bottom row is a distinguished triangle. This is the triangle we were
looking for.

(TR2). Turning: this is trivial.

(TR3). We are given the solid commutative diagram in KS, where the rows are
distinguished triangles:

(6.4.5) L
α //

φ

��

M
β
//

ψ

��

N
γ
//

χ

��

T(L)

T(φ)
��

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

and we have to find χ to complete the diagram.
By replacing the rows with isomorphic triangles, we can assume they come from

K. Thus we can replace (6.4.5) with this diagram:

(6.4.6) L
Q(α)

//

φ

��

M
Q(β)

//

ψ

��

N
Q(γ)

//

χ

��

T(L)

T(φ)

��

L′
Q(α′)

// M ′
Q(β′)

// N ′
Q(γ′)

// T(L′)

in which α, β, γ, α′, β′, γ′ are morphisms in K. It is a commutative diagram. Let us
choose fraction presentations φ = Q(a) ◦Q(s)−1 and ψ = Q(b) ◦Q(t)−1. Then the
solid diagram (6.4.6) comes from applying Q to the diagram

(6.4.7) L
α // M

β
// N

γ
// T(L)

L̃

a

��

s

OO

M̃

b

��

t

OO

T(L̃)

T(a)
��

T(s)

OO

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

in K. Here the rows are distinguished triangles in K; but the diagram might fail to
be commutative.

By axiom (RO3) we can find c ∈ K and u ∈ S s.t.

Q(t)−1 ◦Q(α) ◦Q(s) = Q(c) ◦Q(u)−1.
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This is the solid diagram:

L
α // M

L̃′′
u′ // L̃′

u //

c

<<L̃
a

��

s

OO

M̃

b

��

t

OO

L′
α′ // M ′

Thus
Q(α ◦ s ◦ u) = Q(t ◦ c).

By (RO4) there is u′ ∈ S s.t.

(α ◦ s ◦ u) ◦ u′ = (t ◦ c) ◦ u′.

We get
φ = Q(a) ◦Q(s)−1 = Q(a ◦ u ◦ u′) ◦Q(s ◦ u ◦ u′)−1

in KS. Thus, after substituting L̃ := L̃′′, s := s◦u◦u′, a := a◦u◦u′ and c := c◦u′,
we get a new diagram

(6.4.8) L
α // M

β
// N

γ
// T(L)

L̃
c //

a

��

s

OO

M̃

b

��

t

OO

T(L̃)

T(a)
��

T(s)

OO

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

in K instead of (6.4.7). In this new diagram the top left square is commutative; but
maybe the bottom left square is not commutative.

When we apply Q to the diagram (6.4.8), the whole diagram, including the
bottom left square, becomes commutative, since (6.4.6) is commutative. Again
using condition (RO4), there is v ∈ S s.t.

(α′ ◦ a) ◦ v = (b ◦ c) ◦ v.

In a diagram:
L

α // M

L̃′
v // L̃

a

��

s

OO

c // M̃

b

��

t

OO

L′
α′ // M ′

Performing the replacements L̃ := L̃′, s := s ◦ v, c := c ◦ v and a := a ◦ v we now
have a commutative square also at the bottom left of (6.4.8). Since γ ◦ β = 0 and
γ′ ◦ β′ = 0, in fact the whole diagram (6.4.8) in K is now commutative.
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Now by (TR1) we can embed the morphism c in a distinguished triangle. We
get the solid diagram

(6.4.9) L
α // M

β
// N

γ
// T(L)

L̃
c //

a

��

s

OO

M̃
β̃
//

b

��

t

OO

Ñ
γ̃
//

d

��

w

OO

T(L̃)

T(a)
��

T(s)

OO

L′
α′ // M ′

β′
// N ′

γ′
// T(L′)

in K. The rows are distinguished triangles. Since γ̃ ◦ β̃ = 0, the solid diagram
is commutative. By (TR3) there are morphisms w and d that make the whole
diagram commutative. Now the morphism w ∈ S by the usual long exact sequence
argument. The morphism

χ := Q(d) ◦Q(w)−1 : N → N ′

solves the problem.
Step 2. Suppose (F, ν) is a triangulated functor as in condition (ii). By Proposition
6.3.7 this extends uniquely to a T-additive functor (FS, νS). The construction of
the pretriangulated structure on (KS,TS) in the previous steps, and the defining
property of the translation isomorphism νS in Proposition 6.3.7, show that (FS, νS)
is a triangulated functor.
Step 3. At this point (KS,TS) is a pretriangulated category, and conditions (i)-(ii)
of the theorem are satisfied. We need to prove the uniqueness of the pretriangulated
structure on (KS,TS). Condition (i) says that we can’t have less distinguished tri-
angles than those we declared. We can’t have more distinguished triangles, because
of condition (ii). �

Proposition 6.4.10. Consider the situation of Proposition 6.4.1 and Theorem
6.4.3.

(1) The cohomological functor H : K → M factors into H = HS ◦ Q, where
HS : KS → M is a cohomological functor.

(2) Let M be an object of K. The object Q(M) is zero in KS iff the objects
H(Ti((M)) are zero in M for all i.

Proof. (1) The existence and uniqueness of the functor HS are by the universal
property (L3) in Definition 6.1.2. We leave it as an exercise to show that HS is a
cohomological functor.
(2) Since HS is an additive functor, if Q(M) = 0, then so is H(M) = HS(Q(M)).
And of course Q(M) = 0 iff Q(Ti(M)) = 0 for all i.

For the converse, let φ : 0 → M be the zero morphism in K. If H(Ti(M)) = 0
for all i, then H(Ti(φ)) : 0 → H(Ti(M)) are isomorphisms for all i. Then φ ∈ S,
and so Q(φ) : 0→ Q(M) is an isomorphism in KS. �
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7. The Derived Category D(A,M)

In this section there is a commutative base ringK, that shall remain implicit most
of the time. We fix a central DG K-ring A, and a K-linear abelian category M. The
DG category C(A,M) was introduced in Subsection 3.7, and the pretriangulated
category K(A,M) was introduced in Subsection 5.4.

The functor H0 : K(A,M)→ M is a cohomological functor, in the sense of Defi-
nition 5.3.2. The resulting denominator set is denoted by S(A,M), and its elements
are called quasi-isomorphisms. The derived category of (A,M) is the pretriangulated
category
(7.0.1) D(A,M) := K(A,M)S(A,M).

7.1. Definition of the Derived Category.

Proposition 7.1.1. Let M be an abelian category and let A be a DG ring. The
functor

H0 : K(A,M)→ M
is cohomological.

Proof. Clearly H0 is additive. Consider a distinguished triangle

(7.1.2) L
α−→M

β−→ N
γ−→ T(L)

in K(A,M). We can assume that it is the image of a standard triangle in C(A,M),
namely that N is the cone associated to α, as in Definition 4.2.5, β = eα and
γ = pα. By construction, the cone N sits in an exact sequence of complexes

(7.1.3) 0→M
eα−→ N

pα−−→ T(L)→ 0.
Consider the diagram

H−1(T(L)) conn //

H(t−1
L

)
��

H0(M)
H0(eα)

//

=
��

H0(N)

=
��

H0(L)
H0(α)

// H0(M)
H0(β)

// H0(N)

in M, where the first row is part of the long exact cohomology sequence for (7.1.3),
and the second row comes from (7.1.2). The first square is commutative because
any lifting represents the connecting homomorphism (cf. [Rot, Theorem 6.2]). The
second square is also commutative. It follows that the diagram is commutative,
and that the bottom row is exact. �

Definition 7.1.4. A morphism φ in K(A,M) is called a quasi-isomorphism if the
morphisms Hi(φ) in M are isomorphisms for all i.

The set of quasi-isomorphisms in K(A,M) is denoted by S(A,M).

Note that Hi = H0 ◦Ti. By Proposition 7.1.1 the functor H0 is cohomological.
Therefore S(A,M) is a denominator set of cohomological origin, Theorem 6.4.3
applies to it, and the next definition makes sense.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Definition 7.1.5. Let M be a K-linear abelian category and A a central DG K-ring.
The derived category of (A,M) is the K-linear pretriangulated category

D(A,M) := K(A,M)S(A,M).

In our situation we have additive functors
Cstr(A,M) P−→ K(A,M) Q−→ D(A,M),

that are the identity on objects. Recall that the functor P sends a strict morphism
of DG modules to its homotopy class; and Q is the localization functor with respect
to quasi-isomorphisms.

Definition 7.1.6. Let M be an abelian category and let A be a DG ring. Define
the functor

Q̃ := Q ◦P : Cstr(A,M)→ D(A,M).

This definition will only be used in the present section.
It is sometimes convenient to describe morphisms in D(A,M) in terms of the

functor Q̃. A morphism s ∈ Cstr(A,M) is called a quasi-isomorphism if P(s) is a
quasi-isomorphism in K(A,M); i.e. if all the Hi(s) are isomorphisms.

Proposition 7.1.7.
(1) Any morphism φ in D(A,M) can be written as a right fraction

φ = Q̃(a) ◦ Q̃(s)−1

where a, s ∈ Cstr(A,M) and s is a quasi-isomorphism.
(2) The kernel of Q̃ is this: Q̃(a) = 0 in D(A,M) iff there exists a quasi-

isomorphism s in Cstr(A,M) such that a ◦ s is a coboundary in C(A,M).

Proof. (1) This is because of property (RO3) of Definition 6.2.1 and the fact that
P is full.
(2) Property (RO4) of Definition 6.2.1 tells us what the kernel of Q is; and by
definition the kernel of P is the 0-coboundaries. �

Of course there is a left version of this proposition.
Recall that G(M) is the category of graded objects of M. For any DG module

M ∈ D(A,M), its cohomology H(M) is an object of G(M), and this is a functor.

Corollary 7.1.8. The functor
H : D(A,M)→ G(M)

is conservative. Namely a morphism φ : M → N in D(A,M) is an isomorphism if
and only if the morphism

H(φ) : H(M)→ H(N)
in G(M) is an isomorphism.

Proof. One implication is trivial. For the other direction, assume that H(φ) is
an isomorphism. We can write φ as a right fraction: φ = Q(a) ◦ Q(s)−1 where
a ∈ K(A,M) and s ∈ S(A,M). Then

H(φ) = H(Q(a)) ◦H(Q(s))−1.

By definition H(Q(s)) is an isomorphism. Hence H(Q(a)) is an isomorphism. But
then a ∈ S(A,M) too, and therefore Q(a) is an isomorphism in D(A,M). It follows
that φ is an isomorphism in D(A,M). �
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Exercise 7.1.9. Here M = ModK, so K(A,M) = K(A). Show that the functor
H0 : K(A) → ModK is corepresentable by the object A ∈ K(A) (see Subsection
1.7).

7.2. Localization of Subcategories of K(A,M).

Definition 7.2.1. Let K be a pretriangulated category. A full pretriangulated
subcategory of K is a subcategory L ⊆ K satisfying these conditions:

(a) L is a full additive subcategory (see Definition 2.2.6).
(b) L is closed under translations, i.e. L ∈ L iff T(L) ∈ L.
(c) L is closed under distinguished triangles, i.e. if

L′ → L→ L′′ → T(L)

is a distinguished triangle in K s.t. L′, L ∈ L, then also L′′ ∈ L.

Observe that L itself is pretriangulated, and the inclusion L→ K is a triangulated
functor.

Denominator sets of cohomological origin were introduced in Definition 6.4.2.
By Theorem 6.4.3, if S ⊆ K is a denominator set of cohomological origin, then the
localization KS is a pretriangulated category.

Example 7.2.2. This is the most important example for us: K = K(A,M), H =
H0 : K(A,M)→ M and S = S(A,M). Here KS = D(A,M), the derived category.

Proposition 7.2.3. Let K be a pretriangulated category, let S be a denominator
set of cohomological origin in K, and let K′ be a full pretriangulated subcategory of
K. Then S′ := K′ ∩ S is a denominator set of cohomological origin in K′, the Ore
localization K′S′ exists, and K′S′ is a pretriangulated category.

Proof. Let H : K→ M be a cohomological functor that determines S. The functor
H|K′ : K′ → M is also cohomological, and the set of morphisms S′ satisfies

S′ = {s ∈ K′ | H|K′(Ti(s)) is an isomorphism for all i}.

Hence Proposition 6.4.1 and Theorem 6.4.3 apply. �

In the situation of the proposition, the localization functor is denoted by Q′ :
K′ → K′S′ .

Proposition 7.2.4. In the situation of Proposition 7.2.3, let F : K′ → E be a
triangulated functor into some pretriangulated category E. Assume that for every
s ∈ S′, the morphism F (s) is an isomorphism in E. Then there is a unique tri-
angulated functor FS′ : K′S′ → E that extends F ; Namely FS′ ◦ Q′ = F as functors
K′ → E.

Proof. This is part of Theorem 6.4.3. �

In particular we can look at the functor F : K′ inc−−→ K Q−→ KS, and its extension
FS′ : K′S′ → KS. We are interested in sufficient conditions for the functor FS′ to be
fully faithful.

Proposition 7.2.5. Let K be a pretriangulated category, let S be a denominator set
of cohomological origin in K, and let K′ ⊆ K be a full pretriangulated subcategory.
Define S′ := K′ ∩ S. Assume either of these conditions holds:
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(r) Let M ∈ Ob(K). If there exists a morphism s : M → L in S with L ∈
Ob(K′), there exists a morphism t : K →M in S with K ∈ Ob(K′).

(l) The same, but with arrows reversed.
Then the functor FS′ : K′S′ → KS is fully faithful.

Proof. We will prove the proposition under condition (r); the other condition is
done the same way.

Let L1, L2 ∈ Ob(K′), and let q : L1 → L2 be a morphism in KS. Choose a
presentation q = Q(a) ◦Q(s)−1 with s : M → L1 a morphism in S and a : M → L2
a morphism in K. By condition (r) we can find a morphism t : K → M in S with
K ∈ Ob(K′).

K

t

��

M

s

~~

a

  

L1
q

// L2

Then q = Q(a ◦ t) ◦Q(s ◦ t)−1. But s ◦ t ∈ S′ and a ◦ t ∈ K′, so q is in the image of
the functor FS′ . We see that FS′ is full.

Now let q′ : L1 → L2 be a morphism in K′S′ such that FS′(q′) = 0. Let us denote
the localization functor K′ → K′S′ by Q′. Choose a presentation q′ = Q′(a)◦Q′(s)−1,
with s : N → L1 a morphism in S′ and a : N → L2 a morphism in K′. Because
FS′(q′) = 0, and using Lemma 6.2.5, there is a morphism u : M → N in K such that
a ◦ u = 0 and s ◦ u ∈ S. Note that u ∈ S. By condition (r), applied to u : M → N ,
there is a morphism t : K →M in S such that K ∈ Ob(K′).

K

t

��

M

u

��

N

s

~~

a

  

L1
q′

// L2

Then we have
q′ = Q′(a ◦ u ◦ t) ◦Q′(s ◦ u ◦ t)−1 = 0.

This proves that FS′ is faithful. �

7.3. Boundedness Conditions. A graded object M = {M i}i∈Z of M is said to
be bounded above if the set {i | M i 6= 0} is bounded above. Likewise we define
bounded below and bounded graded objects.

Definition 7.3.1. We define C−(A,M), C+(A,M) and Cb(A,M) to be full sub-
categories of C(A,M) consisting of bounded above, bounded below and bounded
complexes respectively.
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Likewise we define K−(A,M), K+(A,M) and Kb(A,M) to be the corresponding
full subcategories of K(A,M).

Of course
Cb(A,M) = C−(A,M) ∩ C+(A,M),

and the same for Kb(A,M). The subcategories K?(A,M), for ? ∈ {−,+,b}, are full
pretriangulated subcategory of K(A,M); this is because the operations of transla-
tion and cone preserve the various boundedness conditions.

As the next example shows, sometimes the category K?(A,M) can be very de-
generate.

Example 7.3.2. Let A be the DG ring K[t, t−1], the ring of Laurent polynomials
in the variable t of degree 1, with the zero differential. IfM = {M i}i∈Z is a nonzero
object of C(A,M), then M i 6= 0 for all i. Therefore the categories C?(A,M) and
K?(A,M) are zero for ? ∈ {−,+,b}.

Let
S?(A,M) := K?(A,M) ∩ S(A,M),

the category of quasi-isomorphisms in K?(A,M). As already mentioned, Theorem
6.4.3 applies here, so we can localize.

Definition 7.3.3. For ? ∈ {−,+,b} we define
D?(A,M) := K?(A,M)S?(A,M),

the Ore localization of K?(A,M) with respect to S?(A,M).

Here is another kind of boundedness condition.

Definition 7.3.4. For ? ∈ {−,+,b} we define D(A,M)? to be the full subcategory
of D(A,M) on the complexes M whose cohomology H(M) is of boundedness type
?.

Of course D(A,M)? is a full pretriangulated subcategory of D(A,M).
The next proposition refers to the abelian case only – namely to D(M) =

D(K,M). See Exercise 7.3.12 for a generalization to D(A,M) for a special sort
of DG ring A.

Proposition 7.3.5. For ? ∈ {−,+,b} the canonical functor D?(M) → D(M)? is
an equivalence of pretriangulated categories.

Proof. Step 1. Here we prove that F− : D−(M) → D(M) is fully faithful. Let
s : M → L be a quasi-isomorphism with L ∈ K−(M). Say L is concentrated in
degrees ≤ i. Then Hj(M) = Hj(L) = 0 for all j > i. Consider the smart truncation
of M at i:
(7.3.6) smt≤i(M) :=

(
· · · →M i−2 d−→M i−1 d−→ Zi(M)→ 0→ · · ·

)
where Zi(M) := Ker(d : M i → M i+1), the object of i-cocycles, is in degree i.
Then smt≤i(M) is a subcomplex of M , smt≤i(M) ∈ K−(M), and the inclusion
t : smt≤i(M) → M is a quasi-isomorphism. According to Proposition 7.2.5, with
K = K(M) and K′ = K−(M), and with condition (r), we see that F− : D−(M) →
D(M) is fully faithful.
Step 2. Here we prove that F+ : D+(M) → D(M) is fully faithful. Let s : L → M
be a quasi-isomorphism with L ∈ K+(M). Say L is concentrated in degrees ≥ i.

107



Derived Categories | Amnon Yekutieli 24 June 2017 | part1_170617d3.tex

Then Hj(M) = Hj(L) = 0 for all j < i. Consider the other smart truncation of M
at i:
(7.3.7) smt≥i(M) :=

(
· · · → 0→ Yi(M) d−→M i+1 d−→M i+2 → · · ·

)
where
(7.3.8) Yi(M) := Coker(d : M i−1 →M i)
is in degree i. Then smt≥i(M) is a quotient complex ofM , smt≥i(M) ∈ K+(M), and
the projection t : M → smt≥i(M) is a quasi-isomorphism. According to Proposition
7.2.5, with condition (l), we see that F+ : D+(M)→ D(M) is fully faithful.
Step 3. The arguments in step 1 we show that Db(M) → D+(M) is fully faithful.
And by step 2, D+(M)→ D(M) is fully faithful. Therefore Db(M)→ D(M) is fully
faithful.
Step 4. Smart truncation shows that the functor D?(M) → D(M)? is essentially
surjective on objects. �

Remark 7.3.9. Most advanced texts write D?(M) instead of D(M)?, and do not
use the notation D(M)? at all. This is harmless by Proposition 7.3.5.

Remark 7.3.10. The object Yp(M) = Coker(dp−1
M ) that appears in formula (7.3.8)

does not have a name. The naming conventions would indicate that is should be
called the “object of cococycles”, because it plays a role that’s dual to the role of
the object of cocycles Zp(M) = Ker(dpM ), and it can’t be called “cycles”. But the
name “cococycles” sounds a bit strange.
Definition 7.3.11. A DG ring A is called nonpositive if Ai = 0 for all i > 0.
Exercise 7.3.12. Let A be a nonpositive DG ring and let M be an abelian category.

(1) Prove that differential on any M ∈ Cstr(A,M) is A0-linear.
(2) Prove that the smart truncations from formulas (7.3.6) and (7.3.8) are

functors from Cstr(A,M) to itself.
(3) Prove Proposition 7.3.5 for Cstr(A,M).

7.4. Thick Subcategories of M. Let M be an abelian category. A thick abelian
subcategory of M is a full abelian subcategory N that is closed under extensions.
Namely if

0→M ′ →M →M ′′ → 0
is a short exact sequence in M with M ′,M ′′ ∈ N, then M ∈ N too.
comment: make this into a formal definition?

Let DN(M) be the full subcategory of D(M) consisting of complexesM such that
Hi(M) ∈ N for every i.
Proposition 7.4.1. If N is a thick abelian subcategory of M then DN(M) is a full
pretriangulated subcategory of D(M).
Proof. Clearly DN(M) is closed under translations. Now suppose

M ′ →M →M ′′ →M [1]
is a distinguished triangle in D(M) such that M ′,M ∈ DN(M); we have to show
that M ′′ is also in DN(M). Consider the exact sequence

Hi(M ′)→ Hi(M)→ Hi(M ′′)→ Hi+1(M ′)→ Hi+1(M).
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The four outer objects belong to N. Since N is a thick abelian subcategory of M it
follows that Hi(M ′′) ∈ N. �

Example 7.4.2. Let A be a noetherian commutative ring. The category Modf A
of finitely generated modules is a thick abelian subcategory of ModA.
Example 7.4.3. Consider ModZ = Ab. As above we have the thick abelian
subcategory Abfgen = Modf Z of finitely generated abelian groups. There is also
the thick abelian subcategory Abtors of torsion abelian groups (every element has
a finite order). The intersection of Abtors and Abfgen is the category Abfin of finite
abelian groups. This is also thick.
Example 7.4.4. Let X be a noetherian scheme (e.g. an algebraic variety over an
algebraically closed field). Consider the abelian category ModOX of OX -modules.
In it there is the thick abelian subcategory QCohOX of quasi-coherent sheaves, and
in that there is the thick abelian subcategory CohOX of coherent sheaves.

For a left noetherian ring A we write
Df(ModA) := DModf A(ModA).

Proposition 7.4.5. Let A be a left noetherian ring and ? ∈ {−,b}. Then the
canonical functor

D?(Modf A)→ Df(ModA)?

is an equivalence of pretriangulated categories.
Proof. Consider the functor

F : D−(Modf A)→ D(ModA).
Suppose s : M → L is a quasi-isomorphism in K(ModA), such that L ∈
K−(Modf A). Then M ∈ Df(ModA)−. A bit later (in Corollary 10.3.32) we will
prove thatM admits a free resolution P →M , where P is a bounded above complex
of finitely generated free modules. Thus we get a quasi-isomorphism t : P → M
with P ∈ K−(Modf A). By Proposition 7.2.5 with condition (r) we conclude that
F is fully faithful. This also shows that the essential image of F is Df(ModA)−.

Next consider the functor
G : Db(Modf A)→ D−(Modf A).

Suppose s : L → M is a quasi-isomorphism in K−(Modf A) with L ∈ Kb(Modf A).
Say H(L) is concentrated in the integer interval [d0, d1]. Then t : M → smt≥d0(M)
is a quasi-isomorphism, and smt≥d0(M) ∈ Kb(Modf A). By Proposition 7.2.5 with
condition (l) we conclude that G is fully faithful. Therefore the composition

F ◦G : Db(Modf A)→ D(ModA)
is fully faithful. Suitable truncations (smt≥d0 and smt≤d1) show that the essential
image of F ◦G is Df(ModA)b. �

7.5. The Embedding of M in D(M). Here again we only consider an abelian
category M.

For M,N ∈ M there is no difference between HomM(M,N), HomC(M)(M,N)
and HomK(M)(M,N). Thus the canonical functors M→ C(M) and M→ K(M) are
fully faithful. The same is true for D(M), but this requires a proof.

Let D(M)0 be the full subcategory of D(M) consisting of complexes whose coho-
mology is concentrated in degree 0. This is an additive subcategory of D(M).
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Proposition 7.5.1. The canonical functor M→ D(M)0 is an equivalence.

Proof. Let’s denote the canonical functor M → D(M)0 by F . Under the fully
faithful embedding M ⊆ Cstr(M), F is just the restriction of Q̃.

Since the functor H0 : D(M)→ M satisfies H0 ◦F = IdM. This implies that F is
faithful.

Next we prove that F is full. Take any objects M,N ∈ M and a morphism
q : M → N in D(M). By Proposition 7.1.7 we know that q = Q̃(a) ◦ Q̃(s)−1 for
some morphisms a : L→ N and s : L→M in Cstr(M), with s a quasi-isomorphism.
Let L′ := smt≤0(L), as in (7.3.6); so there is a quasi-isomorphism u : L′ → L in
Cstr(M). Writing a′ := a ◦ u and s′ := s ◦ u, we see that s′ is a quasi-isomorphism,
and q = Q̃(a′) ◦ Q̃(s′)−1.

Next let L′′ := smt≥0(L′), as in (7.3.8); so there is a surjective quasi-isomorphism
v : L′ → L′′ in Cstr(M). Because L′′ is a complex concentrated in degree 0, we can
view it as an object of M. The morphisms a′ and s′ factor as a′ = a′′ ◦ v and
s′ = s′′ ◦ v, where a′′ : L′′ → N and s′′ : L′′ →M are morphisms in M. But s′′ is a
quasi-isomorphism in Cstr(M), and so it is actually an isomorphism in M. Therefore
we have a morphism a′′ ◦ (s′′)−1 in M, and

Q̃(a′′ ◦ (s′′)−1) = Q̃(a′′) ◦ Q̃(s′′)−1 = Q̃(a′) ◦ Q̃(s′)−1 = q.

Finally we have to prove that any L ∈ D(M)0 is isomorphic, in D(M), to a
complex L′′ that’s concentrated in degree 0. But we already showed it in the
previous paragraphs. �

Proposition 7.5.2. Let M be an abelian category. Let

0→ L
φ−→M

ψ−→ N → 0
be a diagram in M. The following conditions are equivalent:

(i) The diagram is an exact sequence.
(ii) There is a distinguished triangle

L
Q̃(φ)−−−→M

Q̃(ψ)−−−→ N
θ−→ T(L)

in D(M).

Exercise 7.5.3. Prove Proposition 7.5.2. (Hint: for the implication (i) ⇒ (ii) you
can take θ = 0.)

The last two propositions say that the abelian category M can be recovered from
the pretriangulated category D(M).
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8. Derived Functors

As before, K is a commutative base ring, that shall remain implicit. Let A be
a central DG K-ring, and M a K-linear abelian category. The category C(A,M) of
DG A-modules in M was introduced in Subsection 3.7. It is a DG category. The
pretriangulated categories K(A,M) and D(A,M) were introduced in Subsections
5.4 and 7.1 respectively. There is a triangulated localization functor

Q : K(A,M)→ D(A,M).
Let (B,N) be another pair of DG ring and abelian category. Suppose we are

given a DG functor
F : C(A,M)→ C(B,N).

Then, according to Theorem 5.4.15, there is an induced triangulated functor
(F̄ , τ̄F ) : K(A,M)→ K(B,N)

Most triangulated functors that we shall encounter arise this way. For convenience
of notation, let us suppress mentioning the translation isomorphism τ̄F , and let us
write F instead of F̄ .

By postcomposing with the localization functor of K(B,N) we obtain a triangu-
lated functor
(8.0.1) Q ◦F : K(A,M)→ D(B,N).
Again we denote this triangulated functor by F .

Our goal in this section is to extend F to triangulated functors
RF,LF : D(A,M)→ D(B,N).

These are the right and left derived functors of F , respectively.
It will be easier to state matters more generally. Thus we shall mostly work in

the setup below.

Setup 8.0.2. The following are given:
(1) Pretriangulated categories K and E.
(2) A triangulated functor F : K→ E.
(3) A denominator set of cohomological origin S ⊆ K (see Definition 6.4.2).

Recall that the morphisms in S are called quasi-isomorphisms.
By Proposition 6.4.1 and Theorem 6.4.3, the localization KS exists, and it is a

pretriangulated category. The triangulated localization functor is Q : K→ KS.
This setup specializes to (8.0.1) when we take K = K(A,M), S = S(A,M) and

E = D(B,N).

Remark 8.0.3. As far as we know, all previous textbooks only consider the special
case of the derived functors

RF,LF : D(M)→ D(N)
of a triangulated functor

F : K(M)→ K(N),

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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where M and N are abelian categories. The DG variant is not mentioned at all.
However, the definitions and the main existence results, as stated in this section,
are virtually the same.

Furthermore, previous textbooks avoid the 2-categorical notation, and that (in
our opinion) is a cause for undue difficulties in the presentation.

8.1. 2-Categorical Notation. In this section we are going to do a lot of work with
morphisms of functors (i.e. natural transformations). The language and notation
of ordinary category theory that we used so far is not adequate for this purpose.
Therefore we will now introduce notation from the theory of 2-categories. (We will
not give a definition of a 2-category here; but it is basically the data mentioned
below, satisfying a few conditions, most of which will be mentioned below too.) In
the subsequent sections we will revert to the usual (i.e. 1-categorical) language. For
more details on 2-categories the reader can look at [Mac2] or [Ye8, Section 1].

Consider the set Cat of all categories. The set theoretical aspects are neglected,
as explained in Subsection 1.1. (Briefly, the precise solution is this: Cat is the set
of all U-categories; so Cat is a subset of a bigger Grothendieck universe, say V, and
it is a V-category.)

The set Cat is the set of objects of a 2-category. This means that in Cat there
are two kinds of morphisms: 1-morphisms between objects, and 2-morphisms be-
tween 1-morphisms. There are several kinds of compositions, and these have several
properties. All this will be explained below.

Suppose C0, C1, . . . are categories, namely objects of Cat. The 1-morphisms
between them are the functors. The notation is as usual: F : C0 → C1 denotes a
functor.

Suppose F,G : C0 → C1 are functors (with the same source and target objects).
The 2-morphisms from F to G are the morphisms of functors (i.e. the natural trans-
formations), and the notation is η : F ⇒ G. The double arrow is the distinguishing
notation for 2-morphisms. When specializing to an object M ∈ C0 we revert to the
single arrow notation, namely ηM : F (M)→ G(M) is the corresponding morphism
in C1. The diagram depicting this is

C0

F

""

G

==
η

��

C1

We shall refer to such a diagram as a 2-diagram.
Each object (category) C has its identity 1-morphism (functor) IdC : C → C.

Each 1-morphism F has its identity 2-morphism (natural transformation) idF :
F ⇒ F .

Now we consider compositions. For functors there is nothing new: given functors
Fi : Ci−1 → Ci, the composition, that we now call horizontal composition, is the
functor F2 ◦ F1 : C0 → C2. The diagram is

C0
F1 //

F2 ◦F1

88
C1

F2 // C2
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This can be viewed as a commutative 1-diagram, or as a shorthand for the 2-diagram

C0
F1 //

F2 ◦F1

;;
C1

F2 //

id
��

C2

in which id is the identity 2-morphism of F2 ◦ F1.
The complication begins with compositions of 2-morphisms. Suppose we are

given 1-morphisms Fi, Gi : Ci−1 → Ci and 2-morphisms ηi : Fi ⇒ Gi. In a
diagram:

C0

F1

""

G1

==
η1

��

C1

F2

""

G2

==
η2

��

C2

The horizontal composition is the morphism of functors

η2 ◦ η1 : F2 ◦ F1 ⇒ G2 ◦G1.

The diagram is

C0

F2 ◦F1

$$

G2 ◦G1

::
η2 ◦ η1

��

C2

Exercise 8.1.1. For an object M ∈ C0, give an explicit formula for the morphism

(η2 ◦ η1)M : (F2 ◦ F1)(M)→ (G2 ◦G1)(M)

in the category C2.

Suppose we are given 1-morphisms E,F,G : C0 → C1, and 2-morphisms
ζ : E ⇒ F and η : F ⇒ G. The diagram depicting this is

C0

E

��

F
//

G

II

ζ
��

η

��

C1

The vertical composition of ζ and η is the 2-morphism

η ∗ ζ : E → G.

Notice the new symbol for this operation. The corresponding diagram is

C0

E

$$

G

::
η2 ∗ η1

��

C1
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Exercise 8.1.2. For an object M ∈ C0, give an explicit formula for the morphism

(η ∗ ζ)M : E(M)→ G(M)

in the category C1.

Something intricate occurs in the situation shown in the next diagram.

C0

E1

��

F1

//

G1

II

ζ1
��

η1

��

C1

E2

��

F2

//

G2

II

ζ2
��

η2

��

C2

It turns out that

(η2 ∗ ζ2) ◦ (η1 ∗ ζ1) = (η2 ◦ η1) ∗ (ζ2 ◦ ζ1)

as morphisms E2 ◦ E1 ⇒ G2 ◦G1. This is called the exchange property.

Exercise 8.1.3. Prove the exchange property.

Just like general categories, we can talk about pretriangulated categories. There
is the 2-category PTrCat of all pretriangulated categories (over K). The objects
here are the pretriangulated categories (K,T); the 1-morphisms are the triangulated
functors (F, τ); and the 2-morphisms are the morphisms of triangulated functors η.
This is what we are going to use.

8.2. Some Preliminaries on Triangulated Functors.

Proposition 8.2.1. Let (F, τ) : K → L be a triangulated functor between
pretriangulated categories. Assume F is an equivalence (of abstract categories),
with quasi-inverse G : L→ K, and with adjunction isomorphisms α : G ◦F '=⇒ IdK
and β : F ◦G '=⇒ IdL.

Then there is an isomorphism of functors

ν : G ◦ TL
'=⇒ TK ◦G

such that (G, ν) : L → K is a triangulated functor, and α and β are isomorphisms
of triangulated functors.

Proof. It is well-known that G is additive (or in our case, K-linear); but since the
proof is so easy, we shall reproduce it. Take any pair of objects M,N ∈ L. We have
to prove that the bijection

GM,N : HomL(M,N)→ HomK
(
G(M), G(N)

)
is linear. But

GM,N = F−1
G(M),G(N) ◦HomL(βM , β−1

N )

as bijections (of sets) between these modules. Since α−1
M,N and FG(M),G(N) are

K-linear, then so is GM,N .
We define the isomorphism of triangulated functors ν by the formula

ν := (α ◦ idTK ◦G) ∗ (idG ◦ τ ◦ idG)−1 ∗ (idG◦TL ◦β)−1,
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in terms of the 2-categorical notation. This gives rise to a commutative diagram of
isomorphisms

G ◦ TL ◦F ◦G

id ◦ β
��

G ◦ F ◦ TK ◦G
id ◦ τ ◦ idks

α ◦ id
��

G ◦ TL
ν +3 TK ◦G

of additive functors L→ K. So the pair (G, ν) is a T-additive functor.
The verification that (G, ν) preserves triangles (in the sense of Definition 5.3.1(1))

is done like the proof of the additivity of G, but now using axiom (TR1.a) from
Definition 5.2.4 . We leave this as an exercise. �

Exercise 8.2.2. Finish the proof above (the last assertion).

8.3. Right Derived Functors.

Definition 8.3.1. Assume Setup 8.0.2. A right derived functor of F is a triangu-
lated functor

RF : KS → E,
together with a morphism

η : F ⇒ RF ◦Q
of triangulated functors K→ E. The pair (RF, η) must have this universal property:

(♦) Given any pair (G, θ), consisting of a triangulated functor G : KS → E
and a morphism of triangulated functors θ : F ⇒ G ◦Q, there is a unique
morphism of triangulated functors µ : RF ⇒ G such that θ = (µ ◦ idQ) ∗ η.

Pictorially: there is a 2-diagram

K F //

Q

��

E

KS

RF

==

η

��

For any other pair (G, θ) there is a unique morphism µ that sits in this 2-diagram:

K F //

Q

��

E

KS

==

η

��

G

MM

θ
��

µ � 

The 1-morphisms in this 2-diagram do not (necessarily) commute; but the diagram
of 2-morphisms (with ∗ composition)

F

η

��

θ

"*
RF ◦Q

µ ◦ idQ

+3 G ◦Q
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is commutative.

Proposition 8.3.2. If a right derived functor (RF, η) exists, then it is unique, up
to a unique isomorphism. Namely, if (G, θ) is another right derived functor of F ,
then there is a unique isomorphism of triangulated functors µ : RF '=⇒ G such that
θ = (µ ◦ idQ) ∗ η.

Proof. Despite the apparent complication of the situation, the usual argument for
uniqueness of universals (here it is a universal 1-morphism) applies. It shows that
the morphism µ from condition (♦) is an isomorphism. �

Existence is much harder. Here is a sufficient condition. It is a rephrasing of
[RD, Theorem I.5.1], and the proof is basically the same (but we give many more
details).

Theorem 8.3.3. Given Setup 8.0.2, assume there is a full pretriangulated subcat-
egory J ⊆ K with these two properties:

(a) If φ : I → I ′ is a quasi-isomorphism in J, then F (φ) : F (I) → F (I ′) is an
isomorphism in E.

(b) Every object M ∈ K admits a quasi-isomorphism ρ : M → I to some object
I ∈ J.

Then the right derived functor

(RF, η) : KS → E

exists. Moreover, for any object I ∈ J the morphism

ηI : F (I)→ (RF ◦Q)(I)

in E is an isomorphism.

Remark 8.3.4. A quasi-isomorphism ρ : M → I as in condition (b) is supposed to
be viewed as a “generalized injective resolution” of M . See Example 8.3.22, where
this is made concrete.

We use the letter J for the category of “generalized injective complexes” because
the letter I, in this particular font, is too ambiguous.

The proof of the theorem follows some preparation. We we will sometimes sup-
press the localization functors Q and Q′, for the sake of clarity. For instance, given
a morphism s ∈ S, we might say that s is invertible in KS.

Definition 8.3.5. In the situation of Theorem 8.3.3, by a system of right J-
resolutions we mean a pair (I, ρ), where I : Ob(K) → Ob(J) is a function, and
ρ = {ρM}M∈Ob(K) is a collection of quasi-isomorphisms ρM : M → I(M) in K.
Moreover, if M ∈ Ob(J), then I(M) = M and ρM = idM .

Property (b) of Theorem 8.3.3 guarantees that a system of right J-resolutions
(I, ρ) exists.

Suppose we made a choice of a system of right J-resolutions. Let us denote by
U : J → K the inclusion functor, so I ◦ U is the identity on the set Ob(J). Let us
define F ′ := F ◦U : J→ E and S′ := J∩S. The localization functor of J is denoted
by Q′ : J → JS′ . There is a triangulated functor US′ : JS′ → KS extending U , and
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there is equality Q ◦U = US′ ◦Q′. These sit in a commutative diagram

J U //

Q′

��

K

Q
��

JS′
US′ // KS

We know (from Theorem 6.4.3) that the functor F ′ extends uniquely to a trian-
gulated functor F ′S′ : JS′ → E. Let η′ := idF ′ , which is a 2-morphism

(8.3.6) η′ : F ′ ⇒ F ′S′ ◦Q′ .

The 2-diagram is:

(8.3.7) J

Q′

��

F ′ // E

JS′

F ′S′

??

η′

��

Lemma 8.3.8. The pair (F ′S′ , η′) is a right derived functor of F ′.

Proof. We need to verify condition (♦) of Definition 8.3.1. Say a triangulated
functor G′ : JS′ → E is given. Because Q′ is the identity on objects, the data of a
morphism of triangulated functors µ′ : F ′S′ ⇒ G′, namely a collection of morphisms
µ′I : F ′(I)→ G′(I) in E for all I ∈ J, is the same data as a morphism of triangulated
functors

(8.3.9) θ′ := µ′ ◦ idQ′ = (µ′ ◦ idQ′) ∗ η′ : F ′ ⇒ G′ ◦Q′ .

This implies that the function µ′ 7→ θ′ is injective. Here is the relevant 2-diagram:

(8.3.10) J F ′ //

Q′

��

E

JS′

F ′S′

==

η′

��

G′

MM

θ′

��
µ′ � 

We have to prove that the function µ′ 7→ θ′ is surjective. This amounts to
showing that for any morphism q : I → J in JS′ there is equality

θ′J ◦ F ′S′(q) = G′(q) ◦ θ′I

of morphisms in E. Let us choose a right fraction presentation q = a ◦ s−1, with
a : K → J in J and s : K → I in S′. Because θ′ : F ′ ⇒ G′ ◦ Q′ is a morphism of
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functors J→ E, the solid diagram below

F ′(I)

θ′I

��

F ′S′ (q)

''

F ′(K)
F ′(s)
oo

F ′(a)
//

θ′K

��

F ′(J)

θ′J

��

G′(I)

G′(q)

77
G′(K)

G′(s)
oo

G′(a)
// G′(J)

is commutative. But then, since F ′(s) and G′(s) are invertible in E, the whole
diagram is commutative. �

Lemma 8.3.11. The functor US′ : JS′ → KS is an equivalence of pretriangulated
categories.

Proof. By the proof of Proposition 7.2.5, with condition (l), together with Propo-
sition 8.2.1. �

Lemma 8.3.12. Suppose a system of right J-resolutions (I, ρ) has been chosen.
Then the function I extends uniquely to a triangulated functor I : KS → JS′ , such
that IdJS′ = I ◦ US′ , and ρ : IdKS ⇒ US′ ◦ I is an isomorphism of triangulated
functors.

In other words, the triangulated functor I is a quasi-inverse of US′ . The relevant
2-diagram is this:

J Q′
//

U

��

JS′

US′

  

Id // JS′

K Q
// KS

I

OO

Id
//

ρ

KS

KS

I

OO

Proof. By Lemma 8.3.11 the functor US′ is an equivalence. Take any pair of objects
M,N ∈ K. There is a bijection

US′ : HomJS′

(
I(M), I(N)

)
→ HomKS

(
I(M), I(N)

)
,

and another bijection

Hom(ρ−1
M , ρN ) : HomKS(M,N)→ HomKS

(
I(M), I(N)

)
.

These bijections say that to any morphism ψ : M → N in KS there corresponds a
unique morphism I(ψ) : I(M)→ I(N) in JS′ , such that

US′(I(ψ)) ◦ ρM = ρN ◦ ψ.

An easy calculation shows that I : KS → JS′ is a functor. Moreover, there is equality
of functors I ◦ US′ = IdJS′ , and an isomorphism of functors ρ : IdKS

'=⇒ US′ ◦ I.
This says that I is a quasi-inverse of US′ . Therefore, by Proposition 8.2.1, I is a
triangulated functor, and ρ is an isomorphism of triangulated functors. �
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Lemma 8.3.13. Under the assumptions of the theorem, let G : KS → E be trian-
gulated functor, and define G′ := G ◦US′ . Suppose η′ : F ′ ⇒ G′ ◦Q′ is a morphism
of triangulated functors J→ E. Then there is a unique morphism η : F ⇒ G ◦Q of
triangulated functors K→ E that extends η′, namely such that η ◦ idU = η′.

Here are the corresponding 2-diagrams:

J

Q′

��

F ′ // E

JS′

G′

??

η′

��

J U //

Q′

��

K

Q

��

F // E

JS′
US′

// KS

G

??

η

��

Here is another way to state the lemma. Let us denote by Hom2
PTrCat(−,−)

the set of 2-morphisms (morphisms of triangulated functors). Then the operation
η 7→ η ◦ idU is a function

− ◦ idU : Hom2
PTrCat(F,G ◦Q)→ Hom2

PTrCat(F ′, G′ ◦Q′),
and the lemma asserts that this is a bijection.

Proof. Choose a system of right J-resolutions (I, ρ). For any object M ∈ K the
morphism ρM is invertible in KS. Hence the morphism

G(ρM ) : G(M)→ G(I(M))
is invertible in E. We are given the morphism

η′I(M) : F ′(I(M))→ G′(I(M))

in E. Recall that F ′(I(M)) = F (I(M)) and G′(I(M)) = G(I(M)). Let us define
(8.3.14) ηM := G(ρM )−1 ◦ η′I(M) ◦ F (ρM ),

which is a morphism F (M)→ G(M) in E. We get a commutative diagram

(8.3.15) F (M) ηM //

F (ρM )
��

G(M)

G(ρM )
��

F ′(I(M))
η′I(M)

// G′(I(M))

in E.
It is now routine to check that η is a morphism of triangulated functors F ⇒

G◦Q. By construction η extends η′. The uniqueness of η follows from the fact that
the diagram (8.3.15) must commute, and thus formula (8.3.14) must hold. �

Proof of Theorem 8.3.3.
Step 1. We choose a system of right J-resolutions (I, ρ). For any object M ∈ K we
define the object
(8.3.16) RF (M) := F (I(M)) ∈ E
and the morphism
(8.3.17) ηM := F (ρM ) : F (M)→ RF (M)
in E. We still did not say what RF does to morphisms.
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Step 2. For any objectM ∈ K we have, by construction, RF (M) = F ′(I(M)). This
means that RF = F ′S′ ◦ I on objects. The definition

(8.3.18) RF := F ′S′ ◦ I : KS → E .

upgrades RF to a triangulated functor. And there is a commutative diagram of
triangulated functors

J Q′
//

U

��

F ′

$$
JS′

F ′S′ // E

K Q
// KS

I

OO

RF

==

Step 3. Recall that we already defined ηM = F (ρM ). In this step we prove that η
is a morphism of triangulated functors η : F → RF ◦Q.

According to Lemma 8.3.13, the morphism of triangulated functors η′ : F ′ ⇒
F ′S′ ◦ Q′ from (8.3.6) extends uniquely to a morphism of triangulated functors η̃ :
F ⇒ RF ◦Q. The 2-diagram is

K

Q

��

F // E

KS

RF

??

η̃

��

We know that η′I(M) = idF (I(M)) and RF = F ′S′ ◦ I. By construction of the functor
I we have I(ρM ) = idI(M) in JS′ . Plugging this and G = RF into formula (8.3.14)
we obtain

η̃M = (F ′S′(I(ρM ))−1 ◦ η′I(M) ◦ F (ρM )
= (idF (I(M)))−1 ◦ idF (I(M)) ◦F (ρM ) = F (ρM ).

So the morphism η̃M coincides with ηM . As M varies we get η̃ = η.

Step 4. It remains to verify condition (♦) of Definition 8.3.1. Say a pair (G, θ) is
given. Define G′ := G ◦ US′ and θ′ := θ ◦ idU . In Lemma 8.3.8 we proved that
(F ′S′ , η′) is the right derived functor of F ′. Therefore there is a unique morphism
µ′ : F ′S′ ⇒ G′ of triangulated functors JS′ → E such that µ′ ◦ idQ′ = θ′. In terms of
vertical composition, and using the equality η′ = idF ′ , this is

(8.3.19) (µ′ ◦ idQ′) ∗ η′ = θ′.

In a 2-diagram:

J F ′ //

Q′

��

E

JS′

F ′S′

==

η′

��

G′

MM

θ′

��
µ′ � 
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Recall that F ′S′ = RF ◦ US′ . The functor US′ is an equivalence. Hence (like
Lemma 8.3.13 but much easier) there is a unique morphism µ : RF → G such that
µ ◦ idUS′ = µ′. We get this 2-diagram:

J U //

Q′

��

K F //

Q

��

E

JS′
US′

// KS

RF

==

η

��

G

MM

θ
��

µ � 

We know that
idQ ◦ idU = idUS′ ◦ idQ′ .

Hence
(µ ◦ idQ ◦ idU ) ∗ (η ◦ idU ) = (µ ◦ idUS′ ◦ idQ′) ∗ η′ = (µ′ ◦ id′Q) ∗ η′

(this is the exchange condition). Taking this with formula (8.3.19), and using the
exchange condition once more, we deduce that

((µ ◦ idQ) ∗ η) ◦ idU = θ′.

The uniqueness in Lemma 8.3.13 now implies that
(8.3.20) (µ ◦ idQ) ∗ η = θ.

Finally we have to establish the uniqueness of µ. Suppose µ̃ is another morphism
RF ⇒ G satisfying (8.3.20). Then µ̃′ := µ̃ ◦ idUS′ satisfies (8.3.19). But then, by
the uniqueness of µ′, we have µ̃′ = µ′. Therefore (because US′ is an equivalence)
we see that µ̃ = µ. �

Definition 8.3.21. The construction of the right derived functor (RF, η) in the
proof of the theorem above, and specifically formulas (8.3.16) and (8.3.17), is called
a presentation of (RF, η) by the system of right J-resolutions (I, ρ).

Of course any other right derived functor of F (perhaps presented by another
system of right J-resolutions) is uniquely isomorphic to (RF, η). This is according
to Proposition 8.3.2.

In Section 9 we shall give several existence results for the right derived functor
(RF, η) : D?(A,M)→ E

of a triangulated functor
F : K?(A,M)→ E,

under various assumptions on F , A, M and ?. These existence results will be
based on Theorem 8.3.3: we will prove existence of suitable resolving subcategories
J ⊆ K?(A,M). The example below is one such case.

Example 8.3.22. Suppose we start from an additive functor F : M→ N. We know
how to extend it to a DG functor F : C+(M)→ C+(N), and then to a triangulated
functor F : K+(M)→ K+(N). By composing with Q we get a triangulated functor
Q ◦F : K+(M)→ D+(N), that we also denote by F for simplicity.

Assume that the abelian category M has enough injectives (this means that any
object M ∈ M admits an injective resolution). Define J to be the full subcategory
of K := K+(M) on the bounded below complexes of injective objects; and let E :=
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D+(N). We will prove later that properties (a) and (b) of Theorem 8.3.3 hold in
this situation. Therefore we have a right derived functor

RF : D+(M)→ D+(N).
In case the functor F is left exact, it has the classical right derived functors

RqF : M→ N, q ≥ 0. Formula (8.3.16) shows that for any M ∈ M there is equality
RqF (M) = Hq(RF (M)) as objects of N. We will prove that more is true:

RqF = Hq ◦RF
as functors M→ N.

In the situation of Theorem 8.3.3, let K† be a full pretriangulated subcategory
of K. Define S† := K† ∩S and J† := K† ∩ J. Denote by V : K† → K the inclusion
functor, and by VS† : K†S† → KS its localization. Warning: the functor VS† is not
necessarily fully faithful; cf. Proposition 7.2.5.
Proposition 8.3.23. Assume that every M ∈ K† admits a quasi-isomorphism
M → I where I ∈ J†. Then the pair

(RF ◦ VS† , η ◦ idV )
is a right derived functor of F ◦ V : K† → E.

Loosely speaking, the proposition says that
R(F ◦ V ) = RF ◦ VS† .

The proof is an exercise.
Exercise 8.3.24. Prove the last proposition. (Hint: Start by choosing a system
of right J†-resolutions of K†. Then extend it to a system of right J-resolutions of
K. Now follow the proof of the theorem.)
8.4. Left Derived Functors. Left derived functors behave just like right derived
functors, except for a change of sides in the target category. Because of this our
treatment will be brief: we will state the definitions and the main results, but won’t
give proofs, beyond a hint here and there.
Definition 8.4.1. Assume Setup 8.0.2. A left derived functor of F is a triangulated
functor

LF : KS → E,
together with a morphism

η : LF ◦Q⇒ F

of triangulated functors K→ E. The pair (LF, η) must have this universal property:
(♦) Given any pair (G, θ), consisting of a triangulated functor G : KS → E

and a morphism of triangulated functors θ : G ◦Q ⇒ F , there is a unique
morphism of triangulated functors µ : G⇒ LF such that θ = η ∗ (µ ◦ idQ).

Pictorially: there is a 2-diagram

K F //

Q

��

E

KS

LF

==

η

KS
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For any other pair (G, θ) there is a unique morphism µ that sits in this 2-diagram:

K F //

Q

��

E

KS

==

η

KS

G

MM
θ

OW

µ

X`

The 1-morphisms in this 2-diagram do not (necessarily) commute; but the diagram
of 2-morphisms (with ∗ composition)

F

LF ◦Q

η

KS

G ◦Q

θ

bj

µ ◦ idQ

ks

is commutative.

Proposition 8.4.2. If a left derived functor (LF, η) exists, then it is unique, up
to a unique isomorphism. Namely, if (G, θ) is another left derived functor of F ,
then there is a unique isomorphism of triangulated functors µ : G '=⇒ LF such that
θ = η ∗ (µ ◦ idQ).

The proof is the same as that of Proposition 8.3.2, with direction of arrows in E
reversed.

Theorem 8.4.3. Given Setup 8.0.2, assume there is a full pretriangulated subcat-
egory P ⊆ K with these two properties:

(a) If φ : P → P ′ is a quasi-isomorphism in P, then F (φ) : F (P ) → F (P ′) is
an isomorphism in E.

(b) Every object M ∈ K admits a quasi-isomorphism ρ : P → M from some
object P ∈ P.

Then the right derived functor
(LF, η) : KS → E

exists. Moreover, for any object P ∈ P the morphism
ηP : (LF ◦Q)(P )→ F (P )

in E is an isomorphism.

The category P is a “generalized category of projectives”.
The proof is the same as that of Theorem 8.3.3, with direction of arrows in E

reversed.

Definition 8.4.4. In the situation of Theorem 8.4.3, by a system of left P-resolu-
tions we mean a pair (P, ρ), where P : Ob(K) → Ob(P) is a function, and ρ =
{ρM}M∈Ob(K) is a collection of quasi-isomorphisms ρM : P (M) → M in K. More-
over, if M ∈ Ob(P), then P (M) = M and ρM = idM .

Property (b) of Theorem 8.4.3 guarantees that a system of left P-resolutions
(P, ρ) exists.
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Definition 8.4.5. The construction of the left derived functor (LF, η), when prov-
ing Theorem 8.4.3 along the lines of Theorem 8.3.3, and specifically the formulas
(8.4.6) LF (M) := F (P (M))
and

ηM := F (ρM ) : LF (M)→ F (M),
is called a presentation of (LF, η) by the system of left P-resolutions (P, ρ).

In Section 9 we shall give several existence results for the left derived functor
(LF, η) : D?(A,M)→ E

of a triangulated functor
F : K?(A,M)→ E,

under various assumptions on F , A, M and ?. These existence results will be
based on Theorem 8.4.3: we will prove existence of suitable resolving subcategories
P ⊆ K?(A,M). The example below is one such case.

Example 8.4.7. Suppose we start from an additive functor F : M→ N. We know
how to extend it to a DG functor F : C−(M)→ C−(N), and then to a triangulated
functor F : K−(M)→ K−(N). By composing with Q we get a triangulated functor
Q ◦F : K−(M)→ D−(N), that we also denote by F for simplicity.

Assume that the abelian category M has enough projectives (this means that any
object M ∈ M admits a projective resolution). Define P to be the full subcategory
of K := K−(M) on the bounded above complexes of projective objects; and let
E := D−(N). We will prove later that properties (a) and (b) of Theorem 8.4.3 hold
in this situation. Therefore we have a left derived functor

LF : D−(M)→ D−(N).
In case the functor F is right exact, it has the classical left derived functors

LqF : M → N, q ≥ 0. Formula (8.4.6) shows that for any M ∈ M there is equality
LqF (M) = H−q(LF (M)) as objects of N. We will prove that more is true:

LqF = H−q ◦LF
as functors M→ N.

In the situation of Theorem 8.4.3, let K† be a full pretriangulated subcategory
of K. Define S† := K† ∩S and P† := K† ∩P. Denote by V : K† → K the inclusion
functor, and by VS† : K†S† → KS its localization. Warning: the functor VS† is not
necessarily fully faithful; cf. Proposition 7.2.5.

Proposition 8.4.8. Assume that every M ∈ K† admits a quasi-isomorphism P →
M where P ∈ P†. Then the pair

(LF ◦ VS† , η ◦ idV )
is a left derived functor of F ◦ V : K† → E.

The proof is just like that of Proposition 8.3.23 (which was an exercise...).
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9. Resolutions of DG Modules

In this section we are back to the more concrete setting: A is a DG ring, and M
is an abelian category (both over a base ring K). We will define K-projective and
K-injective DG modules in K(A,M). These DG modules form full pretriangulated
subcategories of K(A,M), and are concrete versions of the abstract categories J and
P, that played important roles in Subsections 8.3 and 8.4 respectively. For K(A)
we also define K-flat DG modules.

9.1. K-Injective DG Modules. For any i we have an additive functor
Hi : Cstr(A,M)→ M .

There is equality Hi = H0 ◦Ti. The functors Hi pass to the homotopy category,
and

H0 : K(A,M)→ M
is a cohomological functor in the sense of Definition 5.3.2.

Definition 9.1.1. A DG module N ∈ C(A,M) is called acyclic if Hi(N) = 0 for
all i.

Definition 9.1.2. A DG module I ∈ C(A,M) is called K-injective if for every
acyclic DG module N ∈ C(A,M), the DG K-module HomA,M(N, I) is acyclic.

The definition above characterizes K-injectives as objects of C(A,M). The next
proposition shows that being K-injective is intrinsic to the pretriangulated category
K(A,M), with the cohomological functor H0 (that tells us which are the acyclic
objects).

Proposition 9.1.3. A DG module I ∈ K(A,M) is K-injective if and only if
HomK(A,M)(N, I) = 0 for every acyclic DG module N ∈ K(A,M).

Proof. This is because for any integer p we have
Hp
(
HomA,M(N, I)

) ∼= H0(HomA,M(T−p(N), I)
) ∼= HomK(A,M)(T−p(N), I),

and N is acyclic iff T−p(N) is acyclic. �

The concept of K-injective complex (i.e. a K-injective object of K(M)) was intro-
duced by Spaltenstein [Spa] in 1988. At about the same time other authors (Keller
[Kel], Bockstedt-Neeman [BoNe], Bernstein-Lunts [BeLu], . . . ) discovered this con-
cept independently, with other names (such as homotopically injective complex).
The texts [BeLu] and [Kel] already talk about DG modules over DG rings.

Remark 9.1.4. When the smart truncation functors exist (e.g. when A is a nonpos-
itive DG ring), it is enough to check for K-injectivity of a DG module I ∈ K?(A,M)
against acyclic DG modules N ∈ K?(A,M). Cf. Definition 7.3.11 and Exercise
7.3.12.

Definition 9.1.5. Let M ∈ K(A,M). A K-injective resolution of M is a quasi-
isomorphism ρ : M → I in K(A,M), where I is a K-injective DG module.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Remark 9.1.6. In some other texts (and in our Section 10) “resolution” refers to
a quasi-isomorphism ρ : M → I in Cstr(A,M). It usually makes no difference which
meaning is used (as long as we know what we are talking about).

In the next section we will prove existence of K-injectives in several contexts.
Here is an easy one.

Exercise 9.1.7. Let I ∈ K(M) be a complex of injective objects of M, with zero
differential. Prove that I is K-injective.

Definition 9.1.8. Let K be a full subcategory of K(A,M). The full subcategory
of K on the K-injective DG modules in it is denoted by Kinj. In other words,

Kinj = K(A,M)inj ∩ K .

Warning: the property of being K-injective is in general not intrinsic to the
subcategory K. Cf. Remark 9.1.4.

Proposition 9.1.9. If K is a full pretriangulated subcategory of K(A,M), then Kinj
is a full pretriangulated subcategory of K.

Proof. It suffices to prove that K(A,M)inj is a pretriangulated subcategory of
K(A,M). It is easy to see that K(A,M)inj is closed under translations. Suppose

I → J → K → T(I)

is a distinguished triangle in K(A,M), with I, J being K-injective DG modules. We
have to show that K is also K-injective. Take any acyclic DG module N ∈ K(A,M).
There is an exact sequence

HomK(A,M)(N, J)→ HomK(A,M)(N,K)→ HomK(A,M)(N,T(I))

in ModK. Because J and T(I) are K-injectives, Proposition 9.1.3 says that

HomK(A,M)(N, J) = 0 = HomK(A,M)(N,T(I)).

Therefore HomK(A,M)(N,K) = 0. But N is an arbitrary acyclic DG module, so K
is K-injective. �

Example 9.1.10. Let ? be some boundedness condition (namely b, +, − or noth-
ing). We know that K?(A,M) is a full pretriangulated subcategory of K(A,M).
Hence K?(A,M)inj is a pretriangulated subcategory too.

Definition 9.1.11. Let K be a full pretriangulated subcategory of K(A,M). We
say that K has enough K-injectives if any DG module M ∈ K admits a K-injective
resolution inside K. I.e. there is a quasi-isomorphism ρ : M → I where I ∈ Kinj.

Here is the crucial fact regarding K-injectives.

Lemma 9.1.12. Let K be a full subcategory of K(A,M). Let s : I → M be a
quasi-isomorphism in K, and assume I is K-injective. Then s has a left inverse,
namely there is a morphism t : M → I in K such that t ◦ s = idI .

Proof. Since K is a full subcategory of K(A,M), we can assume that K = K(A,M).
Consider a distinguished triangle

I
s−→M → N → T(I)
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in K(A,M) that’s built on s. The long exact cohomology sequence tells us that N
is an acyclic DG module. So

HomK(A,M)(Tp(N), I) = 0
for all p. The exact sequence

HomK(A,M)(N, I)→ HomK(A,M)(M, I)
→ HomK(A,M)(I, I)→ HomK(A,M)(T−1(N), I)

shows that φ 7→ φ ◦ s is a bijection

HomK(A,M)(M, I) '−→ HomK(A,M)(I, I).
We take t : M → I to be the unique morphism in K(A,M) such that t◦s = idI . �

Theorem 9.1.13. Let A be a DG ring, let M be an abelian category, and let K
be a full pretriangulated subcategory of K(A,M). Denote by S the set of quasi-
isomorphisms in K. Then the localization functor

Q : Kinj → KS

is fully faithful.

Proof. Consider any pair of objects I, J ∈ Kinj. We must prove that the K-module
homomorphism
(9.1.14) Q : HomK(I, J)→ HomKS(I, J)
is bijective.

Suppose q : I → J is a morphism in KS. Let us present q as a left fraction:
q = Q(s)−1 ◦ Q(a), where a : I → N and s : J → N are morphisms in K, and s is
a quasi-isomorphism. By Lemma 9.1.12 s has a left inverse t. We get a morphism
t ◦ a : I → J in K, and an easy calculation shows that Q(t ◦ a) = q in KS. This
proves surjectivity of (9.1.14).

Now let’s prove injectivity of (9.1.14). If a : I → J is a morphism in K such
that Q(a) = 0, then by axiom (LO4) of Ore localization (the left version of axiom
(RO4) in Definition 6.2.1), there is a quasi-isomorphism s : J → L in K such that
s ◦ a = 0 in K. Let t be the left inverse of s. Then a = t ◦ s ◦ a = 0 in K. �

Corollary 9.1.15. Let K be a full pretriangulated subcategory of K(A,M). If K
has enough K-injectives, then the localization functor

Q : Kinj → KS

is an equivalence.

Proof. By the theorem the functor Q is fully faithful. The extra condition guaran-
tees that Q is essentially surjective on objects. �

Corollary 9.1.16. Let ? be any boundedness condition. If K?(A,M) has enough
K-injectives, then the triangulated functor

Q : K?(A,M)inj → D?(A,M)
is an equivalence.

Proof. Since K?(A,M) is a full pretriangulated subcategory of K(A,M), this is a
special case of the previous corollary. �
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Remark 9.1.17. This result is of tremendous importance, both theoretically and
practically. In the theory, it shows that the localized category D?(A,M), which is
too big to lie inside the original universe U (see Remark 6.2.16), is equivalent to a
U-category. On the practical side, it means that among K-injective objects we do
not need fractions to represent morphisms.

Corollary 9.1.18. Let ? and † be boundedness conditions such that
K?(A,M) ⊆ K†(A,M).

Assume these categories have enough K-injectives. Then the canonical functor
D?(A,M)→ D†(A,M)

is fully faithful.

Proof. Combine Corollary 9.1.16 with the fact that K?(A,M) → K†(A,M) is fully
faithful. �

Remark 9.1.19. Earlier we only proved that D?(A,M)→ D(A,M) is fully faithful
in special cases (see Proposition 7.3.5 and Exercise 7.3.12).

Corollary 9.1.20. Let φ : I → J be a morphism in Cstr(A,M) between K-injective
objects. Then φ is a homotopy equivalence if and only if it is a quasi-isomorphism.

Proof. One implication is trivial. For the reverse implication, if φ is a quasi-
isomorphism then it is an isomorphism in D(A,M), and by Theorem 9.1.13 for
K = K(A,M) we see that φ is an isomorphism in K(A,M). �

Here is another useful definition. It is a variant of Definition 8.3.5.

Definition 9.1.21. Let K be a full pretriangulated subcategory of K(A,M), and
assume K has enough K-injectives. A system of K-injective resolutions in K is a
pair (I, ρ), where I : Ob(K) → Ob(Kinj) is a function, and ρ = {ρM}M∈Ob(K) is a
collection of quasi-isomorphisms ρM : M → I(M) in K. Moreover, ifM ∈ Ob(Kinj),
then I(M) = M and ρM = idM .

The proposition below is a variant of Lemma 8.3.12.

Proposition 9.1.22. Suppose a system of K-injective resolutions (I, ρ) has been
chosen. Then the function I extends uniquely to a triangulated functor I : KS →
Kinj, such that IdKinj = I ◦ Q |Kinj , and ρ : IdKS ⇒ Q ◦ I is an isomorphism of
triangulated functors.

Proof. The proof is the same as that of Lemma 8.3.12, except that here we use
Corollary 9.1.15. �

The next corollary is a categorical interpretation of the last proposition.

Corollary 9.1.23 (Functorial K-Injective Resolutions). Let K be a full pretrian-
gulated subcategory of K(A,M), and assume K has enough K-injectives.

(1) There are a triangulated functor I : K→ K and a morphism of triangulated
functors ρ : IdK → I, such that for any object M ∈ K the object I(M) is
K-injective, and the morphism ρM : M → I(M) is a quasi-isomorphism.

(2) If (I ′, ρ′) is another such pair, then there is a unique isomorphism of tri-
angulated functors ζ : I '−→ I ′ such that ρ′ = ζ ◦ ρ.

Exercise 9.1.24. Prove Corollary 9.1.23.
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Theorem 9.1.25. Let K be a full pretriangulated subcategory of K(A,M), and
denote by S the set of quasi-isomorphisms in K. Assume K has enough K-injectives.
Let E be any pretriangulated category, and let

F : K→ E
be any triangulated functor. Then F has a right derived functor

(RF, η) : KS → E .
Furthermore, for any I ∈ Kinj the morphism ηI : F (I)→ RF (I) in E is an isomor-
phism.

Proof. We will use Theorem 8.3.3. In the notation of that theorem, let J := Kinj.
Condition (b) of that theorem holds (this is the “enough K-injectives” assertion).
Next, Theorem 9.1.13 implies that any quasi-isomorphism φ : I → J in Kinj is
actually an isomorphism. Therefore F (φ) is an isomorphism in E, and this is
condition (a) of Theorem 8.3.3. �

Example 9.1.26. Let A be any DG ring. We will prove later that K(A) has
enough K-injectives. Therefore, given any triangulated functor F : K(A)→ E into
any pretriangulated category E, the right derived functor

(RF, η) : D(A)→ E
exists.

Suppose we choose a system of K-injective resolutions (I, ρ) in K(A). Then we
get a presentation of (RF, η) as follows: RF (M) = F (I(M)) and ηM = F (ρM ).

9.2. K-Projective DG Modules. This subsection is dual to the previous one,
and so we will be brief.

Definition 9.2.1. A DG module P ∈ C(A,M) is called K-projective if for every
acyclic DG module N ∈ C(A,M), the DG K-module HomA,M(P,N) is acyclic.

Proposition 9.2.2. A DG module P ∈ K(A,M) is K-projective if and only if
HomK(A,M)(P,N) = 0 for every acyclic DG module N ∈ K(A,M).

The proof is like that of Proposition 9.1.3.

Definition 9.2.3. Let M ∈ K(A,M). A K-projective resolution of M is a quasi-
isomorphism ρ : P →M in K(A,M), where P is a K-projective DG module.

Definition 9.2.4. Let K be a full subcategory of K(A,M). The full subcategory
of K on the K-projective DG modules in it is denoted by Kprj. In other words,

Kprj = K(A,M)prj ∩ K .

The same warning after Definition 9.1.8 applies here.

Proposition 9.2.5. If K is a full pretriangulated subcategory of K(A,M), then Kprj
is a full pretriangulated subcategory of K.

The proof is like that of Proposition 9.1.9.

Example 9.2.6. Let ? be some boundedness condition (namely b, +, − or noth-
ing). Since K?(A,M) is a full pretriangulated subcategory of K(A,M), we see that
K?(A,M)prj is a pretriangulated subcategory too.
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Definition 9.2.7. Let K be a full pretriangulated subcategory of K(A,M). We say
that K has enough K-projectives if any DG module M ∈ K admits a K-projective
resolution inside K. I.e. there is a quasi-isomorphism ρ : P →M where P ∈ Kprj.

Lemma 9.2.8. Let K be a full subcategory of K(A,M). Let s : M → P be a
quasi-isomorphism in K, and assume P is K-projective. Then s has a right inverse;
namely there is a morphism t : P →M in K such that s ◦ t = idP .

Same proof as that of Lemma 9.1.12.

Theorem 9.2.9. Let A be a DG ring, let M be an abelian category, and let K
be a full pretriangulated subcategory of K(A,M). Denote by S the set of quasi-
isomorphisms in K. Then the localization functor

Q : Kprj → KS

is fully faithful.

The proof is the same as that of Theorem 9.1.13, with reversed arrow. The next
corollaries and proposition are also proved like their K-injective counterparts.

Corollary 9.2.10. Let K be a full pretriangulated subcategory of K(A,M). If K
has enough K-projectives, then the localization functor

Q : Kprj → KS

is an equivalence.

Corollary 9.2.11. Let ? and † be boundedness conditions such that
K?(A,M) ⊆ K†(A,M).

Assume these categories have enough K-projectives. Then the canonical functor
D?(A,M)→ D†(A,M)

is fully faithful.

Corollary 9.2.12. Let φ : P → Q be a morphism in Cstr(A,M) between K-
projective objects. Then φ is a homotopy equivalence if and only if it is a quasi-
isomorphism.

Definition 9.2.13. Let K be a full pretriangulated subcategory of K(A,M), and
assume K has enough K-projectives. A system of K-projective resolutions in K is
a pair (P, ρ), where P : Ob(K) → Ob(Kprj) is a function, and ρ = {ρM}M∈Ob(K)
is a collection of quasi-isomorphisms ρM : P (M) → M in K. Moreover, if M ∈
Ob(Kprj), then P (M) = M and ρM = idM .

Proposition 9.2.14. Suppose a system of K-projective resolutions (P, ρ) has been
chosen. Then the function P extends uniquely to a triangulated functor P : KS →
Kprj, such that IdKprj = P ◦ Q |Kprj , and ρ : Q ◦P ⇒ IdKS is an isomorphism of
triangulated functors.

Corollary 9.2.15 (Functorial K-Projective Resolutions). Let K be a full pretrian-
gulated subcategory of K(A,M), and assume K has enough K-projectives.

(1) There are a triangulated functor P : K→ K and a morphism of triangulated
functors ρ : P → IdK, such that for any object M ∈ K the object P (M) is
K-projective, and the morphism ρM : P (M)→M is a quasi-isomorphism.
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(2) If (P ′, ρ′) is another such pair, then there is a unique isomorphism of tri-
angulated functors ζ : P ′ '−→ P such that ρ′ = ρ ◦ ζ.

Theorem 9.2.16. Let K be a full pretriangulated subcategory of K(A,M), and de-
note by S the set of quasi-isomorphisms in K. Assume K has enough K-projectives.
Let E be any pretriangulated category, and let

F : K→ E
be any triangulated functor. Then F has a left derived functor

(LF, η) : KS → E .
Furthermore, for any P ∈ Kprj the morphism ηP : LF (P ) → F (P ) in E is an
isomorphism.

The proof is like that of Theorem 9.1.25.

Example 9.2.17. Let A be any DG ring. We will prove later that K(A) has
enough K-projectives. Therefore, given any triangulated functor F : K(A) → E
into any pretriangulated category E, the left derived functor

(LF, η) : D(A)→ E
exists.

Suppose we choose a system of K-projective resolutions (P, ρ) in K(A). Then we
get a presentation of (LF, η) as follows: LF (M) = F (P (M)) and ηM = F (ρM ).

9.3. K-Flat DG Modules. Recall that Aop is the opposite DG ring. The objects
of C(Aop) are the right DG A-modules.

Definition 9.3.1. A DG module P ∈ C(A) is called K-flat if for every acyclic DG
module N ∈ C(Aop), the DG K-module N ⊗A P is acyclic.

Proposition 9.3.2. If P ∈ C(A) is K-projective then it is K-flat.

Proof. Let K∗ be an injective cogenerator of M(K) = ModK. This means that
K∗ is an injective K-module, such that any nonzero K-module W admits a nonzero
homomorphismW → K∗. A universal choice is K∗ = HomZ(K,Q/Z). It is not hard
to see that a DG K-module W is acyclic if and only if HomK(W,K∗) is acyclic. (Cf.
Exercise 10.5.6 for a stronger assertion.)

Take an acyclic complex N ∈ C(Aop). Then by Hom-tensor adjunction there is
an isomorphism of DG K-modules

HomK(N ⊗A P,K∗) ∼= HomA

(
P,HomK(N,K∗)

)
.

The right side is acyclic by our assumptions. Hence so is the left side. It follows
that N ⊗A P is acyclic. �

The proof above also gives a hint to the next proposition.

Proposition 9.3.3. A DG module P ∈ K(A) is K-flat iff
HomK(A)

(
P,HomK(N, J)

)
= 0

for every acyclic N ∈ C(Aop) and every injective J ∈ ModK.

Exercise 9.3.4. Prove Proposition 9.3.3.

The next proposition will be subsumed later, in Section 12, in a theorem about
the left derived tensor bifunctor.
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Proposition 9.3.5. Let K be a full pretriangulated subcategory of K(A), and denote
by S the set of quasi-isomorphisms in K. Assume K has enough K-flat objects. Let
B be another central DG K-ring, let N ∈ K(B ⊗K A

op), and define
F : K→ D(B)

to be the triangulated functor F (M) := Q(N ⊗A M), as in Example 4.6.6 and
Theorem 5.4.15. Then F has a left derived functor

(LF, η) : KS → D(B).
Furthermore, for any object P ∈ K which is K-flat, the morphism ηP : LF (P ) →
F (P ) in D(B) is an isomorphism.

Exercise 9.3.6. Prove Proposition 9.3.5. (Hint: look at the proof of Theorem
9.1.25.)

Remark 9.3.7. In view of Proposition 9.3.2, the reader might wonder why we
bother with K-flat DG modules. The reason is that on a ringed space (X,A) there
are usually very few projective A-modules. But, as we shall prove, there are enough
K-flat complexes in C(A) = C(ModA). This will allow us to have a left derived
tensor functor for sheaves.
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10. Existence of Resolutions

In this section we continue in the more concrete setting: A is a DG ring, and
M is an abelian category (both over a commutative base ring K). We will prove
existence of K-projective and K-injective resolutions in several contexts.

10.1. Direct and Inverse Limits of Complexes. We shall have to work with
limits in this section. Limits in abstract abelian and DG categories (not to mention
pretriangulated categories) are a very delicate issue. We will try to be as concrete
as possible, in order to avoid pitfalls and confusion.

Let C be an arbitrary category (not necessarily linear). A direct system in C is
data (

{Mk}k∈N, {µk}k∈N
)
,

whereMk are objects of C, and µk : Mk →Mk+1 are morphisms, called transitions.
The direct limit

M = lim
k→

Mk

need not exist in C; but if it does, then it is unique up to a unique isomorphism.
By an inverse system in the category C we mean data(

{Mk}k∈N, {µk}k∈N
)
,

where {Mk}k∈N is a collection of objects, and µk : Mk+1 → Mk are morphisms,
also called transitions. The inverse limit

M = lim
←k

Mk

need not exist in C; but if it does, then it is unique up to a unique isomorphism.

Proposition 10.1.1 (Sandwiched Systems). Let C be a category.
(1) Let

(
{Mk}k∈N, {µk}k∈N

)
and

(
{Nk}k∈N, {νk}k∈N

)
be direct systems in C.

Assume there are morphisms αk : Mk → Nk and βk : Nk → Mk+1, such
that βk ◦ αk = µk and αk+1 ◦ βk = νk for all k. If the limit N = limk→Nk
exists, then the limit M = limk→Mk also exists, and the canonical mor-
phism α : M → N is an isomorphism.

(2) Let
(
{Mk}k∈N, {µk}k∈N

)
and

(
{Nk}k∈N, {νk}k∈N

)
be inverse systems in C.

Assume there are morphisms αk : Mk → Nk and βk : Nk → Mk−1,
such that βk ◦ αk = µk−1 and αk−1 ◦ βk = νk−1 for all k. If the limit
N = lim←kNk exists, then the limit M = lim←kMk also exists, and the
canonical morphism α : M → N is an isomorphism.

In other words, sandwiched systems behave the same regarding limits. The direct
systems (item (1)) look like this:

· · · // Mk
αk //

µk

::
Nk

βk //

νk

%%

Mk+1
αk+1

//

µk+1

99
Nk+1

βk+1
// Mk+2 // · · ·
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Exercise 10.1.2. Prove Proposition 10.1.1.

Proposition 10.1.3. Let C be a category.
(1) Let {Mk}k∈N be a direct system in C, and assume the direct limit M =

limk→Mk exists. Then for any object N ∈ C, the canonical function

HomC(M,N)→ lim
←k

HomC(Mk, N)

is bijective.
(2) Let {Mk}k∈N be an inverse system in C, and assume the inverse limit M =

lim←kMk exists. Then for any object N ∈ C, the canonical function

HomC(N,M)→ lim
←k

HomC(N,Mk)

is bijective.

Exercise 10.1.4. Prove Proposition 10.1.3.

Now we start talking about limits in the abelian category Cstr(A,M). We have
to be careful, because it often not true that limits exist in abelian categories.

Example 10.1.5. Let M be the category of finite abelian groups. The inverse
system {Mk}k∈N, where Mk := Z/(2k), and the transition µk : Mk+1 → Mk

is the canonical surjection, does not have an inverse limit in M. We can also
make {Mk}k∈N into a direct system, in which the transition νk : Mk → Mk+1 is
multiplication by 2. The direct limit does not exist in M.

Proposition 10.1.6.
(1) Let {Mk}k∈N be a direct system in Cstr(A,M). Assume that for every i the

direct limit limk→M i
k exists in M. Then the direct limit M = limk→Mk

exists in Cstr(A,M), and in degree i it is M i = limk→M i
k.

(2) Let {Mk}k∈N be an inverse system in Cstr(A,M). Assume that for every
i the inverse limit lim←kM i

k exists in M. Then the inverse limit M =
lim←kMk exists in Cstr(A,M), and in degree i it is M i = lim←kM i

k.

Proof. We will only prove item (1); the proof of item (2) is identical. For any
integer i define M i := limk→M i

k ∈ M. By the universal property of the direct
limit, the differentials d : M i

k → M i+1
k induce differentials d : M i → M i+1, and

in this way we obtain a complex M := {M i}i∈Z ∈ C(M). Similarly, any element
a ∈ Aj induces morphisms a : M i →M i+j in M, and thus M becomes an object of
C(A,M). There are morphisms Mk → M in Cstr(A,M), and it is easy to see that
these make M into a direct limit of the system {Mk}k∈N. �

Since limits exist in M = ModK, the proposition above says that they exist in
C(A). Similarly they exist in the category G(K) of graded K-modules.

We say that a direct system {Mk}k∈N in M is eventually stationary if µk : Mk →
Mk+1 are isomorphisms for large k. Similarly we can talk about an eventually
stationary inverse system. The limit of an eventually stationary system (direct or
inverse) always exists: it is Mk for large enough k.

Proposition 10.1.7.
(1) Let {Mk}k∈N be a direct system in Cstr(A,M). Assume that for each i the

direct system {M i
k}k∈N in M is eventually stationary. Then the direct limit
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M = limk→Mk exists in Cstr(A,M), the direct limit limk→H(Mk) exists in
G0(M), and the canonical morphism

lim
k→

H(Mk)→ H(M)

in G0(M) is an isomorphism.
(2) Let {Mk}k∈N be an inverse system in Cstr(A,M). Assume that for each i the

inverse system {M i
k}k∈N in M is eventually stationary. Then the inverse

limit M = lim←kMk exists in Cstr(A,M), the inverse limit lim←k H(Mk)
exists in G0(M), and the canonical morphism

H(M)→ lim
←k

H(Mk)

in G0(M) is an isomorphism.

Proof. (1) As mentioned above, for each i the limit M i = limk→M i
k exists in M.

By Proposition 10.1.6 the limit M = limk→Mk exists in Cstr(A,M).
Regarding the cohomology: fix an integer i. Take k large enough such that

M i′

k →M i′

k′ are isomorphisms for all k ≤ k′ and i−1 ≤ i′ ≤ i+1. ThenM i′

k′ →M i′

are isomorphisms in this range, and therefore Hi(Mk′)→ Hi(M) are isomorphisms
for all k ≤ k′. We see that the direct system {Hi(Mk)}k∈N is eventually stationary,
and its direct limit is Hi(M).
(2) The same. �

When we drop the abstract abelian category M, i.e. when we work with M =
ModK = M(K) and Cstr(A,M) = Cstr(A), there is no problem of existence of limits.
The next proposition says that furthermore “direct limits are exact” in Cstr(A).

Proposition 10.1.8. Let {Mk}k∈N be a direct system in Cstr(A). Then the canon-
ical homomorphism

lim
k→

H(Mk)→ H(M)

in G0(K) is bijective.

Exercise 10.1.9. Prove Proposition 10.1.8. (Hint: forget the action of A, and
work with complexes of abelian groups.)

Exactness of inverse limits tends to be much more complicated than that of
direct limits, even for K-modules. We always have to make some condition on the
inverse system to have exactness in the limit.

Definition 10.1.10. Let
(
{Mk}k∈N, {µk}k∈N

)
be an inverse system in M(K). For

any l ≥ k let Ml,k ⊆Mk be the image of the homomorphism
id ◦µk ◦ · · · ◦ µl−1 : Ml →Mk.

Note that there are inclusions Ml+1,k ⊆ Ml,k, so for fixed k we have an inverse
system {Ml,k}l≥k.

We say that the inverse system {Mk}k∈N has the Mittag-Leffler property if for
every index k, the inverse system {Ml,k}l≥k is eventually stationary.

Example 10.1.11. If the system(
{Mk}k∈N, {µk}k∈N

)
satisfies one of the following conditions, then it has the Mittag-Leffler property:
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(a) The system has surjective transitions.
(b) The system is eventually stationary.
(c) For any k ∈ N there exists some l ≥ k such that Ml,k = 0. This is called

the trivial Mittag-Leffler property, and one says that the system is pro-zero.

Theorem 10.1.12 (Mittag-Leffler Argument). Let {Mk}k∈N be an inverse system
in Cstr(A), with inverse limit M = lim←kMk. Assume the system satisfies these
two conditions:

(a) For every i ∈ Z the inverse system {M i
k}k∈N in M(K) has the Mittag-Leffler

property.
(b) For every i ∈ Z the inverse system {Hi(Mk)}k∈N in M(K) has the Mittag-

Leffler property.
Then the canonical homomorphisms

Hi(M)→ lim
←k

Hi(Mk)

are bijective.

Proof. We can forget all about the graded A-module structure, and just view this
as an inverse system in Cstr(Z), i.e. and inverse system of complexes of abelian
groups. Now this is a special case of [KaSc1, Proposition 1.12.4] or [EGA III, Ch.
0III, Proposition 13.2.3]. �

The most useful instance of the ML argument is this:

Corollary 10.1.13. Let {Mk}k∈N be an inverse system in Cstr(A), with inverse
limit M = lim←kMk. Assume the system satisfies these two conditions:

(a) For every i ∈ Z the inverse system {M i
k}k∈N has surjective transitions.

(b) For every k the DG module Mk is acyclic.
Then M is acyclic.

Proof. Conditions (a) and (b) here imply conditions (a) and (b) of Theorem 10.1.12,
respectively. �

Exercise 10.1.14. Prove Corollary 10.1.13 directly, without resorting to Theorem
10.1.12.

Remark 10.1.15. We will not attempt discussing direct or inverse limits in ab-
stract abelian categories. Such definitions do exist (e.g. for a Grothendieck abelian
category, cf. [KaSc2, Definition 8.3.24]), but this sort of thing is a source of anxiety
(and sometimes of errors).

Before going on, it is good to remember the roles of the objects of cocycles and
coboundaries. LetM ∈ C(A,M). The object of coboundaries Z(M) ⊆M is defined
by

Zi(M) := Ker
(
d : M i →M i+1).

The object of cocycles B(M) ⊆M is defined by

Bi(M) := Im
(
d : M i−1 →M i

)
.

Note that Z(A) is a DG ring with trivial differential, and the objects Z(M) and
B(M) live in C(Z(A),M), with trivial differentials too. There are exact sequences

(10.1.16) 0→ Z(M)→M
d−→ T(B(M))→ 0
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and
(10.1.17) 0→ B(M)→ Z(M)→ H(M)→ 0
in Cstr(Z(A),M).

10.2. K-Projective Resolutions in C−(M). Recall that M is some abelian cate-
gory, and C(M) is the DG category of complexes in M. The strict category Cstr(M)
is abelian.

A filtration on a complexM ∈ Cstr(M) is a collection {Fj(M)}j≥−1 of subobjects
of M , such that Fj(M) ⊆ Fj+1(M). This is a particular kind of direct system in
Cstr(M). We say that M = limj→ Fj(M) if this limit exists in Cstr(M), and the
canonical morphism limj→ Fj(M) → M is an isomorphism. There are also the
subquotients
(10.2.1) grFj (M) := Fj(M)/Fj−1(M) ∈ Cstr(M)
for j ≥ 0. Sometimes we will be interested in filtrations that have finite length, by
which we mean a direct system of subobjects {Fj(M)}−1≤j≤k for some k <∞. In
this case grFj (M) is defined only for 0 ≤ j ≤ k.

The next definition is inspired by the work of Keller [Kel, Section 3.1].

Definition 10.2.2. Let P be an object of C(M).
(1) A semi-projective filtration on P is a filtration F = {Fj(P )}j≥−1 on P as

an object of Cstr(M), such that:
• F−1(P ) = 0.
• Each grFj (P ) is a complex of projective objects of M with zero differ-
ential.

• P = limj→ Fj(P ) in Cstr(M).
(2) The complex P is called a semi-projective complex if it admits some semi-

projective filtration.

Theorem 10.2.3. Let M be an abelian category, and let P be a semi-projective
complex in C(M). Then P is K-projective.

Proof. Step 1. We start by proving that if P = Tk(Q), the translation of a projec-
tive object Q ∈ M, then P is K-projective. This is easy: given an acyclic complex
N ∈ C(M), we have

HomM(P,N) = HomM
(
Tk(Q), N

) ∼= T−k
(
HomM(Q,N)

)
in Cstr(K). But HomM(Q,−) is an exact functor M → M(K), so HomM(Q,N) is
an acyclic complex.
Step 2. Now P is a complex of projective objects of M with zero differential. This
means that

P ∼=
⊕
k∈Z

Tk(Qk)

in Cstr(M), where each Qk is a projective object in M. But then

HomM(P,N) ∼=
∏
k∈Z

HomM
(
Tk(Qk), N

)
.

This is an easy case of Proposition 10.1.3. By step 1 and the fact that a product
of acyclic complexes in Cstr(K) is acyclic (itself an easy case of the Mittag-Leffler
argument), we conclude that HomM(P,N) is acyclic.
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Step 3. Fix a semi-projective filtration F = {Fj(P )}j≥−1 on P . Here we prove
that for every j the complex Fj(P ) is K-projective. This is done by induction on
j ≥ −1. For j = −1 it is trivial. For j ≥ 0 there is an exact sequence of complexes

(10.2.4) 0→ Fj−1(P )→ Fj(P )→ grFj (P )→ 0

in C(M). In each degree i ∈ Z the exact sequence

0→ Fj−1(P )i → Fj(P )i → grFj (P )i → 0

in M splits, because grFj (P )i is a projective object. Thus the exact sequence (10.2.4)
is split exact in the abelian category G0(M) of graded objects in M.

Let N ∈ C(M) be an acyclic complex. Applying the functor HomM(−, N) to the
sequence of complexes (10.2.4) we obtain a sequence
(10.2.5)

0→ HomM
(
grFj (P ), N

)
→ HomM

(
Fj(P ), N

)
→ HomM

(
Fj−1(P ), N

)
→ 0

in Cstr(K). Because (10.2.4) is split exact in G0(M), the sequence (10.2.5) is split
exact in G0(K). Therefore (10.2.5) is exact in Cstr(K).

By the induction hypothesis the complex HomM
(
Fj−1(P ), N

)
is acyclic. By step

1 the complex HomM
(
grFj (P ), N

)
is acyclic. The long exact cohomology sequence

associated to (10.2.5) shows that the complex HomM
(
Fj(P ), N

)
is acyclic too.

Step 4. We keep the semi-projective filtration F = {Fj(P )}j≥−1 from step 3. Take
any acyclic complex N ∈ C(M). By Proposition 10.1.3 we know that

HomM(P,N) ∼= lim
←j

HomM
(
Fj(P ), N

)
in Cstr(K). According to step 3 the complexes HomM

(
Fj(P ), N

)
are all acyclic.

The exactness of the sequences (10.2.5) implies that the inverse system{
HomM

(
Fj(P ), N

)}
j≥−1

in Cstr(K) has surjective transitions. Now the Mittag-Leffler argument (Corollary
10.1.13) says that the inverse limit complex HomM(P,N) is acyclic. �

Proposition 10.2.6. Let M be an abelian category. If P ∈ C(M) is a bounded
above complex of projectives, then P is a semi-projective complex.

Proof. Say P is nonzero and sup(P ) = i1 ∈ Z. For j ≥ −1 define

Fj(P ) :=
(
· · · → 0→ P i1−j → · · · → P i1−1 → P i1 → · · ·

)
⊆ P.

Then {Fj(P )}j≥−1 is a semi-projective filtration on P . �

comment: below – to end of subsection – many changes 17 June 2017, starting
file part1_170617d2.tex

Recall that for a graded object N ∈ G(M) we write

sup(N) := sup {i | N i 6= 0} ⊆ Z ∪ {±∞}.

Note that sup(N) = −∞ if and only if N = 0.
comment: Now it is in (13.1.1), but that should be moved to an earlier
position in the book.
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The next theorem is opposite to [RD, Lemma 4.6(1)], in the sense of changing
direction of arrows. (See Theorem 10.4.7 for the case of monomorphisms.) We give
a detailed proof.

Theorem 10.2.7. Let M be an abelian category, and let P ⊆ M be a set of objects
such that each object M ∈ M admits an epimorphism P � M from some object
P ∈ P. Then any complex M ∈ C−(M) admits a quasi-isomorphism ρ : P →M in
C−str(M), such that sup(P ) ≤ sup(M), and each P i is an object of P.

Proof. After translating M , we can assume that M i = 0 for all i > 0. The differ-
ential of the complex M is diM : M i →M i+1.

We start by choosing an epimorphism ρ0 : P 0 � M0 in M from some object
P 0 ∈ P. We get a morphism

δ0 : M−1 ⊕ P 0 →M0

whose components are d−1
M and ρ0. Next we choose an epimorphism

ψ−1 : P−1 � Ker(δ0)

from some object P−1 ∈ P. So there is an exact sequence

P−1 ψ−1

−−−→M−1 ⊕ P 0 δ0

−→M0 → 0.

The components of ψ−1 are denoted by ρ−1 : P−1 →M−1 and d−1
P : P−1 → P 0.

Now to the inductive step. Here i ≤ −1, and we already have objects P i, . . . , P 0

in P, and morphisms ρi, . . . , ρ0 and diP , . . . ,d
−1
P , that fit into this diagram

(10.2.8) P i

ρi

��

diP // P i+1

ρi+1

��

// · · ·
d0
P // P 0

ρ0

��

// 0

M i−1 di−1
M // M i

diM // M i+1 // · · ·
d0
M // M0 // 0

in M. We still did not prove this diagram is commutative.
Define the morphism

δi : M i−1 ⊕ P i →M i ⊕ P i+1

to be the one with components −di−1
M , ρi and diP . Expressing direct sums of objects

as columns, and letting matrices of morphisms act on them from the left, we have
this representation of δi :

(10.2.9) δi =
[
−di−1

M ρi

0 diP

]
.

Let us choose an epimorphism

ψi−1 : P i−1 � Ker(δi)

from an object P i−1 ∈ P. We get an exact sequence

(10.2.10) P i−1 ψi−1

−−−→M i−1 ⊕ P i δi−→M i ⊕ P i+1.
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The components of the morphism ψi−1 are denoted by ρi−1 : P i−1 → M i−1 and
di−1
P : P i−1 → P i. In a matrix representation:

ψi−1 =
[
ρi−1

di−1
P

]
.

In this way we obtain the slightly bigger diagram

(10.2.11) P i−1

ρi−1

��

di−1
P // P i

ρi

��

diP // P i+1

ρi+1

��

// · · · // P 0

ρ0

��

// 0

M i−1 di−1
M // M i

diM // M i+1 // · · · // M0 // 0
We carry out this construction inductively for all i ≤ −1, thus obtaining a

diagram like (10.2.11) that goes infinitely to the left.
Because δi ◦ψi−1 = 0 in (10.2.10), it follows that diP ◦ di−1

P = 0. Letting P i := 0
for positive i, the collection P := {P i}i∈Z becomes a complex, with differential
dP := {diP }i∈Z. The equality δi ◦ ψi−1 = 0 also implies that

(10.2.12) ρi ◦ di−1
P = di−1

M ◦ ρi−1,

so the collection ρ := {ρi}i∈Z is a strict morphism of complexes ρ : P →M .
Let us examine this commutative diagram:

(10.2.13) P i−1 ψi−1
//

(0,id)

��

M i−1 ⊕ P i δi //

id

��

M i ⊕ P i+1

id

��

M i−2 ⊕ P i−1 δi−1
// M i−1 ⊕ P i δi // M i ⊕ P i+1

The top row is exact, because it is (10.2.10). An easy calculation using (10.2.12)
shows that δi ◦ δi−1 = 0. These two facts combine prove that the bottom row is
also exact.

Let N = {N i}i∈Z be the complex with components N i := M i−1⊕P i for i ≤ −1,
N0 := M0 and N i := 0 for i > 0. The differential dN = {diN}i∈Z is

diN := δi : N i → N i+1.

As we saw in the paragraph above, the complex N is acyclic. On the other hand,
by the definition of the morphisms δi in (10.2.9), we see that N is just the standard
cone on the strict morphism of complexes

T−1(ρ) : T−1(P )→ T−1(M).

See Definition 4.2.1. Therefore ρ is a quasi-isomorphism. �

Definition 10.2.14. Let M be an abelian category, and let M′ ⊆ M be a full
abelian subcategory.

(1) An object P ∈ M′ is called P-projective if it is projective in the bigger
category M.

(2) We say that M′ has enough M-projectives if any object M ∈ M′ admits an
epimorphism P �M , where P is an M-projective object of M′.
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Of course, in this situation the category M′ itself has enough projectives.
Thick abelian categories were defined in ???.

comment: fill above

The next theorem is the opposite of [RD, Lemma I.4.6(3)].

Theorem 10.2.15. Let M be an abelian category, and let M′ ⊆ M be a thick
abelian subcategory that has enough M-projectives. Let M ∈ C(M) be a complex
with bounded above cohomology, such that Hi(M) ∈ M′ for all i. Then there is
a quasi-isomorphism ρ : P → M in Cstr(M), where P ∈ C−(M′) is a complex of
M-projective objects, and sup(P ) = sup(H(M)).

Proof. The proof of Theorem 10.4.11, reversed, works here. To be explicit, let us
take N := M and N′ := M′ op. Since monomorphisms in M become epimorphisms
in N, and projective objects in M become injective objects in N, the full abelian
subcategory N′ ⊆ N satisfies assumptions of Theorem 10.4.11. By Theorem 3.8.14
we have a canonical isomorphism of categories C+

str(N) '−→ C−str(M)op. Thus a quasi-
isomorphism N → J in C+

str(N) gives rise to a quasi-isomorphism P → M in
C−str(M). �

Here is an important instance where this theorem applies.

Example 10.2.16. Let A be a left noetherian ring. Consider the abelian category
M := ModA, and the thick abelian subcategory M′ := Modf A of finitely generated
modules. Then M′ has enough M-projective objects. Theorem 10.2.15 tells us that
if M ∈ C(M) is a complex such that the modules Hi(M) are all finitely generated,
and Hi(M) = 0 for i� 0, then there is a resolution P →M , where P is a bounded
above complex of finitely generated projective modules. See Example 10.3.33 for
another approach to this problem.

Corollary 10.2.17. If M is an abelian category with enough projectives, then
C−(M) has enough K-projectives.

Proof. According to either Theorem 10.2.7 or Theorem 10.2.15, any M ∈ C−(M)
admits a quasi-isomorphism P →M from a bounded above complex of projectives
P . Now use Proposition 10.2.6 and Theorem 10.2.3. �

Corollary 10.2.18. Let M be an abelian category with enough projectives, and
let M ∈ C(M) be a complex with bounded above cohomology. Then M has a K-
projective resolution P →M with sup(P ) = sup(H(M)).

Proof. We may assume that H(M) is not zero. Let i := sup(H(M)) ∈ Z, and
take N := smt≤i(M), the smart truncation from formula (7.3.6). Then N → M
is a quasi-isomorphism and sup(N) = i. According to either Theorem 10.2.7 or
Theorem 10.2.15, there is a quasi-isomorphism P → N , where P is a complex of
projectives and sup(P ) = i. By Proposition 10.2.6 and Theorem 10.2.3 the complex
P is K-projective. The composed quasi-isomorphism P →M is what we are looking
for. �

10.3. K-Projective Resolutions in C(A). In this subsection A is a DG ring
(without any vanishing assumption).

Recall that the translation T−i(A) is a DG A-module in which the element t−i(1)
is in degree i. This element is a cocycle, and when we forget the differentials, the
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graded module T−i(A)\ is free over the graded ring A\, with basis t−i(1). Therefore,
for any DG A-module M there is a canonical isomorphism

(10.3.1) HomA

(
T−i(A),M

) ∼= Ti(M)

in C(K), and canonical isomorphisms

(10.3.2) HomCstr(A)
(
T−i(A),M

) ∼= Z0(HomA(T−i(A),M)
) ∼= Zi(M)

in M(K). (Actually, (10.3.1) is an isomorphism in Cstr(A), but this uses the DG
A-bimodule structure of T−i(A).)

We begin with a definition that is very similar to Definition 10.2.2. Recall the
notion of a filtration F = {Fj(P )}j≥−1 of a DG module P , and the associated
subquotients grFj (P ) from formula (10.2.1).

Definition 10.3.3. Let P be an object of C(A).
(1) We say that P is a free DG A-module if there is an isomorphism

P ∼=
⊕
s∈S

T−is(A)

in Cstr(A), for some indexing set S and some collection of integers {is}s∈S .
(2) A semi-free filtration on P is a filtration F = {Fj(P )}j≥−1 of P in Cstr(A),

such that:
• F−1(P ) = 0.
• Each grFj (P ) is a free DG A-module.
• P =

⋃
j Fj(P ).

(3) The DG module P is called semi-free if it admits some semi-free filtration.

Example 10.3.4. If A is a ring, then a free DG A-module P is a complex of free
A-modules with zero differential. A semi-free DG A-module P is also a complex of
free A-modules, but there is a differential on it, and there is a subtle condition on
P imposed by the existence of a semi-free filtration. If the complex P happens to
be bounded above, then it is automatically semi-free, with a filtration like the one
in the proof of Proposition 10.2.6.

Exercise 10.3.5. Find a ring A, and a complex P of free A-modules, that is not
semi-free. (Hint: Take the ring A = K[ε] of dual numbers. Find a complex of free
A-modules P that is acyclic but not null-homotopic. Now use Theorem 10.3.6 and
Corollary 9.2.12 to get a contradiction.)

Theorem 10.3.6. Let P be an object of C(A). If P is semi-free, then it is K-
projective.

Proof. It is similar to the proof of Theorem 10.2.3.

Step 1. We start by proving that if P = T−i(A), a translation of A, then P is
K-projective. This is easy: given an acyclic N ∈ C(A), we have

HomA(P,N) = HomA

(
T−i(A), N

) ∼= Ti
(
HomA(A,N)

) ∼= Ti(N)

in Cstr(K), and this is acyclic.

Step 2. Now
P ∼=

⊕
s∈S

T−is(A).
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Then
HomA(P,N) ∼=

∏
s∈S

HomA

(
T−is(A), N

)
.

By step 1 and the fact that a product of acyclic complexes in Cstr(K) is acyclic, we
conclude that HomM(P,N) is acyclic.
Step 3. Fix a semi-free filtration F = {Fj(P )}j≥−1 of P . Here we prove that for
every j ≥ −1 the DG module Fj(P ) is K-projective. This is done by induction on
j ≥ −1. For j = −1 it is trivial. For j ≥ 0 there is an exact sequence
(10.3.7) 0→ Fj−1(P )→ Fj(P )→ grFj (P )→ 0

in the abelian category Cstr(A). Because grFj (P ) is a free DG module, it is a
projective object in the abelian category G0(A\) of graded modules over the graded
ring A\, gotten by forgetting the differential of A. Therefore the sequence (10.3.7)
is split exact in G0(A\).

Let N ∈ C(A) be an acyclic DG module. Applying the functor HomA(−, N) to
the sequence (10.3.7) we obtain a sequence
(10.3.8) 0→ HomA

(
grFj (P ), N

)
→ HomA

(
Fj(P ), N

)
→ HomA

(
Fj−1(P ), N

)
→ 0

in Cstr(K). If we forget differentials this is a sequence in G0(K). Because (10.3.7)
is split exact in G0(A\), it follows that (10.3.8) is split exact in G0(K). Therefore
(10.3.8) is exact in Cstr(K).

By the induction hypothesis the DGK-module HomA

(
Fj−1(P ), N

)
is acyclic. By

step 2 the DG module HomA

(
grFj (P ), N

)
is acyclic. The long exact cohomology

sequence associated to (10.3.8) shows that the DG module HomA

(
Fj(P ), N

)
is

acyclic too.
Step 4. We keep the semi-free filtration F = {Fj(P )}j≥−1 from step 3. Take any
acyclic N ∈ C(M). By Proposition 10.1.3 we know that

HomA(P,N) ∼= lim
←j

HomA

(
Fj(P ), N

)
in Cstr(K). According to step 3 the complexes HomA

(
Fj(P ), N

)
are all acyclic.

The exactness of the sequences (10.3.8) implies that the inverse system{
HomA

(
Fj(P ), N

)}
j≥−1

in Cstr(K) has surjective transitions. Now the Mittag-Leffler argument (Corollary
10.1.13) says that the inverse limit complex HomA(P,N) is acyclic. �

Here is a result similar to Theorem 10.2.7.
Theorem 10.3.9. Let A be a DG ring. AnyM ∈ C(A) admits a quasi-isomorphism
ρ : P →M in Cstr(A) from a semi-free DG A-module P .
Proof. Step 1. In this step we construct a free DG A-module F0(P ) and a ho-
momorphism F0(ρ) : F0(P ) → M . For any i ∈ Z the cohomology Hi(M) is an
H0(A)-module. Choose a collection of H0(A)-module generators of Hi(M), indexed
by a set Si0. There is a canonical surjection Zi(M) � Hi(M), and we lift these
generators to a collection {ms}s∈Si0 of elements of Zi(M). Define the free DG
A-module
(10.3.10) Qi0 :=

⊕
s∈Si0

T−i(A).
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The collection {ms}s∈Si0 induces a homomorphism

(10.3.11) φi0 : Qi0 →M

in Cstr(A), as in formula (10.3.2). Define the free DG A-module

(10.3.12) F0(P ) :=
⊕
i∈Z

Qi0,

and let
(10.3.13) F0(ρ) : F0(P )→M, F0(ρ) :=

∑
i

φi0

be the resulting homomorphism in Cstr(A). By construction we see that
(10.3.14) Hi(F0(ρ)) : Hi(F0(P ))→ Hi(M)
is surjective for all i.
Step 2. In this step j ≥ 0, and we are given the following: a DG A-module Fj(P ),
a homomorphism Fj(ρ) : Fj(P )→ M in Cstr(A), and a filtration {Fj′(P )}−1≤j′≤j
of Fj(P ). These satisfy the following conditions: for all i and all 0 ≤ j′ ≤ j the
homomorphisms
(10.3.15) Hi(Fj(ρ)) : Hi(Fj′(P ))→ Hi(M)
are surjective; F−1(P ) = 0; and the DG A-modules grFj′(P ) are free for all 0 ≤ j′ ≤
j.

For any i ∈ Z let Ki
j be the kernel of Hi(Fj(ρ)). So there is a short exact

sequence

(10.3.16) 0→ Ki
j → Hi(Fj(P )) Hi(Fj(ρ))−−−−−−→ Hi(M)→ 0

in M(H0(A)). Choose a collection of H0(A)-module generators of Ki
j , indexed by

a set Sij+1. Using the canonical surjection Zi(Fj(P )) � Hi(Fj(P )), lift these gen-
erators to a collection {ps}s∈Si

j+1
of elements of the module of cocycles Zi(Fj(P )).

Define the free DG A-module
(10.3.17) Qij+1 :=

⊕
s∈Si

j+1

T−i(A).

The collection of cocycles {ps}s∈Si
j+1

induces a homomorphism

(10.3.18) φij+1 : Qij+1 → Fj(P )
in Cstr(A). Next define the free DG A-module

(10.3.19) Qj+1 :=
⊕
i∈Z

Qij+1

and the homomorphism

(10.3.20) φj+1 : Qj+1 → Fj(P ), φj+1 :=
∑
i

φij+1

in Cstr(A).
Now let us define the DG A-module Fj+1(P ) by attaching Qj+1 to Fj(P ) along

φj+1. Namely, as a graded module we let

(10.3.21) Fj+1(P )\ := Fj(P )\ ⊕ T(Qj+1)\,
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and the differential is

dFj+1(P ) := dFj(P ) + dT(Qj+1) + φj+1 ◦ t−1 .

In other words, Fj+1(P ) is the standard cone on the strict homomorphism φj+1;
see Definition 4.2.1. We note that the basis of the free DG module Qij+1 sits inside
Fj+1(P )i−1.

By construction, Fj(P ) is a DG submodule of Fj+1(P ). Let us denote the
inclusion by

µj : Fj(P )� Fj+1(P ).

Because the cocycles in Fj(P ) representing Ki
j become coboundaries in Fj+1(P ),

it follows that for any i we have

(10.3.22) Ki
j ⊆ Ker

(
Hi(µj) : Hi(Fj(P ))→ Hi(Fj+1(P ))

)
.

Step 3. In this step we construct the homomorphism Fj+1(ρ), continuing from
where we left off in step 2. Consider the element ps ∈ Zi(Fj(P )) for some index s ∈
Sij+1. Because the cohomology class of ps is in Ki

j , the element Fj(ρ)(ps) ∈ M i is
a coboundary. Therefore we can find an element ms ∈M i−1 such that Fj(ρ)(ps) =
dM (ms). From (10.3.19) we see that the collection of elements {ms}s∈∐

i
Si
j+1

induces a strict homomorphism of DG modules

ρ′j+1 : T(Qj+1)→M.

Define the homomorphism

Fj+1(ρ) : Fj+1(P )→M

to be
Fj+1(ρ) := Fj(ρ) + ρ′j+1

using the direct sum decomposition (10.3.21). It is easy to check that this is a strict
homomorphism of DG modules.

Step 4. After going through steps 2 and 3 inductively, we now have a direct system
{Fj(P )}j≥−1 in Cstr(A), and a direct system of homomorphisms Fj(ρ) : Fj(P ) →
M . Define the DG A-module

P := limj→ Fj(P )

and the homomorphism

ρ := limj→ Fj(ρ) : P →M

in Cstr(A). The DG module P has on it the filtration {Fj(P )}, and it is a semi-free
filtration. Indeed, there are isomorphisms grF0 (P ) ∼=

⊕
i∈Z Q

i
0 and grFj+1(P ) ∼=

T(Qj+1) for j ≥ 0.
It remains to prove that ρ is a quasi-isomorphism. We know that the homomor-

phisms Hi(Fj(ρ)) are surjective for all i and all j ≥ 0. Define

Lij := Im
(
Hi(µj) : Hi(Fj(P ))→ Hi(Fj+1(P ))

)
⊆ Hi(Fj+1(P )).
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We get a commutative diagram

0 // Ki
j
// inc // Hi(Fj(P ))

Hi(Fj(ρ))
// //

αij

����

Hi(µj)

��

Hi(M) // 0

Lij
��

inc

��

βij

88 88

Hi(Fj+1(P ))

Hi(Fj+1(ρ))

LL LL

in M(K). The top row is an exact sequence (it is (10.3.16)). Because αij is surjective,
there is equality

Ker(βij) = αij
(
Ker(Hi(Fj(ρ))

)
= αij(Ki

j).

But by formula (10.3.22) we know that αij(Ki
j) = 0. The conclusion is that

(10.3.23) βij : Lij → Hi(M)

is an isomorphism. Hence, for every i the direct system {Lij}j≥0 has a limit, and
the homomorphism

(10.3.24) lim
j→

Lij → Hi(M)

is bijective. Now the direct systems {Lij}j≥0 and
{

Hi(Fj(P ))
}
j≥0 are sandwiched;

so by Proposition 10.1.1(1) we know that the second direct system also has a limit,
and the the canonical homomorphism

(10.3.25) lim
j→

Hi(Fj(P ))→ lim
j→

Lij

is bijective. Finally, according to Proposition 10.1.7 we know that the canonical
homomorphism

(10.3.26) lim
j→

Hi(Fj(P ))→ Hi(P )

is bijective. The combination of the bijections (10.3.24), (10.3.25) and (10.3.26)
implies that

Hi(ρ) : Hi(P )→ Hi(M)
is bijective. �

Corollary 10.3.27. Let A be any DG ring. The category C(A) has enough K-
projectives.

Proof. Combine Theorems 10.3.6 and 10.3.9. �

The concept of nonpositive DG ring was introduced in Definition 7.3.11.

Corollary 10.3.28. Assume A is a nonpositive DG ring. For any M ∈ C(A) there
is a K-projective resolution P →M with sup(P ) = sup(H(M)).
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Proof. If H(M) is unbounded above or zero, the assertion is trivial. So we may
assume that i1 := sup(H(M)) is an integer. In steps 1 and 2 of the proof of Theorem
10.3.9 we choose the indexing sets Sij to be empty whenever this is possible. Namely
Si0 = ∅ when Hi(M) = 0, and Sij+1 = ∅ when Ki

j = 0. We claim that with these
choices, the inductive construction will satisfy the following extra condition: the
homomorphisms

(10.3.29) Hi(Fj(ρ)) : Hi(Fj(P ))→ Hi(M)

are bijective for all i ≥ i1+1−j. This in turn implies thatKi
j = 0 for all i ≥ i1+1−j.

We see that Ki
j = 0 and Hi(M) = 0 for all i ≥ i1 + 1. Since A is nonpositive, this

says that sup(Fj(P )) ≤ i1. Therefore in the limit we get sup(P ) ≤ i1.
Let us prove the claim, by induction on j ≥ 0. For j = 0 this is trivial, because

both modules in (10.3.29) vanish for i ≥ 1. Now assume that j ≥ 0 and the claim
holds. So Ki

j = 0 for all i ≥ i1 + 1− j. Then, by formula (10.3.21), the DG module
Fj+1(P ) coincides with its submodule Fj(P ) in degrees ≥ i1− j. This implies that
these DG modules have the same cohomologies in degrees ≥ i1−j+1, and the same
cocycles in degree i1 − j. Thus the homomorphisms Hi(Fj+1(ρ)) remain bijective
for i ≥ i1 − j + 1. These homomorphisms are surjective for all i. But in Fj+1(P )
there are new coboundaries in degree i1 − j, those coming from Qi1−j−1

j+1 . These
cocycles cause the homomorphism Hi1−j(Fj+1(ρ)) to be injective. So the inductive
step is completed. �

Definition 10.3.30. Let A be a nonpositive DG ring. A DG A-module P is called
pseudo-finite semi-free if it admits a semi-free filtration F = {Fj(P )}j≥−1 satisfying
this extra condition: there are i1 ∈ Z and rj ∈ N such that

grFj (P ) ∼= T−i1+j(A)⊕rj

in Cstr(A) for all j.

Exercise 10.3.31. Let A be a nonpositive DG ring and let P be a DG A-module.
Prove that the following two conditions are equivalent.

(i) P is pseudo-finite semi-free.
(ii) There are numbers i1 ∈ Z and rj ∈ N, and an isomorphism

P \ ∼=
⊕
j≥0

T−i1+j(A\)⊕rj

in G0(A\).
In case A is a ring (i.e. Ai = 0 for all i 6= 0), prove that these conditions are
equivalent to:

(iii) P is a bounded above complex of finitely generated free A-modules.

Corollary 10.3.32. Assume that A is a nonpositive DG ring, and the ring H0(A) is
left noetherian. Let M be a DG A-module satisfying these conditions: each Hi(M)
is a finitely generated H0(A)-module, and Hi(M) = 0 for i � 0. Then there is a
quasi-isomorphism P →M in Cstr(A) from a pseudo-finite semi-free DG A-module
P with sup(P ) = sup(H(M)).

Proof. Like in the proof of Corollary 10.3.28, the key to the proof is to econo-
mize. Besides the choice of empty indexing sets Sij that we imposed there, here we
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choose all these sets to be finite. This is possible, since the H0(A)-modules Hi(M),
Hi(Fj(P )) and Ki

j will all be finitely generated. �

Example 10.3.33. A special yet very important case of Corollary 10.3.32 is this:
A is a left noetherian ring, and M is a complex of A-modules with bounded above
cohomology, such that each Hi(M) is a finitely generated A-module. Then M has
a resolution P → M , where P is a complex of finitely generated free A-modules,
and sup(P ) = sup(H(M)). Compare this to Example 10.2.16.

10.4. K-Injective Resolutions in C+(M). In this subsection M is an abelian
category, and C(M) is the category of complexes in M.

In subsection 1.3 we discussed quotients in categories. A cofiltration of a complex
I ∈ C(M) is an inverse system G = {Gq(I)}q≥−1 of quotients of I in Cstr(M). We
say that I = lim←q Gq(I) if this inverse limit exists in Cstr(M), and the canonical
morphism I → lim←q Gq(I) is an isomorphism. The cofiltration G gives rise to the
subquotients

(10.4.1) grGq (I) := Ker
(
Gq(I)→ Gq−1(I)

)
∈ C(M).

Definition 10.4.2. Let I be a complex in C(M).
(1) A semi-injective cofiltration on I is a cofiltration G = {Gq(I)}q≥−1 in

Cstr(M) such that:
• G−1(I) = 0.
• Each grGq (I) is a complex of injective objects of M with zero differential.
• I = lim←q Gq(I).

(2) The complex I is called a semi-injective complex if it admits some semi-
injective cofiltration.

Theorem 10.4.3. Let M be an abelian category, and let I be a semi-injective
complex in C(M). Then I is K-injective.

Proof. The proof is very similar to that of Theorem 10.2.3.

Step 1. We start by proving that if I = Tp(J), the translation of an injective object
J ∈ M, then I is K-injective. This is easy: given an acyclic complex N ∈ C(M), we
have

HomM(N, I) = HomM
(
N,Tp(J)

) ∼= Tp
(
HomM(N, J)

)
in Cstr(K). But HomM(−, J) is an exact functor M→M(K), so HomM(N, J) is an
acyclic complex.

Step 2. Now I is a complex of injective objects of M with zero differential. This
means that

I ∼=
∏
p∈Z

Tp(Jp)

in Cstr(M), where each Jp is an injective object in M. But then

HomM(N, I) ∼=
∏
p∈Z

HomM
(
N,Tp(Jp)

)
.

This is an easy case of Proposition 10.1.3(2). By step 1 and the fact that a product
of acyclic complexes in Cstr(K) is acyclic (itself an easy case of the Mittag-Leffler
argument), we conclude that HomM(N, I) is acyclic.
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Step 3. Fix a semi-injective cofiltration G = {Gq(I)}q≥−1 of I. Here we prove that
for every q the complex Gq(I) is K-injective. This is done by induction on q. For
q = −1 it is trivial. For q ≥ 0 there is an exact sequence of complexes

(10.4.4) 0→ grGq (I)→ Gq(I)→ Gq−1(I)→ 0

in Cstr(M). In each degree p ∈ Z the exact sequence

0→ grGq (I)p → Gq(I)p → Gq−1(I)p → 0

in M splits, because grGq (I)p is an injective object. Thus the exact sequence (10.4.4)
is split in the category G0(M) of graded objects in M.

Let N ∈ C(M) be an acyclic complex. Applying the functor HomM(N,−) to the
sequence of complexes (10.4.4) we obtain a sequence

(10.4.5) 0→ HomM
(
N, grGq (I)

)
→ HomM

(
N,Gq(I)

)
→ HomM

(
N,Gq−1(I)

)
→ 0

in Cstr(K). Because (10.4.4) is split exact in G0(M), the sequence (10.4.5) is split
exact in G0(K). Therefore (10.4.5) is exact in Cstr(K).

By the induction hypothesis the complex HomM
(
N,Gq−1(I)

)
is acyclic. By step

2 the complex HomM
(
N, grGq (I)

)
is acyclic. The long exact cohomology sequence

associated to (10.4.5) shows that the complex HomM
(
N,Gq(I)

)
is acyclic too.

Step 4. We keep the semi-injective cofiltration G = {Gq(I)}q≥−1 from step 3. Take
any acyclic complex N ∈ C(M). By Proposition 10.1.3 we know that

HomM(N, I) ∼= lim
←q

HomM
(
N,Gq(I)

)
in Cstr(K). According to step 3 the complexes HomM

(
N,Gq(I)

)
are all acyclic.

The exactness of the sequences (10.4.5) implies that the inverse system{
HomM

(
N,Gq(I)

)}
q≥−1

in Cstr(K) has surjective transitions. Now the Mittag-Leffler argument (Corollary
10.1.13) says that the inverse limit complex HomM(N, I) is acyclic. �

Proposition 10.4.6. Let M be an abelian category. If I is a bounded below complex
of injectives, then I is a semi-injective complex.

Proof. We can assume that I 6= 0. Let p0 be an integer such that Ip = 0 for all
p < p0. For q ≥ −1 let Fq(I) be the subcomplex of I defined by Fq(I)p := Ip

if p ≥ p0 + q + 1, and Fq(I)p := 0 otherwise. Then let Gq(I) := I/Fq(I). The
cofiltration G = {Gq(I)}q≥−1 is semi-injective. �

comment: below – to end of subsection – many changes 15 June 2017, starting
file part1_170615d1.tex

Recall that for a graded object N ∈ G(M) we let

inf(N) := inf {i | N i 6= 0} ⊆ Z ∪ {±∞}.

Note that inf(N) =∞ if and only if N = 0.
The next theorem is [RD, Lemma I.4.6(1)]. See also [KaSc1, Proposition 1.7.7(i)].
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Theorem 10.4.7. Let M be an abelian category, and let J ⊆ M be a set of objects
such that each objectM ∈ M admits a monomorphismM � I to some object I ∈ J.
Then any complex M ∈ C+(M) admits a quasi-isomorphism ρ : M → I in C+

str(M),
such that inf(I) ≥ inf(M), and each Ip is an object of J.

Proof. The proof is the same as that of Theorem 10.2.7, except for a mechanical
reversal of arrows. To be more explicit, let us take N := Mop and Q := J. Since
monomorphisms in M become epimorphisms in N, the set of objects Q ⊆ N satisfies
the assumptions of Theorem 10.2.7. By Theorem 3.8.14 we have a canonical iso-
morphism of categories C−str(N) '−→ C+

str(M)op. Thus a quasi-isomorphism Q → N
in C−str(N) gives rise to a quasi-isomorphism M → J in C+

str(M). �

Definition 10.4.8. Let M be an abelian category, and let M′ ⊆ M be a full abelian
subcategory.

(1) An object I ∈ M′ is called M-injective if it is injective in the bigger category
M.

(2) We say that M′ has enough M-injectives if any object M ∈ M′ admits a
monomorphism M � I, where I is an M-injective object of M′.

Of course, in this situation the category M′ itself has enough injectives.
Thick abelian categories were defined in ???.

comment: fill above. move next lem to where thick ab cats were defined

Lemma 10.4.9. Let M be an abelian category, and let M′ ⊆ M be a thick abelian
subcategory. Suppose

M1 →M2 → N →M3 →M4

is an exact sequence in M, and the objects Mi belong M′. Then N ∈ M′ too.

Exercise 10.4.10. Prove Lemma 10.4.9.

The next theorem is [RD, Lemma I.4.6(3)]. See also [KaSc1, Proposition 1.7.11].

Theorem 10.4.11. Let M be an abelian category, and let M′ ⊆ M be a thick
abelian subcategory that has enough M-injectives. Let M ∈ C(M) be a complex with
bounded below cohomology, such that Hi(M) ∈ M′ for all i. Then there is a quasi-
isomorphism ρ : M → I in Cstr(M), where I ∈ C+(M′) is a complex of M-injective
objects, and inf(I) = inf(H(M)).

comment: next material should be moved to an earlier location?

Before the proof we need some auxiliary material.
Suppose we are given morphisms φ : L→M and ψ : L→ N in M. The cofibered

coproduct is the the object

(10.4.12) M ⊕L N := Coker
(
(φ, ψ) : L→M ⊕N

)
∈ M .
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It has an obvious universal property. The commutative diagram

L
φ

//

ψ

��

M

��

N // M ⊕L N
is sometimes called a pushout diagram.

Lemma 10.4.13. Let φ : L→M and ψ : L→ N be morphisms in M.
(1) The obvious sequence of morphisms

Ker(φ)→ N →M ⊕L N → Coker(φ)→ 0
is exact.

(2) Let M →M ′ be a monomorphism. Then the induced morphism
M ⊕L N →M ′ ⊕L N

is a monomorphism.

Exercise 10.4.14. Prove Lemma 10.4.13.

Proof of Theorem 10.4.11. In the proof we use the objects of cocycles Zp(L), co-
boundaries Bp(L) and cococycles Yp(L), that are associated to a complex L and
an integer p; see ????.
comment: fill

Step 1. By translating M , we may assume that inf(H(M)) = 0. By replacing M
with its smart truncation smt≥0(M), we can further assume that inf(M) = 0.
Step 2. Since H0(M) = Z0(M) ∈ M′, we can find a monomorphism χ : Z0(M)� I0,
where I0 is an M-injective object of M′. Since Z0(M) ⊆ M and I0 is injective, χ
can be extended to a morphism φ0 : M0 → I0 in M.
Step 3. Now assume that p ≥ 0, and we have a complex

Fp(I) =
(
· · · → 0→ I0 d0

I−→ I1 d1
I−→ · · ·

dp−1
I−−−→ Ip → 0→ · · ·

)
of M-injective objects of M′, with a morphism

Fp(φ) : M → Fp(I)
in Cstr(M), such that
(10.4.15) Hq(Fp(φ)) : Hq(M)→ Hq(Fp(I))
is an isomorphism for all q < p. The q-th component of Fp(φ), for 0 ≤ q ≤ p, is φq.

We claim that the objects Fp(I)q, Hq(Fp(I)), Bq(Fp(I)), Yq(Fp(I)) and Zq(Fp(I))
belong to M′ for all 0 ≤ q ≤ p. For Fp(I)q = Iq it is trivial. For Hp(Fp(I)) =
Coker(dp−1

I ) it is because M′ is thick. For Hq(Fp(I)) when q < p we use the isomor-
phisms (10.4.15). As for the rest of the objects listed, this is shown using induction
on q, the short exact sequences

0→ Zq−1(Fp(I))→ Fp(I)q−1 → Bq(Fp(I))→ 0,
0→ Bq(Fp(I))→ Fp(I)q → Yq(Fp(I))→ 0,

0→ Bq(Fp(I))→ Zq(Fp(I))→ Hq(Fp(I))→ 0,
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and the fact that M′ is thick in M.

Step 4. Continuing from step 3, there are morphisms dpM : Mp → Zp+1(M) and
φp : Mp → Yp(I). Let us define the object

(10.4.16) Np+1 := Zp+1(M)⊕Mp Yp(Fp(I)) ∈ M .

There is a sequence

(10.4.17) Hp(M) α−→ Yq(Fp(I)) β−→ Np+1 γ−→ Hp+1(M)→ 0

in M defined as follows. Since Yp(Fp(I)) = Hp(Fp(I)), we have the morphism
α := Hp(Fp(φ)). The morphism β is the canonical morphism of the cofibered
coproduct. The morphism γ is the composition of Np+1 → Zp+1(M)� Hp+1(M).
We leave it to the reader to verify that the sequence (10.4.17) is exact. Since
Hp(M),Yq(Fp(I)) and Hp+1(M) belong to M′, according to Lemma 10.4.14 the
object Np+1 is also in M′.

By assumption there is a monomorphism

χ : Np+1 � Ip+1

into some M-injective object Ip+1 ∈ M′. By Lemma 10.4.13(2), the morphism

Np+1 →Mp+1 ⊕Mp Yp(Fp(I)),

that is induced from Zp+1(M) � Mp+1, is a monomorphism. Because Ip+1 is an
injective object, we can extend χ to a morphism

(10.4.18) χ′ : Mp+1 ⊕Mp Yp(Fp(I))→ Ip+1.

We get a morphism
φp+1 : Mp+1 → Ip+1

such that

Mp+1 //

φp+1

((

Mp+1 ⊕Mp Yp(Fp(I))
χ′
// Ip+1

is commutative, and a morphism

dpI : Ip → Ip+1

such that

Ip

dp
I

))
// // Yp(Fp(I)) // Mp+1 ⊕Mp Yp(Fp(I))

χ′
// Ip+1

is commutative.
Since dpI ◦ dp−1

I = 0 we get a new complex

(10.4.19) Fp+1(I) :=
(
· · · → 0→ I0 d0

I−→ I1 d1
I−→ · · ·

dp−1
I−−−→ Ip

dp
I−→ Ip+1 → 0→ · · ·

)
,

with an epimorphism
πp+1 : Fp+1(I)→ Fp(I)

in Cstr(M). Because
dpI ◦ φ

p = φp+1 ◦ dpM ,
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there is a new morphism of complexes
Fp+1(φ) : M → Fp+1(I),

whose degree p+ 1 component is φp+1, and
πp+1 ◦ Fp+1(φ) = Fp(φ).

Step 5. Here we prove that
Hp(Fp+1(φ)) : Hp(M)→ Hp(Fp+1(I))

is an isomorphism.
First let us prove that this is an epimorphism. There are isomorphisms in M :

(10.4.20)

Hp(Fp+1(I)) ∼=♥ Ker
(
dpI : Yp(Fp+1(I))→ Ip+1)

∼=† Ker
(
Yp(Fp+1(I))→ Np+1)

∼=♦ Im
(
φp : Zp(M)→ Yp(Fp+1(I))

)
= Im

(
Hp(Fp+1(φ)) : Hp(M)→ Yp(Fp+1(I))

)
∼=♥ Im

(
Hp(Fp+1(φ)) : Hp(M)→ Hp(Fp+1(I))

)
.

The isomorphisms marked ∼=♥ come from the canonical embeddings Hp(−) ⊆
Yp(−). The isomorphism ∼=† is induced from the monomorphism χ : Np+1 � Ip+1.
The isomorphism marked ∼=♦ comes from the the exact sequence

Zp(M)→ Yp(Fp+1(I))→ Np+1

that we have due to Lemma 10.4.13(1) and the equality

Zp(M) = Ker
(
dpM : Mp → Zp+1(M)

)
.

The isomorphisms in (10.4.20) respect the morphisms to Hp(Fp+1(I)) from each
object there. Thus

Im
(
Hp(Fp+1(φ))

)
= Hp(Fp+1(I)),

as claimed.
Now we prove that Hp(Fp+1(φ)) is a monomorphism. Recall that

Np = Zp(M)⊕Mp−1 Yp−1(Fp+1(I)),
and there is a monomorphism Np� Ip. There are the following isomorphisms and
monomorphisms in M :

(10.4.21)

Hp(M) = Coker
(
dp−1
M : Mp−1 → Zp(M)

)
'−→
♦

Coker
(
Yp−1(Fp+1(I))→ Np

)
= Coker

(
Ip−1 → Np

)
�4 Coker

(
dp−1
I : Ip−1 → Ip

)
and

(10.4.22)
Hp(Fp+1(I)) = Coker

(
dp−1
I : Ip−1 → Zp(Fp+1(I))

)
� Coker

(
dp−1
I : Ip−1 → Ip

)
.

The isomorphism marked '−→
♦

is by Lemma 10.4.13(1), and the monomorphism
marked �4 comes from Np � Ip. The morphisms in (10.4.21) and (10.4.22)
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respect the morphisms from Hp(M) to each object there. Thus Hp(Fp+1(φ)) is a
monomorphism.
Step 6. To finish the proof we take inverse limits:

I := lim
←p

Fp(I) and φ := lim
←p

Fp(φ).

These limits are innocent: in each degree q there is a single change, when the index
p goes from q to q + 1. The complex I is

I =
(
· · · → 0→ I0 d0

I−→ I1 d1
I−→ I2 → · · ·

)
,

and φ : M → I is a quasi-isomorphism. �

Here is an important instance in which Theorem 10.4.11 applies.

Example 10.4.23. Let (X,OX) be a noetherian scheme. Associated to it are
these abelian categories: the category M := ModOX of OX -modules, and the thick
abelian subcategory M′ := QCohOX of quasi-coherent OX -modules. According to
[RD, Proposition II.7.6] the category M′ has enough M-injectives.

Corollary 10.4.24. If M is an abelian category with enough injectives, then C+(M)
has enough K-injectives.

Proof. According to either Theorem 10.4.7 or Theorem 10.4.11, any M ∈ C+(M)
admits a quasi-isomorphismM → I to bounded below complex of injectives I. Now
use Proposition 10.4.6 and Theorem 10.4.3. �

Corollary 10.4.25. Let M be an abelian category with enough injectives, and let
M ∈ C(M) be a complex with bounded below cohomology. Then M has a K-injective
resolution M → I with inf(I) = inf(H(M)).

Proof. We may assume that H(M) is nonzero. Let p := inf(H(M)) ∈ Z, and let
N := smt≥p(M), the smart truncation from formula (7.3.7). So M → N is a quasi-
isomorphism, and inf(N) = p. According to either Theorem 10.4.7 or Theorem
10.4.11, there is a quasi-isomorphism N → I, where I is a complex of injectives
and inf(I) = p. By Proposition 10.4.6 and Theorem 10.4.3 the complex I is K-
injective. The composed quasi-isomorphism M → I is what we are looking for. �

10.5. K-Injective Resolutions in C(A). Recall that we are working over a non-
zero commutative base ring K, and A is a central DG K-ring.

An injective cogenerator of the abelian category M(K) = ModK is an injective
K-module K∗ with this property: if M is a nonzero K-module, then HomK(M,K∗)
is nonzero. These always exist. Here are a few examples.

Example 10.5.1. For any nonzero ring K there is a canonical choice for an injective
cogenerator:

K∗ := HomZ(K,Q/Z).
See proof of Theorem 2.6.13. Usually this a very big module!

Example 10.5.2. Assume K is a complete noetherian local ring, with maximal
ideal m and residue field k = K/m. In this case we would prefer to take the smallest
possible injective cogenerator K∗, and this is the injective hull of k as a K-module.

Here are some special cases. If K is a field, then K∗ = K = k. If K = Ẑp, the
ring of p-adic integers, then k = Fp, and K∗ ∼= Q̂p/Ẑp, which is the p-primary part
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of Q/Z. If K contains some field, then there exists a ring homomorphism k → K
that lifts the canonical surjection K→ k. After choosing such a lifting, there is an
isomorphism of K-modules

K∗ ∼= Homcont
k (K,k),

where continuity is for the m-adic topology on K and the discrete topology on k.
In this subsection we fix an injective cogenerator K∗ of M(K). For any p ∈ Z

there is the DG K-module T−p(K∗), which is concentrated in degree p, and has the
trivial differential.
Definition 10.5.3. A DG K-module W is called cofree if

W ∼=
∏
s∈S

T−ps(K∗)

in Cstr(K), for some indexing set S and some collection of integers {ps}s∈S .
The differential of a cofree DG K-module W is trivial. It is not hard to see that

W is a K-injective DG K-module. When we view W as a graded K-module, i.e. as
an object of the abelian category G0(K), it is injective.

A few more words on the structure of cofree DG K-modules. Let’s partition
the set S as follows: S =

∐
p∈Z S

p, where Sp := {s ∈ S | ps = p}. Then W p =∏
s∈Sp K∗ as K-modules.

Remark 10.5.4. It will be convenient to blur the distinction between DG modules
with zero differentials and graded modules. Specifically, let N be a DG module such
that dN = 0. We are going to identify N with the graded modules N \ and H(N).
Typical examples are these: a cofree DG K-module W , and the DG modules Z(M)
and B(M) arising from any DG module M .
Lemma 10.5.5. Let M be a DG K-module, let W be a cofree DG K-module, and
let ξ : M → W be a homomorphism in Cstr(K). If H(ξ) : H(M) → W is the zero
homomorphism, then ξ is a coboundary in the DG module HomK(M,W ).
Proof. Because W has zero differential, the homomorphism H(ξ) is zero iff ξ|Z(M) :
Z(M)→W is zero. Consider the exact sequence

0→ Z(M)→M \ t ◦ dM−−−−→ T(B(M))→ 0
in G0(K). Applying HomK(−,W ), and taking only the degree 0 part, we obtain
the exact sequence

0→ HomK(B(M),W )−1 Hom(d,id)−−−−−−→ HomK(M,W )0 → HomK(Z(M),W )0 → 0.
We are using the fact that W is injective in G0(K). The homomorphism ξ lives in
the middle term, and it goes to zero in the right term; hence it comes from some ζ
in the left term. Thus ξ = ζ ◦ d for a degree −1 homomorphism ζ : B(M) → W .
Again using the fact that W is injective in G0(K), and considering the embedding
B(M) � M \, we see that ζ extends to a degree −1 homomorphism ζ : M \ →
W . �

Exercise 10.5.6. In the situation of Lemma 10.5.5, prove that there is a canonical
isomorphism

HomK
(
H(M),W

) ∼= H
(
HomK(M,W )

)
in G0(K). (Hint: look at the proof of [PSY, Corollary 2.12].)
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Lemma 10.5.7. Let M be a DG K-module with zero differential. There is an
injective homomorphism χ : M →W into some cofree DG K-module W .

Proof. It is enough to prove that for any nonzero element m ∈ Mp there is a
homomorphism χm : Mp → K∗ such that χm(m) 6= 0. This is a direct consequence
of the fact that K∗ is an injective cogenerator; see the proof of Theorem 2.6.13 for
details. �

Definition 10.5.8. Let W be a cofree DG K-module. The cofree DG A-module
coinduced from W is the DG A-module

IW := HomK(A,W ).

There is a homomorphism

θW : IW →W, θ(χ) := χ(1)

in Cstr(K). It is called the trace.

Definition 10.5.9. A DG A-module I is called cofree if there is an isomorphism
I ∼= IW in Cstr(A) for some cofree DG K-module W .

A special cofree DG A-module is A∗ := HomK(A,K∗). Any other cofree DG
module I is built from A∗, in the sense that there is an isomorphism

I ∼=
∏
s∈S

T−ps(A∗)

in Cstr(A), using the notation of Definition 10.5.3.

Lemma 10.5.10 (Adjunction). Let W be a cofree DG K-module, and let M be a
DG A-module. The homomorphism

Hom(idM , θW ) : HomA(M, IW )→ HomK(M,W )

in Cstr(K) is an isomorphism.

Proof. Given χ ∈ HomK(M,W )p, let φ : M → IW be the function

φ(m)(a) := (−1)ql ·χ(a ·m) ∈W

for m ∈Mq and a ∈ Al. Then φ ∈ HomA(M, IW )p, and

Hom(idM , θ)(φ) = θ ◦ φ = χ.

We see that χ 7→ φ is an inverse of Hom(idM , θ). �

Recall that G0(A\) is the abelian category whose objects are the graded A\-
modules, and the morphisms are the A-linear homomorphisms of degree 0. The
forgetful functor

Cstr(A)→ G0(A\), M 7→M \,

is faithful.

Lemma 10.5.11. Let I be a cofree DG A-module. Then I\ is an injective object
of G0(A\).
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Proof. We can assume that I = IW for some cofree DG K-module W . For any
M ∈ G0(A\) there are isomorphisms

HomG0(A\)
(
M, I\W

)
= HomA(M, IW )0

∼=♥ HomK(M,W )0 =
∏
p∈Z

HomK(Mp,W p).

The isomorphism ∼=♥ is by Lemma 10.5.10. For every p the functor G0(A\) →
M(K), M 7→ Mp, is exact. Because each W p is an injective object of M(K), the
functor HomK(−,W p) is exact. And the product of exact functors into M(K) is
exact. We conclude that the functor HomG0(A\)

(
−, I\W

)
is exact. �

The next definition is dual to Definition 10.3.3.

Definition 10.5.12. Let I be an object of C(A).
(1) A semi-cofree cofiltration on I is a cofiltration G = {Gq(I)}q≥−1 of I in

Cstr(A) such that:
• G−1(I) = 0.
• Each grGq (I) is a cofree DG A-module.
• I = lim←q Gq(I).

(2) The DG A-module I is called a semi-cofree if it admits a semi-cofree cofil-
tration.

Theorem 10.5.13. Let I be an object of C(A). If I is semi-cofree, then it is
K-injective.

Proof. The proof is very similar to those of Theorems 10.2.3 and 10.3.6. But because
the arguments involve limits, we shall give the full proof.

Step 1. Suppose I is cofree; say I ∼=
∏
s∈S T−ps(A∗). The adjunction formula

(Lemma 10.5.10) implies that for any DG A-module N there is an isomorphism

HomA(N, I) ∼=
∏
s∈S

HomK
(
Tps(N),K∗

)
of graded K-modules. It follows that if N is acyclic, then so is HomA(N, I).

Step 2. Fix a semi-cofree cofiltration G = {Gq(I)}q≥−1 of I. Here we prove that
for every q ≥ −1 the DG module Gq(I) is K-injective. This is done by induction
on q ≥ −1. For q = −1 it is trivial. For q ≥ 0 there is an exact sequence

(10.5.14) 0→ grFq (I)→ Gq(I)→ Gq−1(I)→ 0

in the category Cstr(A). Because grGq (I) is a cofree DG A-module, it is an injective
object in the abelian category G0(A\); see Lemma 10.5.11. Therefore the sequence
(10.5.14) is split exact in G0(A\).

Let N ∈ C(A) be an acyclic DG module. Applying the functor HomA(N,−) to
the sequence (10.5.14) we obtain a sequence

(10.5.15) 0→ HomA

(
N, grGq (I)

)
→ HomA

(
N,Gq(I)

)
→ HomA

(
N,Gq−1(I)

)
→ 0

in Cstr(K). If we forget differentials this is a sequence in G0(K). Because (10.5.14)
is split exact in G0(A\), it follows that (10.5.15) is split exact in G0(K). Therefore
(10.5.15) is exact in Cstr(K).
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By the induction hypothesis the DG K-module HomA

(
N,Gq−1(I)

)
is acyclic. By

step 1 the DG K-module HomA

(
N, grGq (I)

)
is acyclic. The long exact cohomology

sequence associated to (10.5.15) shows that the DG K-module HomA

(
N,Gq(I)

)
is

acyclic too.

Step 3. We keep the semi-cofree cofiltration G = {Gq(I)}q≥−1 from step 2. Take
any acyclic N ∈ C(A). By Proposition 10.1.3 we know that

HomA(N, I) ∼= lim
←j

HomA

(
N,Gq(I)

)
in Cstr(K). According to step 2 the complexes HomA

(
N,Gq(I)

)
are all acyclic. The

exactness of the sequences (10.5.15) implies that the inverse system{
HomA

(
N,Gq(I)

)}
q≥−1

in Cstr(K) has surjective transitions. Now the Mittag-Leffler argument (Corollary
10.1.13) says that the inverse limit complex HomA(N, I) is acyclic. �

Theorem 10.5.16. Let A be a DG ring. Any DG A-module M admits a quasi-
isomorphism ρ : M → I in Cstr(A) to a semi-cofree DG A-module I.

We shall need three lemmas before the proof of the theorem.

Lemma 10.5.17. Let W be a cofree DG K-module, let M be a DG A-module, and
let χ : H(M) → H(W ) be a homomorphism in G0(K). Then there is a homomor-
phism φ : M → IW in Cstr(A), such that the diagram

H(M)
H(φ)

//

χ

77
H(IW )

H(θW )
// H(W )

in G0(K) is commutative.

Proof. We can assume that

W =
∏
p∈Z

∏
s∈Sp

T−p(K∗)

for some graded set S =
∐
p∈Z S

p. Then

IW =
∏
p∈Z

∏
s∈Sp

T−p(A∗),

where A∗ = HomK(A,K∗) as before. The trace θW is a product of translations of
the trace θ : A∗ → K∗. The homomorphism χ : H(M) → H(W ) is a product of
K-linear homomorphisms χs : Hp(M) → K∗. We see that it suffices to find, for
each p and each s ∈ Sp, a homomorphism φs : M → T−p(A∗) in Cstr(A), such that
θ ◦Hp(φs) = χs.

Now we consider the simplified situation: χ : Hp(M) → K∗ is a K-linear homo-
morphism, and we are looking for a homomorphism φ : M → T−p(A∗) in Cstr(A)
such that θ ◦Hp(φ) = χ.

For any integer p let

Yp(M) := Coker(dp−1
M : Mp−1 →Mp).
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See Remark 7.3.10. In each degree p there are canonical exact sequences of K-
modules
(10.5.18) 0→ Bp(M)→Mp −→ Yp(M)→ 0
and
(10.5.19) 0→ Hp(M)→ Yp(M) d−→ Bp+1(M)→ 0.
Because K∗ is injective in M(K), we can extend χ : Hp(M) → K∗ to a homomor-
phism χ : Yp(M) → K∗ in M(K), relative to the embedding Hp(M) � Yp(M)
in (10.5.19). Next we compose with the surjection Mp → Yp(M) in (10.5.18) to
obtain a K-linear homomorphism χ : Mp → K∗. Note that χ ◦ dp−1

M = 0 by the
exact sequence (10.5.18).

We now view χ as a degree −p homomorphism χ : M → K∗ in G(K) that
sends all other components of M to zero. As an element of the DG K-module
HomK(M,K∗), χ is a degree −p cocycle. By adjunction (Lemma 10.5.10) we get
an element ψ ∈ HomA(M,A∗), and it is a cocycle of degree −p. Then

φ := t−p ◦ψ : M → T−p(A∗)
is a homomorphism in Cstr(A) with the desired property. �

Lemma 10.5.20. In the situation of Lemma 10.5.17, let N := Cone(T−1(φ)), the
standard cone on the homomorphism

T−1(φ) : T−1(M)→ T−1(IW )
in Cstr(A). Consider the canonical exact sequence

(10.5.21) 0→ T−1(IW )→ N
π−→M → 0

in Cstr(A), shown in formula (4.2.4). Then the composed homomorphism
χ ◦H(π) : H(N)→ H(W )

in G0(K) is zero.

Proof. Passing to the long exact sequence in cohomology of (10.5.21), and then
applying HomK(−,W p), we obtain this long exact sequence:
· · · → HomK(Hp(IW ),W p)→ HomK(Hp(M),W p)→ HomK(Hp(N),W p)→ · · ·

in M(K). The homomorphism χp : Hp(M) → W p in the middle term comes from
Hp(θW ) : Hp(IW )→W p in the left term. Therefore its image χp◦Hp(π) : Hp(N)→
W p in the right term is zero. �

Lemma 10.5.22. In the situation of Lemma 10.5.20, suppose ρ : L → M is a
homomorphism in Cstr(A) such that H(θW ) ◦H(φ) ◦H(ρ) = 0. Then there exists a
homomorphism σ : L→ N in Cstr(A) such that π ◦ σ = ρ.

See the next commutative diagrams, in Cstr(A) and G0(K) respectively.

N

π

��

L

σ

??

ξ

99

ρ
// M

φ
// IW

θW // W
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H(N)

H(π)
��

H(L)

H(σ)
99

H(ξ)=0

77

H(ρ)
// H(M)

H(φ)
// H(IW )

H(θW )
// W

Proof. It will be convenient to express N = Cone(T−1(φ)) in terms of matrices.
We will use the equality T(T−1(M)) = M to write the graded A\-module N \ as a
column:

(10.5.23) N \ =
[

T−1(IW )\

T(T−1(M))\

]
=
[

T−1(IW )\

M \

]
.

A small calculation, using Definition 4.1.5 and Proposition 4.1.10(1), shows that

T−1(φ) = t−1
T−1(IW ) ◦φ ◦ tT−1(M) .

Note that
tT−1(IW ) : T−1(IW )→ T(T−1(IW )) = IW

is an invertible degree −1 homomorphism, and its inverse

t−1
T−1(IW ) : IW → T−1(IW )

has degree 1. So the differential of N is

(10.5.24) dN =
[

dT−1(IW ) T−1(φ) ◦ t−1
T−1(M)

0 dM

]
=
[

dT−1(IW ) t−1
T−1(IW ) ◦φ

0 dM

]
.

Define ξ := θW ◦ φ ◦ ρ. This is a homomorphism ξ : L → W in Cstr(K),
and by assumption H(ξ) = 0. According to Lemma 10.5.5, ξ is a coboundary in
the DG module HomK(L,W ). So there is some ω ∈ HomK(L,W )−1 such that
ξ = d(ω) = ω ◦ dL. Let α : L → IW be the unique A-linear homomorphism of
degree −1 such that θW ◦ α = ω; see Lemma 10.5.10. Define the homomorphism
σ : L\ → N \ in G0(A\) to be the column

σ :=
[

t−1 ◦α
ρ

]
,

where from here to the end of the proof we write t := tT−1(IW ). It is clear that
π ◦ σ = ρ.

It remains to prove that σ is strict, namely that σ ◦ dL = dN ◦ σ. Let us write
out these homomorphisms as matrices. We have

σ ◦ dL =
[

t−1 ◦α ◦ dL
ρ ◦ dL

]
and

dN ◦ σ =
[

dT−1(IW ) t−1 ◦φ
0 dM

]
◦

[
t−1 ◦α
ρ

]
=
[

dT−1(IW ) ◦ t−1 ◦α+ t−1 ◦φ ◦ ρ
dM ◦ ρ

]
.
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Since ρ is strict, there is equality ρ ◦ dL = dM ◦ ρ. We need to verify that
t−1 ◦α ◦ dL = dT−1(IW ) ◦ t−1 ◦α+ t−1 ◦φ ◦ ρ

as A-linear homomorphisms L → T−1(IW ). We are allowed to postcompose with
t; so now we have to verify that

α ◦ dL = t ◦ dT−1(IW ) ◦ t−1 ◦α+ φ ◦ ρ
as A-linear homomorphisms L → IW . By adjunction (Lemma 10.5.10) it suffices
to verify that they are equal as K-linear homomorphisms after postcomposing with
θW . But

θW ◦ t ◦ dT−1(IW ) ◦ t−1 ◦α = −θW ◦ dIW ◦ α = −dW ◦ θW ◦ α = 0;
and

θW ◦ φ ◦ ρ = ξ = θW ◦ α ◦ dL.
�

Proof of Theorem 10.5.16. The proof is morally dual to that of Theorem 10.3.9, but
the details are much more complicated. This is the strategy: we will construct an
inverse system {Gq(I)}q≥−1 in Cstr(A), and an inverse system of homomorphisms
Gq(ρ) : M → Gq(I) in Cstr(A). Then we will prove that the DG module I :=
lim←q Gq(I) is semi-cofree, and the homomorphism lim←q Gq(ρ) : M → I is a
quasi-isomorphism.
Step 1. In this step we handle q = 0. By Lemma 10.5.7 there is an injective
homomorphism χ : H(M)→W in G0(K) for some cofree DG K-module W . Next,
by Lemma 10.5.17, there is a homomorphism φ : M → IW in Cstr(A), such that
χ = H(θW ) ◦H(φ).

Define the cofree DG A-module G0(I) := IW and the homomorphism
G0(ρ) := φ : M → G0(I).

Then the homomorphism
H(G0(ρ)) : H(M)→ H(G0(I))

is injective.
Step 2. In this step q ≥ 0, and we are given the following: a DG A-module Gq(I),
a cofiltration {Gq′(I)}−1≤q′≤q of Gq(I), and an inverse system of homomorphisms
Gq′(ρ) : M → Gq′(I) in Cstr(A). These satisfy the following conditions: the homo-
morphisms

H(Gq′(ρ)) : H(M)→ H(Gq′(I))
in G0(K) are injective for all 0 ≤ q′ ≤ q; G−1(I) = 0; and the DG A-modules

Ker
(
Gq′(I)→ Gq′−1(I)

)
are cofree for all 0 ≤ q′ ≤ q.

Let N be the cokernel of H(Gq(ρ)). So there is a short exact sequence

(10.5.25) 0→ H(M) H(Gq(ρ))−−−−−−→ H(Gq(I)) α−→ N → 0
in G0(K). By Lemma 10.5.7 there is an injective homomorphism χ : N → W
in G0(K) for some cofree DG K-module W . Next, by Lemma 10.5.17, there is a
homomorphism φ : Gq(I)→ IW in Cstr(A), such that

χ ◦ α = H(θW ) ◦H(φ)
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as homomorphisms H(Gq(I))→W . Define the DG A-module

Gq+1(I) := Cone(T−1(φ)),

the standard cone on the strict homomorphism T−1(φ). There is a canonical exact
sequence

(10.5.26) 0→ T−1(IW )→ Gq+1(I) µq−→ Gq(I)→ 0
in Cstr(A). According to Lemma 10.5.20, the homomorphism

χ ◦ α ◦H(µq) : H(Gq+1(I))→W

in G0(K) is zero. Since χ is an injective homomorphism, we conclude that the
homomorphism α ◦H(µq) in the commutative diagram below is zero.

(10.5.27) H(Gq+1(I))

H(µq)
��

0

''

0

%%

H(Gq(I)) α //

H(φ)
''

N
χ

// W

H(IW )
H(θW )

99

Step 3. We continue from step 2. We know from formula (10.5.25) and diagram
(10.5.27) that

H(θW ) ◦H(φ) ◦H(Gq(ρ)) = 0.
According to Lemma 10.5.22 there is a homomorphism

Gq+1(ρ) : M → Gq+1(I)
in Cstr(A) such that the diagram

(10.5.28) Gq+1(I)

µq

��

M

Gq+1(ρ)
;;

Gq(ρ)
// Gq(I)

in Cstr(A) is commutative.
The next diagram, in G0(K), is also commutative, and the bottom row is exact:

(10.5.29) H(Gq+1(I))

H(µq)

��

0

%%
0 // H(M)

H(Gq+1(ρ))

88

H(Gq(ρ))
// H(Gq(I))

α
// N // 0

Let us define
Lq := Im(H(µq)) ⊆ H(Gq(I)).

From diagram (10.5.29) we see that the homomorphism
(10.5.30) H(Gq(ρ)) : H(M)→ Lq
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in G0(K) is bijective. This implies that
H(Gq+1(ρ)) : H(M)→ H(Gq+1(I))

in an injective homomorphism, a fact that is needed to keep the induction going.
Step 4. Proceeding with steps 2 and 3 inductively, we obtain an inverse system
{Gq(I)}q≥−1 of objects in Cstr(A), and an inverse system Gq(ρ) : M → Gq(I) of
homomorphisms in Cstr(A). The DG module I := lim←q Gq(I) comes equipped
with the semi-cofree cofiltration {Gq(I)}q≥−1, and thus it is semi-cofree.

It remains to prove that the homomorphism
ρ := lim

←q
Gq(ρ) : M → I

is a quasi-isomorphism. From formula (10.5.30) we know that H(M)→ lim←q Lq is
bijective. The inverse systems {Lq}q≥0 and

{
H(Gq(I))

}
q≥0 are sandwiched, so by

Proposition 10.1.1(2) the limit of the second inverse system exists, and the canonical
homomorphism

lim
←q

Lq → lim
←q

H(Gq(I))

is bijective.
Finally, the inverse systems {Gq(I)}q≥0 and

{
H(Gq(I))

}
q≥0 satisfy the ML

condition: the first has surjective transitions, and the images of the transitions
H(Gq′(I))→ H(Gq(I)) are stationary for q′ ≥ q+ 1. Therefore the homomorphism

H(I)→ lim
←q

H(Gq(I))

is bijective. Putting these facts together, we deduce that ρ is a quasi-isomorphism.
�

Corollary 10.5.31. Let A be any DG ring. The category C(A) has enough K-
injectives.

Proof. Combine Theorems 10.5.13 and 10.5.16. �

Corollary 10.5.32. Assume A is a nonpositive DG ring (Definition 7.3.11). For
any M ∈ C(A) there is a K-injective resolution M → I with inf(I) = inf(H(M)).

Proof. For any cofree DG K-moduleW , the cofree DG A-module IW has inf(IW ) =
inf(W ). (Assuming that A is nonzero.) Looking at steps 1 and 2 of the proof of
Theorem 10.5.16, we see that the DG modules Gq(I) can be chosen such that
inf(Gq(I)) = inf(H(M)). �

Remark 10.5.33. The proof of Theorem 10.5.16 is quite long and complicated. It
would be nice to have a quicker proof.

In Keller’s paper [Kel, Section 3.2] there is a slick proof of an even stronger result
than Theorem 10.5.16 – but we were unable to understand the details!

comment: End of first part (in book)
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Second Part

comment: Start of course III.

11. Recalling Material from Last Year [Temporary]

11.1. Generalities. We fix a nonzero commutative base ring K (e.g. a field or
Z). All linear operations are by default K-linear. Thus a ring A is assumed to be
K-central; an additive category M is assumed to be K-linear; etc.

The concepts of classical homological algebra: abelian category, additive functor,
injective and projective objects, and so on, are all assumed to be familiar.

11.2. DG Algebra. Let me quickly go over the important ideas of DG algebra,
because they are not so well-known. This is a review of Section 3.

A DG ring is a graded ring A =
⊕

i∈ZA
i, with a differential d of degree 1,

satisfying the graded Leibniz rule
d(a1 · a2) = d(a1) · a2 + (−1)i1 · a1 ·d(a2)

for elements aj ∈ Aij .
Over a DG ring A there are left DG modules, right DG modules and DG bimod-

ules. The default is always left modules.
Given DG A-modules M,N , we can form the DG K-module

(11.2.1) HomA(M,N) =
⊕
i∈Z

HomA(M,N)i.

The i-th summand consists of degree i homomorphisms that commute, in the graded
sense, with the action of A (this is a bit subtle).

If L is a right DG A-module, then

L⊗AM =
⊕
i∈Z

(L⊗AM)i

is also a DG K-module.
A strict homomorphism of DG A-modules is a homomorphism φ : M → N that

commutes with the grading, the action of A, and the differentials. Equivalently, φ
is a 0-cocycle in the DG module HomA(M,N).

Generalizing the notion of DG ring, we get DG categories. A DG category C
is a K-linear category, whose Hom modules have a DG structure. I.e. for any
pair of objects M,N ∈ C, the set HomC(M,N) is a DG K-module. The identity
automorphism idM = 1M is a degree 0 cocycle. For three objects, the composition
is a strict homomorphism of DG K-modules:

− ◦ − : HomC(M1,M2)⊗K HomC(M0,M1)→ HomC(M0,M2).
Generalizing the notion of homomorphism of DG rings, we obtain the notion of

DG functor
F : C→ D

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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between a pair of DG categories. If G : C → D is another DG functor, we can
talk about a degree i morphism η : F → G of DG functors, and its differential
d(η) : F → G, that’s a degree i+ 1 morphism.

To a DG category C we attach two other categories, with the same sets of objects
as C. There is the strict category Cstr, whose morphisms are the strict morphisms:

HomCstr(M,N) := Z0(HomC(M,N)).
And there is the homotopy category Ho(C), whose morphisms are the homotopy
classes of strict morphisms:

HomHo(C)(M,N) := H0(HomC(M,N)).
One basic example of a DG category is C(A), the category of DG A-modules.

By definition we take
HomC(A)(M,N) := HomA(M,N),

the DG module from formula (11.2.1). We have special notation in this context:
C(A)str := Cstr(A)

and
Ho(C(A)) := K(A).

Another basic example of a DG category is the category C(M) of complexes over
an abelian category M. Its strict category is Cstr(M), and the morphisms here are
what is classically called homomorphisms of complexes. The homotopy category is,
as usual, denoted by K(M).

A useful innovation in this course is the merging of these last two types of DG
categories into a single entity. Suppose A is a DG ring, and M is an abelian category.
For a complex M = {M i}i∈Z ∈ C(M), its set of endomorphisms

EndC(M) := HomC(M,M)
is a DG ring (central over K). By definition, a DG A-module in M is a complexM ∈
C(M), together with a DG ring homomorphism A→ EndC(M). There is an obvious
(once contemplating this long enough...) notion of degree i A-linear morphism
between two such DG modules. In this way we obtain the DG category C(A,M).
Its strict and homotopy categories are Cstr(A,M) and K(A,M) respectively. Note
that Cstr(A,M) is (secretly) an abelian category.

Just to state the relationship: when A = K we get
C(A,M) = C(M),

and when M = M(K) = ModK, we get
C(A,M) = C(A).

11.3. Translations. The category G(M) of graded objects of M has an automor-
phism called the translation. Given a graded object M = {M i}i∈Z, its translation
T(M) is the graded object whose degree i component is T(M)i := M i+1. There is
a canonical degree −1 morphism

tM : M → T(M)
in G(M), which is the identity after forgetting the grading. This is called the little
t operator. Observe that tM is an isomorphism in G(M); its inverse t−1

M is of degree
+1.
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If φ : M → N is a degree i morphism in G(M), we let

T(φ) : T(M)→ T(M)

be
T(φ) := tN ◦φ ◦ t−1

M .

In this way T is indeed an automorphism of the category G(M).
Now consider a complex M ∈ C(M). Its differential dM is a degree 1 morphism

in G(M), so we can define
dT(M) := T(dM ),

and this is a differential on T(M).
All this works just as well for DG A-modules in M. We get a DG functor

T : C(A,M)→ C(A,M),

and it is an automorphism of this DG category. The little t operator is a degree
−1 morphism of DG functors

t : Id→ T,
and it is a cocycle.

11.4. Cones. In the DG category C(A,M) there is an intrinsic notion of standard
cone. Suppose φ : M → N is a strict morphism in C(A,M). The standard cone of
φ is the DG module

(11.4.1) Cone(φ) := N ⊕ T(M) =
[

N

T(M)

]
,

in column notation. The differential dcone is the following matrix of degree 1 oper-
ators, acting on the column from the left:

dcone :
[

dN φ ◦ t−1
M

0 dT(M)

]
.

The standard cone sits inside the standard triangle. This is the diagram

(11.4.2) M
φ−→ N

eφ−→ Cone(φ) pφ−→ T(M)

in Cstr(A,M), where eφ and pφ are the obvious morphisms.
The standard cone, and also the standard triangle, are functorial in the strict

morphism φ.

11.5. DG Functors and Triangles. We now review Section ????
DG functors respect all the structure mentioned above. Let me explain. Suppose

F : C(A,M)→ C(B,N)

is a DG functor. Let us denote by TA,M and TB,N the two translation functors.
There is a strict isomorphism of DG functors

(11.5.1) τF : F ◦ TA,M
'−→ TB,N ◦F

called the translation isomorphism. This is the formula, for any DG module M ∈
C(A,M) :

τF,M := tF (M) ◦F (tM )−1 : F (TA,M(M)) '−→ TB,N(F (M)).
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Next, suppose we are given a strict morphism φ : M0 → M1 in C(A,M). Then
F (φ) is also a strict morphism. We can form the standard cones ConeA,M(φ) and
ConeB,N(F (φ)).

It turns out that there is a strict isomorphism

(11.5.2) cone(F, φ) : F (ConeA,M(φ)) '−→ ConeB,N(F (φ))

in C(B,N), whose formula is

cone(F, φ) :=
[

idF (M1) 0
0 τF,M0

]
.

The following diagram in Cstr(B,N) is commutative:

(11.5.3) F (M0)
F (φ)

//

=

��

F (M1)
F (eφ)

//

=

��

F (ConeA,M(φ))
F (pφ)

//

cone(F,φ)

��

F (TA,M(M0))

τF,M0

��

F (M0)
F (φ)

// F (M1)
eF (φ)

// ConeB,N(F (φ))
pF (φ)

// TB,N(F (M0))

comment: to here on 2 Nov 2016

11.6. Pretriangulated Categories and Triangulated Functors. This is a re-
view of Section 5.

The translation isomorphism introduced above has an abstract version. This
is the notion of a T-additive category, which consists of an additive category K,
together with an additive automorphism T. Suppose (K,T) and (K′,T′) are T-
additive categories. A T-additive functor

(F, τ) : (K,T)→ (K′,T′)

consists of an additive functor F with an isomorphism of functors

τ : F ◦ T '−→ T′ ◦F.

There is a rather obvious notion of composition of T-additive functors. See
Definition 5.1.4.

Intrinsic to a T-additive category is the notion of triangle; it is a diagram like
this:

(11.6.1) L
α−→M

β−→ N
γ−→ T(L).

A pretriangulated category is a T-additive category (K,T), equipped with a set
of triangles, called the distinguished triangles. The set of distinguished triangles
must satisfy the following three axioms:
(TR1) It is closed under isomorphisms; every morphism α sits inside a distin-

guished triangle like (11.6.1); and every object L sits inside a distinguished
triangle with α = idL and N = 0.

(TR2) Closure under turning.
(TR3) Closure under extension (weak functoriality of the cone).
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We are deliberately ignoring the octahedral axiom (TR4). This is because it is
hard to understand, hard to prove, and unnecessary for our purposes. The “price”
for ignoring it is that we only talk about pretriangulated categories – i.e. the prefix
“pre” is added everywhere.

Suppose now (K,T) and (K′,T′) are pretriangulated categories. A triangulated
functor

(F, τ) : (K,T)→ (K′,T′)

is a T-additive functor that respects distinguished triangles, in the following sense:
for any distinguished triangle (11.6.1) in K, the triangle

F (L) F (α)−−−→ F (M) F (β)−−−→ F (N) τL◦F (γ)−−−−−→ T′(F ((L))

in K′ is distinguished. The composition of triangulated functors is their composition
as T-additive functors.

There is a vast source of pretriangulated categories and triangulated functors.
For any pair (A,M) the homotopy category K := K(A,M) inherits the translation
functor T from the DG category C(A,M), under the canonical full functor

P : C(A,M)→ K(A,M).

By definition, the distinguished triangles in K(A,M) are those that are isomorphic
to the images, under the functor P, of standard triangles. A calculation (Theorem
5.4.4) shows that they satisfy the axioms of pretriangulated category.

We proved (Theorem 5.4.15) that for any DG functor

F : C(A,M)→ C(B,N),

the induced T-additive functor

(F, τF ) : K(A,M)→ K(B,N)

is triangulated.
Another source of triangulated functors is by composing other triangulated func-

tors. This will turn out to be of tremendous importance. A mere shadow of this
feature is the Grothendieck spectral sequence associated to a composition of func-
tors.

11.7. Localization of Categories. Here we review Section 6.
Suppose K is a category, and S is a multiplicatively closed set of morphism in it

(just like in a ring). There is always the formal localization of K with respect to S
– this is a category KS, with a functor

Q : K→ KS,

that is the identity on objects, it sends any morphism s ∈ S to an isomorphism,
and it is initial among all such pairs (KS,Q).

The localization is manageable if it has a calculus of fractions, a.k.a. Ore lo-
calization. The set S is called a right denominator set if it satisfies the right Ore
condition (R1) and the right cancellation condition (R2). We proved in full detail
that S is a right denominator set iff (KS,Q) is a right Ore localization. The same
is true on the left side.
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11.8. The Derived Category. Now we recall Section 7. We know that the ho-
motopy category K(A,M) is a pretriangulated category. A morphism ψ : M → N
in K(A,M) is called a quasi-isomorphism if all the cohomologies

Hi(ψ) : Hi(M)→ Hi(N)

are isomorphisms (in the category M). The set of quasi-isomorphisms is denoted
by S(A,M).

We proved that S(A,M) is both a left and right denominator set. The derived
category is the localization

D(A,M) := K(A,M)S(A,M).

It is a pretriangulated category, and the localization functor

Q : K(A,M)→ D(A,M)

is triangulated.
For a boundedness condition ?, that could be +, − or b, we denote by K?(A,M)

the full subcategory of K(A,M) on the DG modules with this condition. The
localization of K?(A,M) w.r.t. its quasi-isomorphisms is D?(A,M). If the relevant
truncation functor exists (this is always so for K(M)), then the functor K?(A,M)→
K(A,M) is fully faithful.

As before, in the special cases we write D(A) := D(A,ModK) and D(M) :=
D(K,M). In this latter case the canonical functor M→ D(M), that sends an object
M to the complex M concentrated in degree 0, is fully faithful.

11.9. Derived Functors. This is a summary of Section 8. Since we want to treat
K?(A,M) for various boundedness conditions ?, we now revert to the more general
setting of a pretriangulated category K with a denominator set S of cohomological
origin (like the quasi-isomorphisms in K(A,M)).

Setup 11.9.1. The following are given:
• Pretriangulated categories K and E.
• A triangulated functor F : K→ E.
• A denominator set of cohomological origin S ⊆ K. The morphisms in it will
be called quasi-isomorphisms.

Definition 11.9.2. A right derived functor of F is a pair (RF, η), where

RF : KS → E

is a triangulated functor, and

η : F ⇒ RF ◦Q

is a morphism of triangulated functors K → E. The pair (RF, η) must have this
universal property:

(♦) Given any pair (G, θ), consisting of a triangulated functor G : KS → E
and a morphism of triangulated functors θ : F ⇒ G ◦Q, there is a unique
morphism of triangulated functors µ : RF ⇒ G such that θ = (µ ◦ idQ) ∗ η.

Above we used a bit of 2-categorical notation. It is pictured in the following
2-diagrams:
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K F //

Q

��

E

KS

RF

==

η

��

K F //

Q

��

E

KS

==

η

��

G

MM

θ
��

µ � 

It is quite easy to prove that a right derived functor is unique (up to a unique
isomorphism).

Existence rests on the availability of suitable resolutions. Here is the theorem.

Theorem 11.9.3. Assume there is a full pretriangulated subcategory J ⊆ K with
these two properties:

(a) If φ : I → I ′ is a quasi-isomorphism in J, then F (φ) : F (I) → F (I ′) is an
isomorphism in E.

(b) Every object M ∈ K admits a quasi-isomorphism ρ : M → I to some object
I ∈ J.

Then the right derived functor
(RF, η) : KS → E

exists. Moreover, for any object I ∈ J the morphism
ηI : F (I)→ (RF ◦Q)(I)

in E is an isomorphism.

We refer to J as a category of right F -acyclic objects.
Analogously we can talk about left derived functors.

Definition 11.9.4. A left derived functor of F is a pair (LF, η), where
LF : KS → E

is a triangulated functor, and
η : LF ◦Q⇒ F

is a morphism of triangulated functors K → E. The pair (LF, η) must have a
universal property opposite to the one in Definition 11.9.2.

As for the right derived functor, there is a uniqueness here. And existence relies
on the availability of resolutions.

Theorem 11.9.5. Assume there is a full pretriangulated subcategory P ⊆ K with
these two properties:

(a) If φ : P → P ′ is a quasi-isomorphism in P, then F (φ) : F (P ) → F (P ′) is
an isomorphism in E.

(b) Every object M ∈ K admits a quasi-isomorphism ρ : P → M from some
object P ∈ P.

Then the right derived functor
(LF, η) : KS → E

exists. Moreover, for any object P ∈ P the morphism
ηP : (LF ◦Q)(P )→ F (P )
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in E is an isomorphism.

We refer to P as a category of left F -acyclic objects.

11.10. Resolutions of DG Modules. This is a review of Section 9. As we just
saw, a sufficient condition for existence of derived functors (left or right) of F is
the existence of enough acyclic objects.

In the original book [RD], existence of resolutions was proved for bounded (above
or below) complexes, or when the additive functor F was finite dimensional (it was
called “way-out” there).

At around 1990 several mathematicians discovered, independently, the secret to
unbounded acyclic resolutions. It involves filtrations, and it goes by several names.
We prefer the name “K-something resolution”, following Spaltenstein.

As before, A is a DG ring and M is an abelian category. A DG module N is
called acyclic if Hi(N) = 0 for all i.

Definition 11.10.1. A DG module I ∈ C(A,M) is called K-injective if for every
acyclic DG module N ∈ C(A,M), the DG K-module HomA,M(N, I) is acyclic.

It turns out that K-injectives are right F -acyclic for any triangulated functor F .
By K-injective resolution of a DG module M we mean a quasi-isomorphism

M → I into a K-injective DG module I.
For a full pretriangulated subcategory K ⊆ K(A,M), we denote by Kinj the full

subcategory of K on the K-injectives in it. It too is pretriangulated.

Theorem 11.10.2. Let K be a full pretriangulated subcategory of K(A,M), and
denote by S the set of quasi-isomorphisms in K. Assume K has enough K-injectives.
Let E be any pretriangulated category, and let

F : K→ E

be any triangulated functor. Then F has a right derived functor

(RF, η) : KS → E .

Furthermore, for any I ∈ Kinj the morphism ηI : F (I)→ RF (I) in E is an isomor-
phism.

There is a bonus, already proved in [RD] for K+(M) :

Theorem 11.10.3. Let K be a full pretriangulated subcategory of K(A,M). Denote
by S the set of quasi-isomorphisms in K. Then the localization functor

Q : Kinj → KS

is fully faithful.
Thus, if K has enough K-injectives, the functor Q above is an equivalence of

pretriangulated categories.

There is a dual notion, generalizing projective resolutions.

Definition 11.10.4. A DG module P ∈ C(A,M) is called K-projective if for every
acyclic DG module N ∈ C(A,M), the DG K-module HomA,M(P,N) is acyclic.

For a full pretriangulated subcategory K ⊆ K(A,M), we denote by Kprj the full
subcategory of K on the K-projectives in it. It too is pretriangulated.
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Theorem 11.10.5. Let K be a full pretriangulated subcategory of K(A,M), and de-
note by S the set of quasi-isomorphisms in K. Assume K has enough K-projectives.
Let E be any pretriangulated category, and let

F : K→ E
be any triangulated functor. Then F has a left derived functor

(LF, η) : KS → E .
Furthermore, for any P ∈ Kprj the morphism ηP : LF (P ) → F (P ) in E is an
isomorphism.

Once more, for K-projectives there is no need to invert quasi-isomorphisms. This
was known in [RD] for K−(M):

Theorem 11.10.6. Let K be a full pretriangulated subcategory of K(A,M). Denote
by S the set of quasi-isomorphisms in K. Then the localization functor

Q : Kprj → KS

is fully faithful.
Thus, if K has enough K-projectives, the functor Q above is an equivalence of

pretriangulated categories.

11.11. Existence of Resolutions. This is a review of Section 10. We consider
four situations where we can prove existence of resolutions. Further situations will
be considered later, in geometry.

First, a rephrasing of a semi-classical result from [RD].

Theorem 11.11.1. If M is an abelian category with enough injectives, and if M
is a complex in C(M) with bounded below cohomology, then M has a K-injective
resolution M → I with inf(I) = inf(H(M)).

This implies:

Corollary 11.11.2. If M is an abelian category with enough injectives, then C+(M)
has enough K-injectives.

Next a more recent result (from around 1990).

Theorem 11.11.3. Let A be any DG ring. The category C(A) has enough K-
injectives.

Here are two existence results for K-projective resolutions. First, a rephrasing
of a semi-classical result from [RD].

Theorem 11.11.4. If M is an abelian category with enough projectives, and if M
is a complex in C(M) with bounded above cohomology, then M has a K-projective
resolution P →M with sup(P ) = sup(H(M)).

This implies:

Corollary 11.11.5. If M is an abelian category with enough injectives, then C−(M)
has enough K-projectives.

Finally a more recent result (from around 1990).

Theorem 11.11.6. Let A be any DG ring. The category C(A) has enough K-
projectives.
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There are notions of K-flat and K-flasque DG modules. We will talk about them
in details when we study derived categories in geometry.

comment: to here in class 9 Nov 2016
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12. Derived Bifunctors

In this section we extend the theory of derived functors to the setting of bifunc-
tors, and study the important special cases of the Hom and tensor bifunctors.

12.1. DG Bifunctors. We had already talked about bifunctors in Subsection 1.6.
That was for categories without further structure. Here we will consider K-linear
DG categories, and matters become more complicated.

Definition 12.1.1. Let C1, C2 and D be K-linear categories. A K-linear bifunctor
F : C1×C2 → D

is a bifunctor such that for any objects Mi, Ni ∈ Ci the function
F : HomC1(M1, N1)×HomC2(M2, N2)→ HomD

(
F (M1,M2), F (N1, N2)

)
is K-bilinear.

Thus, a linear functor F induces, for every quadruple of objects, a K-linear
homomorphism
(12.1.2)

F : HomC1(M1, N1)⊗K HomC2(M2, N2)→ HomD
(
F (M1,M2), F (N1, N2)

)
.

We now upgrade this operation to the DG level. In order to treat sign issues
properly we make the next definition.

Definition 12.1.3. Let C1 and C2 be K-linear DG categories. We define the DG
category C1⊗K C2 as follows: the set of objects is

Ob(C1⊗K C2) := Ob(C1)×Ob(C2).
For any pair of objects

(M1,M2), (N1, N2) ∈ Ob(C1⊗K C2),
i.e. Mi, Ni ∈ Ob(Ci), we let

HomC1⊗K C2

(
(M1,M2), (N1, N2)

)
:= HomC1(M1, N1)⊗K HomC2(M2, N2).

The formula for the composition is this: given morphisms
φi ∈ HomCi(Li,Mi)di

and
ψi ∈ HomCi(Mi, Ni)ei

for i = 1, 2, their tensors are morphisms
φ1 ⊗ φ2 ∈ HomC1⊗K C2

(
(L1, L2), (M1,M2)

)
and

ψ1 ⊗ ψ2 ∈ HomC1⊗K C2

(
(M1,M2), (N1, N2)

)
.

Any morphism in C1⊗K C2 is a sum of such tensors. We define the composition to
be

(ψ1 ⊗ ψ2) ◦ (φ1 ⊗ φ2) := (−1)d1 · e2 · (ψ1 ◦ φ1)⊗ (ψ2 ◦ φ2)

∈ HomC1⊗K C2

(
(L1, L2), (N1, N2)

)d1+d2+e1+e2
.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Example 12.1.4. Suppose C1 and C2 are single-object K-linear DG categories.
Then C1⊗K C2 is also a single-object K-linear DG category. Denoting this single
object by ∗, as the topologists like to do, the endomorphism DG rings satisfy

(C1⊗K C2)(∗) = C1(∗)⊗K C2(∗).
See Examples 3.1.7 and 3.3.9.

DG functors between DG categories were introduced in Definition 3.5.1.

Definition 12.1.5. Let C1, C2 and D be K-linear DG categories. A K-linear DG
bifunctor

F : C1×C2 → D
is, by definition, a K-linear DG functor

F : C1⊗K C2 → D,
where C1⊗K C2 is the DG category from Definition 12.1.3.

Warning: due to the signs that odd morphisms acquire, a DG bifunctor F is not
a K-linear bifunctor in the sense of Definition 12.1.1. Still, the induced functors on
the strict subcategories

Str(F ) : Str(C1)× Str(C2)→ Str(D)
and on the homotopy categories

Ho(F ) : Ho(C1)×Ho(C2)→ Ho(D)
are genuine K-linear bifunctors.

comment: Definition 12.1.6 and ?? belong in Section 3

We need to talk about contravariant DG functors.

Definition 12.1.6. Let C and D be DG categories. A contravariant K-linear DG
functor

F : C→ D
is, by definition, a K-linear DG functor

F : Cop → D .

Here Cop is the DG category from Definition 3.8.2.

To make things explicit, a contravariant DG functor F amounts to a function
F : Ob(C)→ Ob(D),

together with a strict homomorphism of DG K-modules
F : HomC(M,N)→ HomD

(
F (N), F (M)

)
for and pair of objects M,N , such that for any morphisms φ ∈ HomC(L,M)d and
ψ ∈ HomC(M,N)e there is equality

F (ψ ◦ φ) = (−1)d · e ·F (φ) ◦ F (ψ) ∈ HomD
(
F (N), F (L)

)d+e
.

And of course F (idM ) = idF (M). Once more, such F is not a genuine contravariant
functor (because of the signs), but it induces genuine contravariant functors between
the strict categories and between the homotopy categories.
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Example 12.1.7. Let C be a DG category. The canonical operation op : Cop → C
is a contravariant DG functor.

The definitions above tell us what is a DG bifunctor that is contravariant in the
first or the second argument. They also tell us how to treat compositions of con-
travariant DG functors or bifunctors. And they tell us what are morphisms between
contravariant DG functors and between DG bifunctors. The rule is always to write
the opposite category in the first argument whenever there is a contravariance, and
that puts us in the covariant situation.

Here are the two main examples of DG bifunctors. We give each of them in the
commutative version and the noncommutative version (which is very confusing!).

Example 12.1.8. Consider a commutative ring A. The category of complexes of
A-modules is the DG category C(A), and we take C1 = C2 = D := C(A). For any
pair of objects M1,M2 ∈ C(A) there is an object

F (M1,M2) := M1 ⊗AM2 ∈ C(A).

This is the usual tensor product of complexes. We define the action of F on mor-
phisms as follows: given

φi ∈ HomC(A)(Mi, Ni)ki = HomA(Mi, Ni)ki ,

we let
F (φ1, φ2) := φ1 ⊗ φ2 ∈ HomA

(
M1 ⊗AM2, N1 ⊗A N2

)k1+k2

= HomC(A)
(
F (M1,M2), F (N1, N2)

)k1+k2
.

The result is a DG bifunctor

F : C(A)× C(A)→ C(A).

Example 12.1.9. Consider DG rings A0, A1, A2 (possibly noncommutative, but
K-central). Let us define the new DG rings Bi := Ai−1 ⊗K A

op
i for i = 1, 2. There

are corresponding DG categories Ci := C(Bi). An object of Ci is just a DG Ai−1-
Ai-bimodule. Let us also define the DG ring C := A0⊗KA

op
2 and the DG category

D := C(C). For any pair of objects M1 ∈ C1 and M2 ∈ C2 there is a DG K-module

F (M1,M2) := M1 ⊗A1 M2;

see Definition 3.3.21. This has a canonical DG C-module structure:

(a0 ⊗ a2) · (m1 ⊗m2) := (−1)j2 · (k1+k2) · (a0 ·m1)⊗ (m2 · a2)

for elements ai ∈ Ajii and mi ∈Mki
i . In this way F (M1,M2) becomes an object of

D. We define the action of F on morphisms as follows: given

φi ∈ HomCi(Mi, Ni)ki = HomBi(Mi, Ni)ki ,

we let
F (φ1, φ2) := φ1 ⊗ φ2 ∈ HomD

(
F (M1,M2), F (N1, N2)

)k1+k2
.

The result is a DG bifunctor

F : C1×C2 → D .

Compare this example to the one-sided construction in Example 4.6.2.
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Example 12.1.10. Again we take a commutative ring A, but now our bifunctor
F arises from Hom, and so there is contravariance in the first argument. In order
to rectify this we work with the opposite category in the first argument. (A certain
amount of confusion is unavoidable here!) So we define the DG categories C1 :=
C(A)op and C2 = D := C(A). For any pair of objects M1,M2 ∈ C(A) there is an
object

F (M1,M2) := HomA(M1,M2) ∈ C(A).
This is the usual Hom complex. We define the action of F on morphisms as follows:
given

φ1 ∈ HomC1(M1, N1)k1 = HomC(A)op(M1, N1)k1 = HomA(N1,M1)k1

and
φ2 ∈ HomC2(M2, N2)k2 = HomC(A)(M2, N2)k2 = HomA(M2, N2)k2

we let
F (φ1, φ2) := Hom(φ1, φ2) ∈ HomA

(
HomA(M1,M2),HomA(N1, N2)

)k1+k2

= HomD
(
F (M1,M2), F (N1, N2)

)k1+k2
.

The result is a DG bifunctor
F : C1×C2 → D .

Example 12.1.11. Consider DG rings A,A1, A2 (possibly noncommutative, but
K-central). There is DG bifunctor

F := HomA(−,−) : C(A⊗K A
op
1 )op × C(A⊗K A

op
2 )→ C(A1 ⊗K A

op
2 ).

The details here are so confusing that we just leave them out. (We will come back
to this is Section 18, when discussing noncommutative dualizing complexes).

12.2. Triangulated Bifunctors. Recall the notions of T-additive category and
pretriangulated category, from Section 5.

Suppose Let (K1,T1) and (K2,T2) are T-additive categories (linear over K).
There are two induced translation automorphism of the category K1×K2 :

T1(M1,M2) :=
(
T1(M1),M2

)
and

T2(M1,M2) :=
(
M1,T2(M2)

)
These two functors commute: T2 ◦T1 = T1 ◦T2.

Definition 12.2.1. Let (K1,T1), (K2,T2) and (L,T) be T-additive categories. A
T-additive bifunctor

(F, τ1, τ2) : (K1,T1)× (K2,T2)→ (L,T)
is made up of an additive bifunctor

F : K1×K2 → L,
as in Definition 12.1.1, together with isomorphisms

τi : F ◦ Ti
'−→ T ◦F

of bifunctors K1×K2 → L. The condition is that
τ1 ◦ τ2 = −τ2 ◦ τ1,
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as isomorphism
F ◦ T2 ◦T1 = F ◦ T1 ◦T2

'−→ T ◦T ◦F.

In the next exercises we let the reader establish several operations on T-additive
bifunctors.

Exercise 12.2.2. In the situation of Definition 12.2.1, suppose
(G, τ) : (L,T)→ (L′,T′)

is a T-additive functor into a fourth T-additive category (L′,T′). Write the explicit
formula for the T-additive bifunctor

(G, τ) ◦ (F, τ1, τ2) : (K1,T1)× (K2,T2)→ (L′,T′).
This should be compared to Definition 5.1.4.

Exercise 12.2.3. In the situation of Definition 12.2.1, suppose
(F ′, τ ′1, τ ′2) : (K1,T1)× (K2,T2)→ (L,T)

is another T-additive bifunctor. Write the definition of a morphism of T-additive
bifunctors

η : (F, τ1, τ2)→ (F ′, τ ′1, τ ′2).
Use Definition 5.1.4 as a template.

Exercise 12.2.4. Give a definition of a T-additive trifunctor. Show that if F and
G are T-additive bifunctors, then G(−, F (−,−)) and G(F (−,−),−) are T-additive
trifunctors (whenever these compositions makes sense).

We now move to pretriangulated categories.

Definition 12.2.5. Let (K1,T1), (K2,T2) and (L,T) be pretriangulated categories.
A triangulated bifunctor

(F, τ1, τ2) : (K1,T1)× (K2,T2)→ (L,T)
is a T-additive bifunctor that respects the pretriangulated structure in each argu-
ment. Namely, for any distinguished triangle

L1
α1−→M1

β1−→ N1
γ1−→ T1(L1)

in K1, and any object L2 ∈ K2, the triangle

F (L1, L2) F (α1,id)−−−−−→ F (M1, L2) F (β1,id)−−−−−→ F (N1, L2) τ1◦F (γ1,id)−−−−−−−→ T(F (L1, L2))
in L is distinguished; and the same for distinguished triangles in the second argu-
ment.

The operations on triangulated bifunctors are the same as those on T-additive
bifunctors (see exercises above).

We now connect DG bifunctors and triangulated bifunctors in our favorite setup:
DG modules in abelian categories.

Setup 12.2.6. We are given central DG K-rings A1, A2, B, K-linear abelian cate-
gories M1,M2,N, and a K-linear DG bifunctor

F : C(A1,M1)× C(A2,M2)→ C(B,N)
(Definition 12.1.5).
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For any pair of objects (M1,M2), with Mi ∈ C(Ai,Mi), there are isomorphisms

(12.2.7) τi,M1,M2 : F (Ti(M1,M2)) '−→ T(F (M1,M2))
in C(B,N), arising from Definition 4.4.1. Let us make it explicit (only for i = 2,
since the case i = 1 is so similar). Fixing the object M1 we obtain a DG functor

G : C(A2,M2)→ C(B,N), G(M2) := F (M1,M2).
The isomorphism

τ2,M1,M2 : G(T2(M2)) '−→ T(G(M2))
is then

τ2,M1,M2 = tG(M2) ◦G(tM2)−1.

Lemma 12.2.8. Fix i ∈ {1, 2}. Letting the pairs of objects vary, we get an iso-
morphism

τi : F ◦ Ti
'−→ T ◦F

of additive bifunctors
Cstr(A1,M1)× Cstr(A2,M2)→ Cstr(B,N).

Proof. This is an almost immediate consequence of the fact that the little t opera-
tors are morphisms of functors (see Theorem 4.1.7(2)), �

These pass to the homotopy categories.
Theorem 12.2.9. Under Setup 12.2.6, the data

(F, τ1, τ2) : K(A1,M1)×K(A2,M2)→ K(B,N)
is a triangulated bifunctor.
Proof. The only challenge is to prove that (F, τ1, τ2) is a T-additive bifunctor; and
in that, all we have to prove is that
(12.2.10) τ1 ◦ τ2 = −τ2 ◦ τ1.
The rest hinges on single-argument considerations, that are handled in Theorems
4.4.3 and 5.4.15.

So let us prove (12.2.10). Choose a pair of objects (M1,M2). We have the
diagram
(12.2.11)

F (T1(M1),T2(M2))
F (t−1

M1
,id)

))

F (id,t−1
M2

)

uu

F (T1(M1),M2)

tF (T1(M1),M2)

��

F (t−1
M1

,id)

))

F (M1,T2(M2))

tF (M1,T2(M2))

��

F (id,t−1
M2

)

uu

T(F (T1(M1),M2))

T(F (t−1
M1

,id))
��

F (M1,M2)
tF (M1,M2)

uu

tF (M1,M2)

))

T(F (M1,T2(M2))

T(F (id,t−1
M2

))
��

T(F (M1,M2))
T(tF (M1,M2))

))

T(F (M1,M2))
T(tF (M1,M2))

uu

T(T(F (M1,M2)))
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in C(B,N). Going from top to bottom on the left edge is the morphism τ1 ◦ τ2, and
going on the right edge is the morphism τ2 ◦ τ1. The bottom diamond is trivially
commutative. The two triangles, with common vertex at F (M1,M2), are (−1)-
commutative, because t : Id → T is a degree −1 morphism of DG functors. Since
they occur on both sides, these signs cancel each other. Finally, the top diamond
is (−1)-commutative, because

(t−1
M1
, id) ◦ (id, t−1

M2
) = (t−1

M1
, t−1
M2

) = −(id, t−1
M2

) ◦ (t−1
M1
, id).

�

comment: The material below should be moved to Section 5

We now address the contravariant case. Let K be a pretriangulated category. In
Proposition 5.2.8 we explained how to make the opposite category Kop pretriangu-
lated. This is used in the next two definitions.

Definition 12.2.12. Suppose K and L are pretriangulated categories. A con-
travariant triangulated functor F : K → L is, by definition, a triangulated functor
F : Kop → L.

Let us provide an explicit formula. For this we need to bring in the translation
functors TK and TL, and the translation isomorphism τ . Using Proposition 5.2.8
we see that the triangulated property of F is this: for any distinguished triangle

L
α−→M

β−→ N
γ−→ TK(L)

in K, the triangle

F (N) F (β)−−−→ F (M) F (α)−−−→ F (L)
τN◦F (−T−1

K (γ))
−−−−−−−−−−−−→ TL(F (N))

is a distinguished triangle in L.
For bifunctors there are several options for contravariance.

Definition 12.2.13. Let K1, K2 and L be pretriangulated categories. A trian-
gulated bifunctor that is contravariant in the first or the second argument is, by
definition, a triangulated bifunctor

F : K♦1
1 ×K♦2

2 → L

as in Definition 12.2.5, where the symbols ♦1 and ♦2 are either empty or op, as
the case may be.

This is nice and clean at first, until we try to employ Theorem 12.2.9 – because
we still don’t know anything useful about the pretriangulated category C(A,M)op.
This is our next task.

comment: following stuff should be moved to an earlier section

Lemma 12.2.14. Let A be a DG ring and M an abelian category. There is a
canonical isomorphism of DG categories

G : C(A,M)op '−→ C(Aop,Mop).
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Proof. In [KaSc1, Remark 1.8.11] there is an explicit formula for an isomorphism of
categories G : C(M)op '−→ C(Mop). It goes like this. For a complexM = {M i}i∈Z ∈
C(M) they define the complex

G(M) = {G(M)i}i∈Z ∈ C(Mop)
to have components G(M)i := op(M−i). The differential dG(M) = {diG(M)} is as
follows. The morphism

diG(M) : G(M)i → G(M)i+1

is
(−1)−i−1 · op(d−i−1

M ) : op(M−i)→ op(M−i−1).
It was not mentioned in [KaSc1], but G is in fact an isomorphism of DG cate-

gories (i.e. a DG functor that is an isomorphism).
comment: this needs to be verified !

For any object M ∈ C(M), its endomorphism DG ring in C(M)op ∼= C(Mop)
is the opposite of its endomorphism DG ring in C(M). Hence there is a DG ring
homomorphism from Aop to it. This makes G(M) into a DG Aop-module in Mop.
Lastly we need to check that this Aop-module structure is functorial – But that is
straightforward. �

comment: to here lecture 16 Nov 2016

Remark 12.2.15. Unlike what one might be tempted to think, the lemma above
does not say that C(A)op, the opposite DG category of the category of DG A-
modules C(A), is equivalent to the category C(Aop) of right DG A-modules. What
it does say is that

C(A)op = C(A,ModK)op ∼= C(Aop, (ModK)op).
On the other hand,

C(Aop) = C(Aop,ModK).
But there is never (except for the trivial ring K) an equivalence between (ModK)op

and ModK.

Since the homotopy category of C(A,M)op is K(A,M)op, the lemma above gives
rise to an isomorphism of additive categories
(12.2.16) Ḡ : K(A,M)op → K(Aop,Mop).

Now K(A,M)op is a pretriangulated category, by virtue of being the opposite
of the pretriangulated category K(A,M). And K(Aop,Mop) is a pretriangulated
category on its own.

Lemma 12.2.17. There is an isomorphism of additive functors

τ : Ḡ ◦ TK(A,M)op
'−→ TK(Aop,Mop) ◦ Ḡ

such that
(Ḡ, τ) : K(A,M)op → K(Aop,Mop).

is a triangulated functor.
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Proof.
comment: I hope it is true. Needs a proof!

�

Corollary 12.2.18. Let

F : C(A1,M1)♦1 × C(A2,M2)♦1 → C(B,N)

be a DG bifunctor, where symbols ♦1 and ♦2 are either empty or op. Then the
induced bifunctor on the homotopy categories

F : K(A1,M1)♦1 ×K(A2,M2)♦1 → K(B,N)

is a triangulated bifunctor

Proof. Using Lemma 12.2.14 we can get rid of the symbols ♦i. Then we apply
Theorem 12.2.9 to get a triangulated bifunctor, including the data of translation
isomorphisms τ1 and τ2. Finally we use Lemma 12.2.17 to re-insert the symbols
♦i. �

12.3. Right Derived Bifunctors. We now tackle localized categories. Here, for
the sake of simplicity, we shall mostly ignore the translation functors (enough was
said about them in the previous subsection).

Setup 12.3.1. The following are given:
(1) Pretriangulated categories K1, K2 and E.
(2) A triangulated bifunctor F : K1×K2 → E.
(3) Denominator sets of cohomological origin S1 ⊆ K1 and S2 ⊆ K2.

comment: merge setup with next def?

The morphisms in Si, for i = 1, 2, are referred to as quasi-isomorphisms. The
localized category Di := (Ki)Si is pretriangulated, and the localization functor
Qi : Ki → Di is triangulated. On the product categories we get a functor

Q1×Q2 : K1×K2 → D1×D2 .

In the next definition we use the 2-categorical notation from Subsection 8.1.

Definition 12.3.2. Under Setup 12.3.1, a right derived bifunctor of F is a pair
(RF, η), where

RF : D1×D2 → E
is a triangulated bifunctor, and

η : F ⇒ RF ◦ (Q1×Q2)

is a morphism of triangulated bifunctors, such that the following universal property
holds:

(R) Given any pair (G, θ), consisting of a triangulated bifunctor

G : D1×D2 → E
and a morphism of triangulated bifunctors θ : F ⇒ G ◦ (Q1×Q2), there
is a unique morphism of triangulated functors µ : RF ⇒ G such that
θ = (µ ◦ idQ1×Q2) ∗ η.
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Here is a diagram showing property (R):.

(12.3.3) K1×K2
F //

Q1×Q2

��

E

D1×D2

RF

<<

η

��

G

LL

θ

��
µ ��

Proposition 12.3.4. If a right derived bifunctor exists, then it is unique up to a
unique isomorphism.

Proof. This is just like the proof of Proposition 8.3.2. We leave the small changes
up to the reader. �

Existence in general is like Theorem 8.3.3, but more complicated.

Definition 12.3.5. Let K be a pretriangulated category, let S ⊆ K be a denomina-
tor set of cohomological origin, and let J ⊆ K be a full pretriangulated subcategory.
We refer to the morphisms in S as quasi-isomorphisms.

(1) Let M ∈ K. A right J-resolution of M is a quasi-isomorphism ρ : M → I
to an object I ∈ J.

(2) We say that K has enough right J-resolutions if every object M ∈ K admits
a right J-resolution.

comment: this def should be moved to Sec 8

Theorem 12.3.6. Under Setup 12.3.1,
comment: change wording - no setup?
assume there are full pretriangulated subcategories J1 ⊆ K1 and J2 ⊆ K2 with these
two properties:

(a) Acyclicity: if φ1 : I1 → J1 is a quasi-isomorphism in J1 and φ2 : I2 → J2
is a quasi-isomorphism in J2, then

F (φ1, φ2) : F (I1, I2)→ F (J1, J2)

is an isomorphism in E.
(b) Abundance: K1 has enough right J1-resolutions, and K2 has enough right

J2-resolutions.
Then the right derived bifunctor

(RF, η) : D1×D2 → E

exists. Moreover, for any objects I1 ∈ J1 and I2 ∈ J2 the morphism

ηI1,I2 : F (I1, I2)→ RF (I1, I2)

in E is an isomorphism.

184



Derived Categories | Amnon Yekutieli 24 June 2017 | part2_170601.tex

In applications we will see that either J1 = K1 or J2 = K2; namely we will only
need to resolve in the second or in the first argument, respectively.

The proof of the theorem requires some more work on 2-categorical material. We
will therefore interrupt our discussion, and return to the proof of Theorem 12.3.6
in Subsection 12.5.

12.4. Abstract Derived Functors.

comment: this subsec should be moved to Sec 6, just after Subsec 6.2 ?

comment: This subsection, and possibly also subsection 8.1, should be moved
to Section 6, just after Subsec 6.2.

Here we deal with right and left derived functors in an abstract setup (as opposed
to the triangulated setup).

We first introduce functor categories; these will extend our understanding of
2-categorical ideas. All set theoretical issues (sizes of sets) are neglected; the justi-
fication is in Subsection 1.1.

Definition 12.4.1. Given categories C and D, let Fun(C,D) be the category whose
objects are the functors F : C → E, and the morphisms are the morphisms of
functors η : F → F ′, i.e. the natural transformations.

Remark 12.4.2. In the full-fledged 2-category framework, there is the 2-category
Cat. Its objects are the categories. The 1-morphisms are the functors, and the 2-
morphisms are the morphisms between functors. Thus using the categories
Fun(C,D) we can talk about part of the structure of Cat, without having to worry
about the whole 2-category story.

Suppose G : C′ → C and H : D→ D′ are functors. There is an induced functor
(12.4.3) F(G,H) : Fun(C,D)→ Fun(C′,D′)
defined by F(G,H)(F ) := H ◦ F ◦G.

Proposition 12.4.4. If G and H are equivalences, then the functor F(G,H) in
(12.4.3) is an equivalence.

Exercise 12.4.5. Prove Proposition 12.4.4.

Recall that for a category C and a multiplicatively closed set of morphisms S ⊆ C
we denote by CS the localization. It comes with the localization functor Q : C→ CS.
See Definition 6.1.2.

For a category E let E× ⊆ E be the category of isomorphisms; it has all the
objects, but its morphisms are just the isomorphisms in E.

Definition 12.4.6. Given categories C and E, a multiplicatively closed set of mor-
phisms S ⊆ C, and a functor F : C → E, we say that F is localizable to S if
F (S) ⊆ E×. We denote by FunS(C,E) the full subcategory of Fun(C,E) on the
localizable functors.

Here is a useful formulation of the universal property of localization. Recall that
a functor is an isomorphism of categories iff it is an equivalence that is bijective on
sets of objects.
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Proposition 12.4.7. Let C and E be categories, and let S ⊆ C be a multiplicatively
closed set of morphisms. Then the functor

F(Q, IdE) : Fun(CS,E)→ FunS(C,E)
is an isomorphism of categories.

Exercise 12.4.8. Prove Proposition 12.4.7.

By definition a bifunctor F : C×D→ E is a functor from the product category
C×D. See Subsection 1.6. It will be useful to retain both meanings; so we shall
write
(12.4.9) BiFun(C×D,E) := Fun(C×D,E),
where in the first expression we recall that C×D is a product.

The next proposition describes bifunctors in a non-symmetric fashion.

Proposition 12.4.10. Let C, D and E be categories. There is an isomorphism of
categories

Ξ : Fun(C×D,E)→ Fun(C,Fun(D,E))
with the following formula: for a functor F : C×D→ E, the functor

Ξ(F ) : C→ Fun(D,E))
is Ξ(F )(C) := F (C,−).

Exercise 12.4.11. Prove Proposition 12.4.10.

Proposition 12.4.12. Let C and D be categories, and let S ⊆ C and T ⊆ D be
multiplicatively closed sets of morphisms. Then the canonical functor

Θ : (C×D)S×T → CS×DT

is an isomorphism of categories.

Proof. The functor Θ is the identity on objects. Thus Θ is an equivalence iff it is
an isomorphism. We will produce a functor

G : CS×DT → (C×D)S×T

that is inverse to Θ.
Consider another category E. Invoking Propositions 12.4.10 and 12.4.7 we get a

sequence of isomorphisms of categories
Fun(CS×DT,E)→ Fun(CS,Fun(DT,E))→ FunS(C,FunT(D,E)).

A short examination shows that the isomorphism Ξ restricts to an isomorphism on
the full subcategories

Ξ : FunS×T(C×D,E)→ FunS(C,FunT(D,E)).
Thus we get a commutative diagram of categories

(12.4.13) Fun(CS×DT,E) //

))

FunS×T(C×D,E)

��

Fun((C×D)S×T,E)oo

uu

Fun(C×D,E)

in which the horizontal arrows are isomorphisms of categories.
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Now we take E := (C×D)S×T, and look at the identity functor IdE as an object
in the rightmost category in diagram (12.4.13). There is a unique object G in the
leftmost category. It is the inverse of Θ we are looking for. �

Denominator sets were introduced in Definition 6.2.14.

Proposition 12.4.14. In the situation of Proposition 12.4.12, the following con-
ditions are equivalent:

(i) The multiplicatively closed sets S ⊆ C and T ⊆ D are left (resp. right)
denominator sets.

(i) The multiplicatively closed set S×T ⊆ C×D is a left (resp. right) denom-
inator set.

Exercise 12.4.15. Prove Proposition 12.4.14.

Exercise 12.4.16. Assume the categories C, D and E are K-linear. Let’s denote by
AdFun(C,D) the category of K-linear functors F : C→ D, and by AdBiFun(C×D,E)
the category of K-linear bifunctors F : C×D→ E. Give linear versions of Proposi-
tions 12.4.4, 12.4.7, 12.4.10 and 12.4.12.

comment: to here lecture 23 Nov 2016

comment: There is a mistake in the proof of Thm 8.3.3. The problem:
Lemma 8.3.13. Use Thm 12.4.20 instead.

Definition 12.4.17. Consider a category K and a multiplicatively closed set of
morphisms S ⊆ K, with localization functor Q : K → KS. Let F : K → E be a
functor. A right derived functor of F with respect to S is a pair (RF, η), where

RF : KS → E
is a functor, and

η : F ⇒ RF ◦Q
is a morphism of functors, such that the following universal property holds:

(R) Given any pair (G, θ), consisting of a functor G : KS → E and a morphism of
functors θ : F ⇒ G◦Q, there is a unique morphism of functors µ : RF ⇒ G
such that θ = (µ ◦ idQ) ∗ η.

Here is a 2-diagram showing property (R):

(12.4.18) K F //

Q

��

E

KS

RF

==

η

��

G

MM

θ
��

µ � 

Proposition 12.4.19. If a right derived functor (RF, η) exists, then it is unique,
up to a unique isomorphism. Namely, if (G, θ) is another right derived functor
of F , then there is a unique isomorphism of functors µ : RF '=⇒ G such that
θ = (µ ◦ idQ) ∗ η.
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Proof. Despite the apparent complication of the situation, the usual argument for
uniqueness of universals (here it is a universal 1-morphism) applies. It shows that
the morphism µ from condition (R) is an isomorphism. �

Here is a rather general existence result.

Theorem 12.4.20. In the situation of Definition 12.4.17, assume there is a full
subcategory J ⊆ K such the following three conditions hold:

(a) The multiplicatively closed set S is a left denominator set in K.
(b) For every object M ∈ K there is a morphism ρ : M → I in S, with target

I ∈ J.
(c) If ψ is a morphism in S∩ J, then F (ψ) is an isomorphism in E.

Then the right derived functor

(RF, η) : KS → E

exists. Moreover, for any object I ∈ J the morphism

ηI : F (I)→ RF (I)

in E is an isomorphism.

This same result is [KaSc2, Proposition 7.3.2]. However their notation is differ-
ent: what we call “left denominator set”, they call “right multiplicative system”.

We need a definition and a few lemmas before giving the proof of the theorem.

Definition 12.4.21. In the situation of Theorem 12.4.20, by a system of right
J-resolutions we mean a pair (I, ρ), where I : Ob(K) → Ob(J) is a function, and
ρ = {ρM}M∈Ob(K) is a collection of morphisms ρM : M → I(M) in S. Moreover, if
M ∈ Ob(J), then I(M) = M and ρM = idM .

Property (b) of Theorem 12.4.20 guarantees that a system of right J-resolutions
(I, ρ) exists.

Let us introduce some new notation that will make the proofs more readable:

(12.4.22) K′ := J, S′ := J∩ S, D := KS and D′ := K′S′ .

The inclusion functor is U : K′ → K, and its localization is V : D′ → D. These sit
in a commutative diagram

(12.4.23) K′ U //

Q′
��

K

Q
��

D′ V // D

Lemma 12.4.24. The multiplicatively closed set S′ is a left denominator set in K′.

Proof. We need to verify conditions (LD1) and (LD2) in Definition 6.2.14.

(LD1): Given morphisms a′ : L′ → N ′ in K′ and s′ : L′ → M ′ in S′, we must find
morphisms b′ : M ′ → K ′ in K′ and t′ : N ′ → K ′ in S′, such that t′ ◦ a′ = b′ ◦ s′.
Because S ⊆ K satisfies this condition, we can find morphisms b : M ′ → K in K
and t : N ′ → K in S such that t ◦ a′ = b ◦ s′. There is a morphism ρ : K → K ′

in S with target K ′ ∈ K′. Then the morphisms t′ := ρ ◦ t and b′ := ρ ◦ b satisfy
t′ ◦ a′ = b′ ◦ s′, and t′ ∈ S′.
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(LD2): Given morphisms a′, b′ : M ′ → N ′ in K′ and s′ : L′ →M ′ in S′, that satisfy
a′ ◦s′ = b′ ◦s′, we must find a morphism t′ : N ′ → K ′ in S′ such that t′ ◦a′ = t′ ◦ b′.
Because S ⊆ K satisfies this condition, we can find a morphism t : N ′ → K in S
such that t ◦ a′ = t ◦ b′. There is a morphism ρ : K → K ′ in S with target K ′ ∈ K′.
Then the morphism t′ := ρ ◦ t has the required property. �

Lemma 12.4.25. The the functor V : D′ → D is an equivalence.

Proof. This is the same as the proof of Proposition 7.2.5 with condition (r).
comment: In Proposition 7.2.5 the labels (r) and (l) have to be flipped. (l)
should go with “left denominator”... After the flipping, above has to be “with
condition (l)”.

�

Lemma 12.4.26. Suppose a system of right K′-resolutions (I, ρ) has been chosen.
Then the function I : Ob(K) → Ob(K′) extends uniquely to a functor I : D → D′,
such that I◦V = IdD′ , and ρ : IdD ⇒ V ◦I is an isomorphism of functors. Therefore
the functor I is a a quasi-inverse of V .

The relevant 2-diagram is this:

K′ Q′
//

U

��

D′

V

  

Id // D′

K Q
// D

I

OO

Id
//

ρ

KS

D

I

OO

Recall that in a 2-diagram, an empty polygon means it is commutative, namely it
can be filled with id=⇒.

Proof. Consider a morphism ψ : M → N in D. Since V : D′ → D is an equivalence,
and since V (I(M)) = I(M) and V (I(N)) = I(N), there is a unique morphism

I(ψ) : I(M)→ I(N)

in D′ satisfying

(12.4.27) V (I(ψ)) := Q(ρN ) ◦ ψ ◦Q(ρM )−1.

in D.
Let us check that I : D → D′ is really a functor. Suppose φ : L → M and

ψ : M → N are morphisms in D. Then

V
(
I(ψ) ◦ I(φ)

)
= V (I(ψ)) ◦ V (I(φ))

=
(
Q(ρN ) ◦ ψ ◦Q(ρM )−1) ◦ (Q(ρM ) ◦ φ ◦Q(ρL)−1)

= Q(ρN ) ◦ (ψ ◦ φ) ◦Q(ρL)−1

= V
(
I(ψ ◦ φ)

)
.

It follows that I(ψ) ◦ I(φ) = I(ψ ◦ φ).
Because ρM ′ : M ′ → I(M ′) is the identity for any object M ′ ∈ K′, we see that

there is equality I ◦ V = IdD′ . By the defining formula (12.4.27) of I(ψ) we have a
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commutative diagram

V (I(M))
V (I(ψ))

// V (I(M))

M
ψ

//

Q(ρM )

OO

N

Q(ρN )

OO

in D. Hence ρ : IdD ⇒ V ◦ I is an isomorphism of functors. �

Proof of Theorem 12.4.20. Diagram (12.4.23) induces a commutative diagram of
categories:

(12.4.28) Fun(K′,E) Fun(K,E)
F(U,Id)

oo

FunS′(K′,E)

f.f. inc

OO

FunS(K,E)

f.f. inc

OO

equiv

F(U,Id)
oo

Fun(D′,E)

F(Q′,Id) isom

OO

Fun(D,E)
F(V,Id)

equiv
oo

F(Q,Id)isom

OO

The vertical arrows marked “f.f. incl” are fully faithful inclusions by definition. Ac-
cording to Proposition 12.4.7 the vertical arrows marked “isom” are isomorphisms
of categories. And by Lemma 12.4.25 the arrow F(V, Id) is an equivalence. As a
consequence, the arrow F(U, Id) is also an equivalence.

Step 1. We are given a functor F that is an object of the category in the upper right
corner of diagram (12.4.28). Let F ′ := F ◦ U ; it lives in the the upper left corner
of the diagram. But condition (c) says that F ′ actually belongs to the middle left
term in diagram (12.4.28). Because the arrow F(Q′, Id) is an isomorphism, there is
a unique functor RF ′ that is an object of the category in the bottom left of diagram
(12.4.28). It satisfies RF ′ ◦Q′ = F ′. See next commutative diagram.

(12.4.29) K′ F ′ //

Q′
��

E

D′
RF ′

::

Let η′ := idF ′ . We claim that the pair (RF ′, η′) is a right derived functor of F ′.
Indeed, suppose we are given a pair (G′, θ′), where G′ is a functor in the bottom
left corner of diagram (12.4.28), and θ′ : F ′ ⇒ G′ ◦ Q′ is a morphism in the top
corner of that diagram. See the 2-diagram (12.4.31). Because the function

(12.4.30) HomFun(D′,E)(RF ′, G′)→ HomFun(K′,E)(F ′, G′ ◦Q′)

is bijective – this is the left edge of diagram (12.4.28) – there is a unique morphism
µ′ : RF ′ ⇒ G′ that goes to θ′ under (12.4.30).
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(12.4.31) K′ F ′ //

Q′

��

E

D′

RF ′

<<

η′

��

G′

MM

θ′

��
µ′ � 

Step 2. Now we choose a system of right K′-resolutions (I, ρ), in the sense of
Definition 12.4.21. By Lemma 12.4.26 we get an equivalence of categories I : D→
D′, that is a quasi-inverse to V , and an isomorphism of functors ρ : IdD

'−→ V ◦ I.
See the following 2-diagram (the solid arrows).

(12.4.32) K′ Q′
//

U

��

D′

V

  

Id // D′ RF ′ // E

K
Q

// D

I

OO

Id
//

ρ

KS

D

I

OO

RF

??

Define the functor
(12.4.33) RF := RF ′ ◦ I : D→ E .
It is the dashed arrow in diagram (12.4.32). So the functor RF lives in the bottom
right corner of (12.4.28), and RF ′ = RF ◦ V .
Step 3. We will now produce a morphism of functors η : F ⇒ RF ◦ Q. This
morphism should live in the category upper right corner of diagram (12.4.28).

Take an object M ∈ K. There is a morphism ρM : M → I(M) in S, and the
target I(M) is an object of K′. Define the morphism
(12.4.34) ηM := F (ρM ) : F (M)→ F (I(M)) = RF (M)
in E. We must prove that the collection of morphisms η = {ηM}M∈K is a morphism
of functors (i.e. a natural transformation). Suppose φ : M → N is a morphism in
K. We have to show that the diagram

(12.4.35) F (M)
F (φ)

//

ηM

��

F (N)

ηN

��

RF (M)
RF (Q(φ))

// RF (N)

in E is commutative.
Now by definition of RF there is a commutative diagram

(12.4.36) RF (M)
RF (Q(φ))

//

=
��

RF (N)

=
��

RF ′(I(M))
RF ′(I(Q(φ)))

// RF ′(I(N))
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in E. Lemma 12.4.24 tells us that the morphism I(Q(φ)) in D′ can be written as a
left fraction

I(Q(φ)) = Q′(ψ1)−1 ◦Q′(ψ0)
of morphisms ψ0 ∈ K′ and ψ1 ∈ S′. We get a diagram

(12.4.37) M
φ

//

ρM

��

N

ρN

��

I(M)
I(Q(φ))

//

ψ0
��

I(N)

ψ1
��

J

where the solid arrows are in the category K, the dashed arrow is in D′, and the
object J belongs to K′. This diagram might fail to be commutative; but after
applying Q to it, it becomes a commutative diagram in D. By condition (LO4) of
the left Ore localization Q : K→ D, there is a morphism ψ : J → L in S such that

ψ ◦ ψ0 ◦ ρM = ψ ◦ ψ1 ◦ ρN ◦ φ

in K. There is the morphism ρL : L→ I(L) in S, whose target I(L) belongs to K′.
Thus, after replacing the object J with I(L), the morphism ψ0 by ρL ◦ ψ ◦ ψ0, and
the morphism ψ1 by ρL ◦ψ ◦ψ1, and noting that the latter is a morphism in S′, we
can now assume that the solid diagram (12.4.37) in K is commutative.

Applying the functor F to the solid commutative diagram (12.4.37) we obtain
the solid commutative diagram

(12.4.38) F (M)
F (φ)

//

F (ρM )

��

F (N)

F (ρN )

��

F ′(I(M))
RF ′(I(Q(φ)))

//

F ′(ψ0)
##

F ′(I(N))

F ′(ψ1)
{{

F ′(J)

in E. But the morphism F ′(ψ1) is an isomorphism in E; and

RF ′(I(Q(φ))) = F ′(ψ1)−1 ◦ F ′(ψ0)

in E. It follows that the top square in (12.4.38) is commutative. Therefore, making
use of the commutative diagram (12.4.36), we conclude that diagram (12.4.35) is
commutative. So the proof that η is a natural transformation is done.

Step 4. It remains to prove that the pair (RF, η) is a right derived functor of F .
Suppose (G, θ) is a pair, where G is a functor in the category in bottom right corner
of diagram (12.4.28), and θ : F ⇒ G ◦ Q is a morphism in the top right corner of
the diagram. We are looking for a morphism µ : RF ⇒ G in the bottom right
category in diagram (12.4.28) for which θ = (µ ◦ idQ) ∗ η. Let G′ := G ◦ V , and let
θ′ : F ′ ⇒ G′ ◦Q′ be the morphism in the top left corner of (12.4.28) corresponding
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to θ. Because of the equivalence F(V, Id), finding such µ is the same as finding a
morphism µ′ : RF ′ ⇒ G′ in the bottom left category in diagram (12.4.28), satisfying
(12.4.39) θ′ = (µ′ ◦ idQ′) ∗ η′.

Finally, by step 1 the pair (RF ′, η′) is a right derived functor of F ′. This says
that there is a unique morphism µ′ satisfying (12.4.39). �

Now to left derived functors.

Definition 12.4.40. Consider a category K and a multiplicatively closed set of
morphisms S ⊆ K, with localization functor Q : K → KS. Let F : K → E be a
functor. A left derived functor of F with respect to S is a pair (LF, η), where

LF : KS → E
is a functor, and

η : LF ◦Q⇒ F

is a morphism of functors, such that the following universal property holds:
(L) Given any pair (G, θ), consisting of a functor G : KS → E and a morphism of

functors θ : G◦Q⇒ F , there is a unique morphism of functors µ : G⇒ LF
such that θ = η ∗ (µ ◦ idQ).

Here it is in a 2-diagram:

K F //

Q

��

E

KS

LF

==

η

KS

G

MM
θ

OW

µ

X`

Proposition 12.4.41. If a left derived functor (LF, η) exists, then it is unique,
up to a unique isomorphism. Namely, if (G, θ) is another right derived functor
of F , then there is a unique isomorphism of functors µ : G '=⇒ LF such that
θ = η ∗ (µ ◦ idQ).

The proof is the same as that of Proposition 12.4.19, only some arrows have to
be reversed.

Theorem 12.4.42. In the situation of Definition 12.4.40, assume there is a full
subcategory P ⊆ K such the following three conditions hold:

(a) The multiplicatively closed set S is a right denominator set in K.
(b) For every object M ∈ K there is a morphism ρ : P → M in S, with source

P ∈ P.
(c) If ψ is a morphism in P∩S, then F (ψ) is an isomorphism in E.

Then the left derived functor
(LF, η) : KS → E

exists. Moreover, for any object P ∈ P the morphism
ηP : LF (P )→ F (P )

in E is an isomorphism.
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The proof is the same as that of Theorem 12.4.20, only some arrows have to be
reversed.

For reference we give the next definition.

Definition 12.4.43. In the situation of Theorem 12.4.42, by a system of left P-
resolutions we mean a pair (P, ρ), where P : Ob(K) → Ob(P) is a function, and
ρ = {ρM}M∈Ob(K) is a collection of morphisms ρM : P (M)→M in S. Moreover, if
M ∈ Ob(P), then P (M) = M and ρM = idM .

Property (b) of Theorem 12.4.42 guarantees that a system of left P-resolutions
(P, ρ) exists.

12.5. Right Derived Bifunctors (continued).
comment: reorganize. no splitting of this material

After the interlude on general categories of functors, we return to the triangulated
setting.

comment: proof of Thm 8.3.3 has to be fixed!!

comment: the lemmas below should be imported to Subsec 8.3 for proving
Thm 8.3.3

Definition 12.5.1. Let K1, K2 and E be K-linear pretriangulated categories. We
denote by TrBiFun(K1×K2,E) the category of K-linear triangulated bifunctors F :
K1×K2 → E.

Implicit in the definition above is that each object of TrBiFun(K1×K2,E) is a
triple (F, τ1, τ2). The morphisms in this category are compatible with the transla-
tion isomorphism. See Definitions 5.3.1, 5.1.3 and 5.1.5. The category TrBiFun is
K-linear.

Suppose Ui : K′i → Ki are triangulated functors between pretriangulated cate-
gories. We get an induced additive functor
(12.5.2) F(U1 × U1, Id) : TrBiFun(K1×K2,E)→ TrBiFun(K′1×K′2,E)
with the same formula as in (12.4.3).

Lemma 12.5.3. If the functors U1 and U2 are equivalences, then the functor
F(U1 × U1, Id) in (12.5.2) is an equivalence.

Proof. This is basically the same as the proof of Proposition 12.4.4 (that itself was
an exercise...). The delicate change is that here we have to consider the translation
isomorphisms τ1 and τ2. But these are controlled by the equivalence

F(U1 × U1, IdE) : AdBiFun(K1×K2,E)→ AdBiFun(K′1×K′2,E).
�

Let Si ⊆ Ki be denominator sets of cohomological origin. These are left (and
right) denominator sets. We know that the localizations Di := (Ki)Si are pretrian-
gulated categories, and the localization functors Qi : Ki → Di are triangulated. See
Theorem 6.4.3.
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As in Definition 12.4.6 we denote by
TrBiFunS1× S2(K1×K2,E) ⊆ TrBiFun(K1×K2,E)

the full subcategory on the triangulated bifunctors F such that F (S1× S2) ⊆ E×.
Lemma 12.5.4. In the situation above the functor

F(Q1×Q2, IdE) : TrBiFun(D1×D2,E)→ TrBiFunS1× S2(K1×K2,E)
is an isomorphism of categories.
Proof. This is basically that same as the proof of Proposition 12.4.7, combined with
the isomorphism of pretriangulated categories

Q : (K1×K2)S1× S2 → D1×D2

from Proposition 12.4.12. The fine point is that the translation isomorphisms τi
are controlled by this isomorphism of categories:

F(Q1×Q1, IdE) : AdBiFun(D1×D2,E)→ AdBiFunS1× S2(K1×K2,E).
�

We can now give:

Proof of Theorem 12.3.6. It will be convenient to change notation. For p = 1, 2
let’s define K′p := Jp, S′p := K′p ∩Sp and D′p := (K′p)S′p . The localization functors
are Q′p : K′p → D′p. The inclusions are Up : K′p → Kp, and their localizations are the
functors Vp : D′p → Dp. By Lemma 12.4.25 the functors Vp are equivalences.

The situation is depicted in these diagrams. We have this commutative diagram
of products of triangulated functors between products of pretriangulated categories:

(12.5.5) K′1×K′2
U1×U2 //

Q′1×Q′2
��

K1×K2

Q1×Q2

��

D′1×D′2
V1×V2 // D1×D2

The arrow V1 × V2 is an equivalence. Diagram (12.5.5) induces a commutative
diagram of linear categories:

(12.5.6) TrBiFun(K′1×K′2,E) TrBiFun(K1×K2,E)
F(U1×U2,Id)

oo

TrBiFunS′1× S′2(K′1×K′2,E)

f.f. inc

OO

TrBiFunS1× S2(K1×K2,E)

f.f. inc

OO

equiv

F(U1×U2,Id)
oo

TrBiFun(D′1×D′2,E)

F(Q′1×Q′2,Id) isom

OO

TrBiFun(D1×D2,E)
F(V1×V2,Id)

equiv
oo

F(Q1×Q2,Id)isom

OO

According to Lemmas 12.5.3 and 12.5.4, the arrows in the diagram above that
are marked “isom” or “equiv” are isomorphisms or equivalences, respectively. By
definition the arrows marked “f.f. inc” are fully faithful inclusions.
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We know that Si ⊆ Ki are left denominator sets. Therefore (see Proposition
12.4.14)

S1×S2 ⊆ K1×K2

is a left denominator set. Condition (a) of Theorem 12.3.6 says that F sends
morphisms in S′1×S′2 to isomorphisms in E. Condition (b) there says that there
are enough right K′1×K′2-resolutions in K1×K2.

Thus we are in a position to use the abstract Theorem 12.4.20. It says that there
is an abstract right derived functor

(RF, η) : D1×D2 → E .

However, going over the proof of Theorem 12.4.20, we see that all constructions
there can be made within the triangulated setting, namely in diagram (12.5.6)
instead of in diagram (12.4.28). Therefore RF is an object of the category in the
bottom right corner of (12.5.6), and the morphism η : F ⇒ RF ◦Q is in the category
in the top right corner of (12.5.6).
comment: there might be a general yoga to deduce the above...

�

12.6. The Bifunctor RHom. Consider a DG ring A and an abelian category M.
Like in Example 12.1.10 we get a DG bifunctor

F := HomA,M(−,−) : C(A,M)op × C(A,M)→ C(K).

Passing to homotopy categories, and postcomposing with Q : K(K) → D(K), we
obtain a triangulated bifunctor

F = HomA,M(−,−) : K(A,M)op ×K(A,M)→ D(K).

Next we pick full pretriangulated subcategories K1,K2 ⊆ K(A,M). In practice this
choice would be by some boundedness conditions, for instance K2 := C+(M), cf.
Corollary 10.4.24, or K1 := C−(M), cf. Corollary 10.2.17. We want to construct the
right derived bifunctor of the triangulated bifunctor

F = HomA,M(−,−) : Kop
1 ×K2 → D(K).

This is done in the next theorem.

Theorem 12.6.1. Let K1,K2 ⊆ K(A,M) be full pretriangulated subcategories, and
let Di denote the localization of Ki with respect to the quasi-isomorphisms in it.
Assume either that K1 has enough K-projectives, or that K2 has enough K-injectives.

Then the triangulated bifunctor

HomA,M(−,−) : Kop
1 ×K2 → D(K)

has a right derived bifunctor

RHomA,M(−,−) : Dop
1 ×D2 → D(K).

Moreover, if P1 ∈ K1 is K-projective, or if I2 ∈ K2 is K-injective, then the morphism

ηP1,I2 : HomA,M(P1, I2)→ RHomA,M(P1, I2)

in D(K) is an isomorphism.
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Proof. If K2 has enough K-injectives, then we can take J2 := K2,inj, the full sub-
category on the K-injectives inside K2. And we take J1 := K1. We claim that the
conditions of Theorem 12.3.6 are satisfied. Condition (b) is simply the assumption
that K2 has enough K-injectives. As for condition (a): this is Lemma 12.6.2 below.

On the other hand, if K1 has enough K-projectives, then we can take Jop
1 :=

Kop
1,prj, where K1,prj is the full subcategory on the K-projectives inside K1. And

we take J2 := K2. We claim that the conditions of Theorem 12.3.6 are satisfied
for Jop

1 ⊆ Kop
1 . Condition (b) is simply the assumption that K1 has enough K-

projectives: a quasi-isomorphism ρ : P → M in K1 becomes a quasi-isomorphism
ρop : Mop → P op in Kop

1 . As for condition (a): this is Lemma 12.6.2 below.
The last assertion also follows from 12.6.2. �

Lemma 12.6.2. Suppose φ1 : Q1 → P1 and φ2 : I2 → J2 are quasi-isomorphisms
in C(A,M), and either Q1, P1 are both K-projective, or I2, J2 are both K-injective.
Then the homomorphism

HomA,M(φ1, φ2) : HomA,M(P1, I2)→ HomA,M(Q1, J2)
in C(K) is a quasi-isomorphism.

Proof. We will only prove the case where Q1, P1 are both K-projective; the other
case is very similar.

The homomorphism in question factors as follows:
HomA,M(φ1, φ2) = HomA,M(φ1, idJ2) ◦HomA,M(idP1 , φ2).

It suffices to prove that each of the factors is a quasi-isomorphism. This can be done
by a messy direct calculation, but we will provide an indirect proof that relies on
properties of the homotopy category K := K(A,M) that were already established.

Let K2 be the cone on the homomorphism φ2 : I2 → J2. So K2 is acyclic.
Because P1 is K-projective it follows that HomA,M(P1,K2) is acyclic. Thus for
every integer l we have
(12.6.3) HomK(T−l(P1),K2) ∼= Hl

(
HomA,M(P1,K2)

)
= 0.

Next, there is a distinguished triangle

(12.6.4) I2
φ2−→ J2

β2−→ K2
γ2−→ T(I2)

in K. Applying the cohomological functor HomK(T−l(P1),−) to the distinguished
triangle (12.6.4) yields a long exact sequence, as explained in Subsection 5.3. From
it we deduce that the homomorphisms

HomK(T−l(P1), I2)→ HomK(T−l(P1), J2)
are bijective for all l. Using the isomorphisms like (12.6.3) for I2 and J2 we see that

HomA,M(idP1 , φ2) : HomA,M(P1, I2)→ HomA,M(P1, J2)
is a quasi-isomorphism.

According to Corollary 9.2.12 the homomorphism φ1 : Q1 → P1 is a homo-
topy equivalence; so it is an isomorphism in K. Therefore for any integer l the
homomorphism

HomK(Q1,Tl(J2))→ HomK(P1,Tl(J2))
is bijective. As above we conclude that

HomA,M(φ1, idJ2) : HomA,M(Q1, J2)→ HomA,M(P1, J2)
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is a quasi-isomorphism. �

Remark 12.6.5. Theorem 12.6.1 should be viewed as a template. It has a variant
for C(A) where A is a commutative ring, as in Example 12.1.10. There are bimodule
variants as in Example 12.1.11 and Section 18. And there are geometric versions
where the source and target are categories of sheaves – see Section 16.

comment: to here lecture 30 Nov 2016

comment: no lecture 7 Dec 2016

We end this section with the connection between RHom and morphisms in the
derived category.

Definition 12.6.6. Under the assumptions of Theorem 12.6.1, for DG modules
M1 ∈ K1 and M2 ∈ K2, and for an integer i, we write

ExtiA,M(M1,M2) := Hi
(
RHomA,M(M1,M2)

)
∈M(K).

Exercise 12.6.7. Let A be a ring. Prove that for modules M1,M2 ∈ M(A) the
K-module ExtiA(M1,M2) defined above is canonically isomorphic to the classical
definition.

Corollary 12.6.8. Under the assumptions of Theorem 12.6.1, there is an isomor-
phism

Ext0
A,M(−,−) '−→ HomD(A,M)(−,−)

of additive bifunctors
Dop

1 ×D2 →M(K).

Exercise 12.6.9. Prove Corollary 12.6.8.

12.7. Left Derived Bifunctors. The material here is opposite (left vs. right) to
that in Subsection 12.3. Because of the similarity, we give only a few details.

The assumptions in the next definition are identical to those in Setup 12.3.1.

Definition 12.7.1. Assume the following are given:
(1) Pretriangulated categories K1, K2 and E.
(2) A triangulated bifunctor F : K1×K2 → E.
(3) Denominator sets of cohomological origin S1 ⊆ K1 and S2 ⊆ K2.

A left derived bifunctor of F is a pair (LF, η), where
LF : D1×D2 → E

is a triangulated bifunctor, and
η : LF ◦ (Q1×Q2)⇒ F

is a morphism of triangulated bifunctors, such that the following universal property
holds:

(L) Given any pair (G, θ), consisting of a triangulated bifunctor
G : D1×D2 → E

and a morphism of triangulated bifunctors
θ : G ◦ (Q1×Q2)⇒ F,
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there is a unique morphism of triangulated functors µ : G⇒ LF such that
θ = η ∗ (µ ◦ idQ1×Q2).

Proposition 12.7.2. If a left derived bifunctor exists, then it is unique up to a
unique isomorphism.

Proof. This is the opposite of Proposition 12.3.4, and we leave it to the reader to
make the adjustments. �

Definition 12.7.3. Let K be a pretriangulated category, let S ⊆ K be a denomina-
tor set of cohomological origin, and let P ⊆ K be a full pretriangulated subcategory.

(1) Let M ∈ K. A left P-resolution of M is a morphism ρ : P → M in S from
an object P ∈ P.

(2) We say that K has enough left P-resolutions if every object M ∈ K admits
a left P-resolution.

comment: this def should be moved to Sec 8

Theorem 12.7.4. In the situation of Definition 12.7.1, assume there are full pre-
triangulated subcategories P1 ⊆ K1 and P2 ⊆ K2 with these two properties:

(a) Acyclicity: if φ1 : P1 → Q1 is a morphism in P1 ∩S1 and φ2 : P2 → Q2 is
a quasi-isomorphism in P2 ∩ S2, then

F (φ1, φ2) : F (P1, P2)→ F (Q1, Q2)
is an isomorphism in E.

(b) Abundance: K1 has enough left P1-resolutions, and K2 has enough left P2-
resolutions.

Then the left derived bifunctor
(LF, η) : D1×D2 → E

exists. Moreover, for any objects P1 ∈ P1 and P2 ∈ P2 the morphism
ηP1,P2 : LF (P1, P2)→ F (P1, P2)

in E is an isomorphism.

Proof. This is the opposite of Theorem 12.3.6, and we leave it to the reader to make
the necessary changes in direction. �

In applications we will see that either P1 = K1 or P2 = K2; namely we will only
need to resolve in the second or in the first argument, respectively.

Proposition 12.7.5. If a right derived bifunctor exists, then it is unique up to a
unique isomorphism.

Proof. This is just like the proof of Proposition 8.3.2. We leave the small changes
up to the reader. �

Existence in general is like Theorem 8.4.3, but more complicated.

Definition 12.7.6. Let K be a pretriangulated category, let S ⊆ K be a denomina-
tor set of cohomological origin, and let P ⊆ K be a full pretriangulated subcategory.
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(1) Let M ∈ K. A left P-resolution of M is a quasi-isomorphism ρ : P →M in
S from an object P ∈ P.

(2) We say that K has enough left P-resolutions if every object M ∈ K admits
a left P-resolution.

comment: this def should be moved to Sec 8

Theorem 12.7.7. In the situation of Definition 12.7.1, assume there are full pre-
triangulated subcategories P1 ⊆ K1 and P2 ⊆ K2 with these two properties:

(a) Acyclicity: if φ1 : P1 → Q1 is a morphism in P1 ∩S1 and φ2 : P2 → Q2 is
a morphism in P2 ∩S2, then

F (φ1, φ2) : F (P1, P2)→ F (Q1, Q2)
is an isomorphism in E.

(b) Abundance: K1 has enough left P1-resolutions, and K2 has enough left P2-
resolutions.

Then the left derived bifunctor
(LF, η) : D1×D2 → E

exists. Moreover, for any objects P1 ∈ P1 and P2 ∈ P2 the morphism
ηP1,P2 : LF (P1, P2)→ F (P1, P2)

in E is an isomorphism.

In applications we will see that either P1 = K1 or P2 = K2; namely we will only
need to resolve in the second or in the first argument, respectively.

Proof. Like that of Theorem 12.3.6. We leave the side changes to the reader. �

12.8. The Bifunctor ⊗L. Consider a DG ring A. Like in Example 12.1.9 we get
a DG bifunctor

F := (−⊗A −) : C(Aop)× C(A)→ C(K).
Passing to homotopy categories, and postcomposing with Q : K(K) → D(K), we
obtain a triangulated bifunctor

F = (−⊗A −) : K(Aop)×K(A)→ D(K).
Next we pick full pretriangulated subcategories K1 ⊆ K(Aop) and K2 ⊆ K(A).
In practice this choice would be by some boundedness conditions, for instance
K1 := C−(Aop) or K2 := C−(A), cf. Corollary 10.2.17. We want to construct the
left derived bifunctor of the triangulated bifunctor

F = (−⊗A −) : K1×K2 → D(K).
This is done in the next theorem.

Theorem 12.8.1. Let K1 ⊆ K(Aop) and K2 ⊆ K(A) be full pretriangulated sub-
categories, and let Di denote the localization of Ki with respect to the quasi-iso-
morphisms in it. Assume that either K1 or K2 has enough K-flat objects.

Then the triangulated bifunctor
(−⊗A −) : K1×K2 → D(K)
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has a left derived bifunctor
(−⊗L

A −) : D1×D2 → D(K).
Moreover, if either P1 ∈ K1 or P2 ∈ K2 is K-flat, then the morphism

ηP1,P2 : P1 ⊗L
A P2 → P1 ⊗A P2

in D(K) is an isomorphism.

Note that a DG module P1 ∈ K1 is checked for K-flatness as a right DG A-
module; and a DG module P2 ∈ K2 is checked for K-flatness as a left DG A-module.

Proof. If K2 has enough K-flats, then we can take P2 := K2,flat, the full subcategory
on the K-flats inside K2. And we take P1 := K1. We claim that the conditions of
Theorem 12.7.4 are satisfied. Condition (b) is simply the assumption that K2 has
enough K-flats. As for condition (a): this is Lemma 12.8.2 below.

The other case is proved the same way (bur replacing sides). The last assertion
also follows from 12.8.2. �

Lemma 12.8.2. Suppose φ1 : P1 → Q1 and φ2 : P2 → Q2 are quasi-isomorphisms
in C(Aop) and C(A) respectively, and either of the conditions below holds:

(i) Q1 and P1 are both K-flat.
(ii) P2 and Q2 are both K-flat.

Then the homomorphism
φ1 ⊗ φ2 : P1 ⊗A P2 → Q1 ⊗A Q2

in C(K) is a quasi-isomorphism.

Proof. We will only prove the lemma under condition (i); the other case is very
similar. The homomorphism in question factors as follows:

φ1 ⊗ φ2 = (φ1 ⊗ idP2) ◦ (idP1 ⊗φ2).
It suffices to prove that each of the factors is a quasi-isomorphism. This can be
done by a messy direct calculation, but we will provide an indirect proof that relies
on properties of the DG categories C(Aop) and C(A) that were already established.

First we shall prove that idP1 ⊗φ2 is a quasi-isomorphism. Let R2 be the stan-
dard cone on the strict homomorphism φ2 : P2 → Q2. So there is a standard
triangle

(12.8.3) P2
φ2−→ Q2 → R2 → T(P2)

in Cstr(A), and R2 is acyclic. Applying the DG functor P1 ⊗A − to the triangle
(12.8.3), and using Theorem 4.5.7, we see that there is a standard triangle

(12.8.4) P1 ⊗A P2
idP1 ⊗φ2−−−−−−→ P1 ⊗A Q2 → P1 ⊗A R2 → T(P1 ⊗A P2)

in C(K). This becomes a distinguished triangle in the pretriangulated category
K(K). Thus there is a long exact sequence in cohomology associated to (12.8.4). Be-
cause P1 is K-flat it follows that P1⊗AR2 is acyclic. We conclude that Hi(idP1 ⊗φ2)
is bijective for all i.

Now we shall prove that φ1 ⊗ idP2 is a quasi-isomorphism. Let R1 ∈ C(Aop) be
the cone on the homomorphism φ1 : P1 → Q1. It is both acyclic and K-flat. Using
standard triangles like (12.8.3) and (12.8.4) we reduce the problem to showing that
R1⊗AP2 is acyclic. According to Corollary 10.3.27 and Proposition 9.3.2 there is a
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quasi-isomorphism P̃2 → P2 in C(A) from some K-flat DG module P̃2. As already
proved in the previous paragraph, since R1 is K-flat, the homomorphism

R1 ⊗A P̃2 → R1 ⊗A P2

is a quasi-isomorphism. But R1 is acyclic and P̃2 is K-flat, and therefore R1 ⊗A P̃2
is acyclic. We conclude that R1 ⊗A P2 is acyclic, as required. �

Remark 12.8.5. Theorem 12.8.1 should be viewed as a template. It has a variant
for C(A) where A is a commutative ring, as in Example 12.1.8. There are bimodule
variants as in Example 12.1.9 and Section 18. And there are geometric versions
where the source and target are categories of sheaves – see Section 16.
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13. Dualizing Complexes over Commutative Rings

In this section we finally explain what was outlined, as a motivating discussing,
in Subsection 0.1. Dualizing complexes are perhaps the most compelling reason
to study derived categories. In the commutative setting of the current section
the technicalities are milder than in the geometric setting (Section 17) and the
noncommutative setting (Section 18).

We will start with some more technical facts on functors.
comment: move them to an earlier location,
Then we will learn about dualizing complexes and residue complexes over commu-
tative rings, as defined by Grothendieck in [RD] in the 1960’s.

The initial plan was to also talk about Local Duality, MGM Equivalence and
perfect complexes in this section; but for lack of time and space, these topics will
be confined to short remarks. See Remark 13.4.24, ???
comment: finish

13.1. Cohomological Dimension of Functors. The material here is a refine-
ment of the notion of “way-out functors” from [RD, Section II.7]. It is taken from
[Ye10]. As always, there is a fixed base ring K.
comment: maybe move this material to an earlier location?

By generalized integers we mean elements of the ordered set Z ∪ {±∞}. Recall
that for a subset S ⊆ Z, its infimum is inf(S) ∈ Z ∪ {±∞}, where inf(S) = +∞
iff S = ∅. Likewise the supremum is sup(S) ∈ Z ∪ {±∞}, where sup(S) = −∞ iff
S = ∅. For i, j ∈ Z∪ {∞}, the expressions i+ j and −i− j have obvious values in
Z∪{±∞}. And for i, j ∈ Z∪{±∞}, the expression i ≤ j has an obvious meaning.

Let M =
⊕

i∈ZM
i be a graded K-module. We write

(13.1.1) inf(M) := inf {i |M i 6= 0} and sup(M) := sup {i |M i 6= 0}.

The amplitude of M is

(13.1.2) amp(M) := sup(M)− inf(M) ∈ N ∪ {±∞}.

(For M = 0 this reads inf(M) = ∞, sup(M) = −∞ and amp(M) = −∞.) Thus
M is bounded (resp. bounded above, resp. bounded below) iff amp(M) <∞ (resp.
sup(M) <∞, resp. inf(M) > −∞).

Given i0 ≤ i1 in Z ∪ {±∞}, the integer interval with these endpoints is the set
of integers

(13.1.3) [i0, i1] := {i ∈ Z | i0 ≤ i ≤ i1}.

There is also the empty integer interval ∅.
A nonempty integer interval [i0, i1] is said to be bounded (resp. bounded above,

resp. bounded below) if i0, i1 ∈ Z (resp. i1 ∈ Z, resp. i0 ∈ Z). The length of this
interval is i1−i0 ∈ N∪{∞}. Of course the interval has finite length iff it is bounded.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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We write −[i0, i1] := [−i1,−i0]. Given a second nonempty integer interval [j0, j1],
we let

[i0, i1] + [j0, j1] := [i0 + j0, i1 + j1].
The the empty integer interval ∅ is bounded, and its length is −∞. If S is any

integer interval, then the sum is the integer interval S +∅ := ∅. And −∅ := ∅.

Definition 13.1.4. Let M =
⊕

i∈ZM
i be a graded K-module.

(1) We say that M is concentrated in an integer interval [i0, i1] if

{i ∈ Z |M i 6= 0} ⊆ [i0, i1].

(2) The concentration ofM is the smallest integer interval con(M) in whichM
is concentrated.

In other words, if M 6= 0 then

i0 = inf(M) ≤ i1 = sup(M),

the concentration ofM is the interval con(M) = [i0, i1], and the amplitude amp(M)
is the length of con(M). Furthermore, con(M) = ∅ iff M = 0.

The next definition is in conflict with Definitions 7.3.3 and 7.3.4; but we already
warned that this change will take place (see Remark 7.3.9). The reason for the
change: the new definition is more practical.

Definition 13.1.5. Let A be a DG ring and M an abelian category. The expression
D?(A,M), where “?” is either “+”, “−” or “b”, refers to the full subcategory of
D(A,M) on the DG modules with bounded below (resp. bounded above, resp.
bounded) cohomologies.

Thus, for example, a DG module M belongs to Db(A,M) iff con(H(M)) is a
bounded integer interval.

Definition 13.1.6. Let A be a DG ring and M an abelian category. For a DG
module M ∈ C(A,M) and an integer i, we write

M [i] := Ti(M),

the i-th translation of M . This notation applies also to the homotopy category
K(A,M), the derived category D(A,M), and any other T-additive category.

The notationM [i] makes it difficult to use the little t operator and to talk about
translation isomorphisms, but hopefully we won’t require them anymore.

Definition 13.1.7. Let A,B be DG rings, let M,N be abelian categories, and let
C ⊆ D(A,M) be a full additive subcategory.

(1) Let
F : C→ D(B,N)

be an additive functor, and let S be an integer interval. We say that F has
cohomological displacement at most S if

con
(
H(F (M))

)
⊆ con

(
H(M)

)
+ S

for every M ∈ C.
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(2) Let
F : Cop → D(B,N)

be an additive functor, and let S be an integer interval. We say that F has
cohomological displacement at most S if

con
(
H(F (M))

)
⊆ − con

(
H(M)

)
+ S

for every M ∈ C.
(3) Let F be as in item (1) or (2). The cohomological displacement of F is the

smallest integer interval S for which F has cohomological displacement at
most S.

(4) Let S be the cohomological displacement of F . The cohomological dimen-
sion of F is defined to be the length of the integer interval S.

To emphasize the most important case: the functor F has finite cohomological
dimension iff its cohomological displacement is bounded.

Example 13.1.8. The functor F is the zero functor iff it has cohomological dis-
placement ∅ and cohomological dimension −∞.

Example 13.1.9. Consider a commutative ring A = B, and the abelian categories
M = N := M(K). So D(A,M) = D(B,N) = D(A). Take C := D(A). For the
covariant case (item (1) in Definition 13.1.7) take a nonzero projective module P ,
and let

F := RHomA(P ⊕ P [1],−) : D(A)→ D(A).
Then F has cohomological displacement [0, 1]. For the contravariant case (item
(2)) take a nonzero injective module I, and let

F := RHomA(−, I ⊕ I[1]) : D(A)op → D(A).
Then F has cohomological displacement [−1, 0]. In both cases the cohomological
dimension of F is 1.

Example 13.1.10. Suppose A and B are rings and F : M(A) → M(B) is a left
exact additive functor. We get a triangulated functor

RF : D(A)→ D(B),

and Hi(RF (M)) = RiF (M) for all M ∈ M(A). Taking C := M(A), with its
canonical embedding into D(A), we get an additive functor

(RF )|M(A) : M(A)→ D(A).
The cohomological dimension of (RF )|M(A) equals the usual cohomological dimen-
sion of the functor F .

Remark 13.1.11. Assume that in Definition 13.1.7 we take M = M(K), C = D(A)
and F is a triangulated functor. The functor F has bounded below (resp. above)
cohomological displacement iff it is way-out right (resp. left), in the sense of [RD,
Section I.7].

Definition 13.1.12. Let ?,M be boundedness conditions, and assume the right
derived bifunctor

RHomA,M : D?(A,M)op ×DM(A,M)→ D(K)
exists. Let S be an integer interval of length i ∈ N ∪ {±∞}.
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(1) Let M ∈ D?(A,M), and let C ⊆ DM(A,M) be a full additive subcategory.
We say that M has projective concentration S and projective dimension i
relative to C if the functor

RHomA,M(M,−)|C : C→ D(K)

has cohomological displacement −S.
(2) Let M ∈ DM(A,M), and let C ⊆ D?(A,M) be a full additive subcategory.

We say that M has injective concentration S and injective dimension i
relative to C if the functor

RHomA,M(−,M)|Cop : Cop → D(K)

has cohomological displacement S.
(3) If C = D(A,M), then we omit the “relative to C” clause.

Example 13.1.13. Continuing with the setup of Example 13.1.9, the DG module
P ⊕ P [1] (resp. I ⊕ I[1]) has projective (resp. injective) concentration [−1, 0].

Example 13.1.14. Let A be a DG ring, and consider the free DG module P :=
A ∈ D(A). The functor

F := RHomA(P,−) : D(A)→ D(K)

is isomorphic to the forgetful functor, so it has cohomological displacement [0, 0] and
cohomological dimension 0. Thus the DG module P has projective concentration
[0, 0] and projective dimension 0. Note however that the cohomology H(P ) could
be unbounded!

comment: next prop should move to Sec 7

Proposition 13.1.15. Let

0→ L
φ−→M

ψ−→ N → 0

be a short exact sequence in Cstr(A,M). Then there is a morphism θ : N → L[1] in
D(A,M) such that

L
Q(φ)−−−→M

Q(ψ)−−−→ N
θ−→ L[1]

is a distinguished triangle in D(A,M).

Proof. We are following the proof of [KaSc1, Proposition 1.7.5]. Let Ñ be the
standard cone on φ. In matrix notation as in Definition 4.2.1, we have

Ñ =
[
M

T(L)

]
and dÑ =

[
dM φ ◦ t−1

0 dT(L)

]
.

The object Ñ sits inside the standard triangle

L
φ−→M

ψ̃−→ Ñ
χ̃−→ T(L)

in Cstr(A,M), where

ψ̃ :=
[
id
0

]
and χ̃ :=

[
0 id

]
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in matrix notation. Define the morphism γ = Ñ → N to be γ :=
[
ψ 0

]
. We get

a commutative diagram

L
φ
// M

ψ̃
//

ψ
��

Ñ
χ̃
//

γ

��

T(L)

N

in Cstr(A,M). We will prove below that γ is a quasi-isomorphism. Then the mor-
phism θ := Q(χ̃) ◦Q(γ)−1 will work.

It remains to prove that γ is a quasi-isomorphism. Let K̃ be the standard cone
on idL, and let β̃ : K̃ → Ñ be the matrix morphism[

φ 0
0 id

]
:
[

L

T(L)

]
→

[
M

T(L)

]
.

This fits into a short exact sequence

0→ K̃
β̃−→ Ñ

γ−→ N → 0
in Cstr(A,M). But the DG module K̃ is acyclic, and therefore γ is a quasi-
isomorphism. �

The next proposition pertains only to the ring case. To prove it we shall re-
quire the following truncation operations. For any complex M ∈ C(A) its stupid
truncations at an integer q are
(13.1.16) stt≤q(M) :=

(
· · · →Mq−1 →Mq → 0→ 0→ · · ·

)
and
(13.1.17) stt≥q(M) :=

(
· · · → 0→ 0→Mq →Mq+1 → · · ·

)
.

They fit into an exact sequence
(13.1.18) 0→ stt≥q(M)→M → stt≤q−1(M)→ 0
in Cstr(A).

comment: move all truncation stuff to Sec 3?

Proposition 13.1.19. Let A be a ring. The following are equivalent forM ∈ D(A):
(i) M has finite injective dimension.
(ii) M has finite injective dimension relative to M(A).
(iii) There is a quasi-isomorphism M → I in Cstr(A) to a bounded complex of

injective A-modules I.

Proof. (i) ⇒ (ii): This is trivial.
(ii) We may assume that H(M) is nonzero. Let [q0, q1] be the injective concentration
of the complex M relative to M(A), as in Definition 13.1.12; this is a bounded
integer interval. Since M ∼= RHomA(A,M) in D(K), we see that

q0 = inf(H(M)) ≤ sup(H(M)) ≤ q1.

According to Corollary 10.4.25 there is quasi-isomorphism M → J , where J is a
complex of injective A-modules and inf(J) = q0. Take I := smt≤q1(J), the smart
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truncation from (7.3.6). Then the canonical homomorphism I → J is a quasi-
isomorphism. The complex I is concentrated in the integer interval [q0, q1], and
Iq = Jq is injective for all q < q1.

Let us prove that Iq1 = Zq1(J) is also an injective module. Classically we would
use a cosyzygy argument. Here we use another trick. Define I ′ := stt≤q1−1(I), so

I ′ =
(
· · · 0→ Iq0 → · · · → Iq1−1 → 0→ · · ·

)
.

This is a bounded complex of injectives. Consider the short exact sequence
0→ Iq1 [−q1]→ I → I ′ → 0

in Cstr(A). According to Proposition 13.1.15 this gives a distinguished triangle
(13.1.20) Iq1 [−q1]→ I → I ′ → Iq1 [−q1 + 1]
in D(A). Take any A-module N . Applying RHomA(N,−) to the distinguished
triangle (13.1.20) and then taking cohomologies, we get a long exact sequence

(13.1.21) · · · → Extq+q1−1
A (N, I ′)→ ExtqA(N, Iq1)→ Extq+q1

A (N, I)→ · · ·

in M(K). For any q > 0 the module Extq+q1−1
A (N, I ′) vanishes trivially. By the

definition of the interval [q0, q1] and the existence of an isomorphism M ∼= I in
D(A), for any q > 0 the module Extq+q1

A (N, I) is zero. Hence ExtqA(N, Iq1) = 0 for
all q > 0. This proves that the module Iq1 injective.

We have quasi-isomorphisms M → J and I → J . Since I is K-injective, there is
a quasi-isomorphism M → I.
(iii) ⇒ (i): This is also trivial. �

Exercise 13.1.22. State and prove the analogous result for finite projective di-
mension of complexes.

In the next definition, A is again a DG ring.

Definition 13.1.23. Let ?,M be boundedness conditions, and assume the left
derived bifunctor

(−⊗L
A −) : D?(Aop)×DM(A)→ D(K)

exists. Let S be an integer interval of length i ∈ N ∪ {±∞}.
(1) Let M ∈ DM(A), and let C ⊆ D?(Aop) be a full additive subcategory. We

say that M has flat concentration S and flat dimension i relative to C if
the functor

(−⊗L
AM)|C : C→ D(K)

has cohomological displacement S.
(2) If C = D(Aop), then we omit the “relative to C” clause.

Proposition 13.1.24. Let A be a ring. The following are equivalent forM ∈ D(A):
(i) M has finite flat dimension.
(ii) M has finite flat dimension relative to M(Aop).
(iii) There is a quasi-isomorphism P → M in Cstr(A) from a bounded complex

of flat A-modules P .

Exercise 13.1.25. Prove Proposition 13.1.24. (The proof is similar to that of
Proposition 13.1.19.)

Definition 13.1.26. Suppose the ring A is left noetherian.
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(1) We denote by Mf(A) the full subcategory of M(A) = ModA on the finitely
generated modules.

(2) We denote by Df(A) the full subcategory of D(A) = D(ModA) on the
complexes with finitely generated cohomology modules.

Because A is left noetherian, the category Mf(A) is a thick abelian subcategory
of M(A), and the category Df(A) is a pretriangulated subcategory of D(A). When
viewed as a left module, A ∈Mf(A) ⊆ Db

f (A).

Theorem 13.1.27. Let A be a left noetherian ring, let N be an abelian category,
let

F,G : Df(A)→ D(N)

be triangulated functors, and let η : F → G be a morphism of triangulated functors.
Assume that the morphism

ηA : F (A)→ G(A)

in D(N) is an isomorphism.
(1) If F and G have bounded above cohomological displacements, then

ηM : F (M)→ G(M)

is an isomorphism for every M ∈ D−f (A).
(2) If F and G have bounded cohomological displacements, then ηM is an iso-

morphism for every M ∈ Df(A).

We shall require the next lemmas for the proof of the theorem.

Lemma 13.1.28. Let D be a pretriangulated category, let F,G : D → D(N) be
triangulated functors, let η : F → G be a a morphism of triangulated functors, and
let

L
φ−→M → N → L[1]

be a distinguished triangle in D.
(1) If the morphisms ηL and ηM are both isomorphisms, then ηN is an isomor-

phism.
(2) Let j be an integer. If Hj−1(F (N)), Hj−1(G(N)), Hj(F (N)) and Hj(G(N))

are all zero, and if Hj(ηL) is an isomorphism, then Hj(ηM ) is an isomor-
phism.

Proof. (1) In D(N) we get the commutative diagram

(13.1.29) F (L) //

ηL

��

F (M) //

ηM

��

F (N) //

ηN

��

F (L)[1]

ηL[1]
��

G(L) // G(M) // G(N) // G(L)[1]

with horizontal distinguished triangles. According to Proposition 5.3.5, ηN is an
isomorphism.
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(2) passing to cohomologies in (13.1.29) we have a commutative diagram

Hj−1(F (N)) //

Hj−1(ηN )
��

Hj(F (L))
Hj(F (φ))

//

Hj(ηL)
��

Hj(F (M)) //

Hj(ηM )
��

Hj(F (N))

Hj(ηN )
��

Hj−1(G(N)) // Hj(G(L))
Hj(G(φ))

// Hj(G(M)) // Hj(G(N))

The vanishing assumption implies that Hj(F (φ)) and Hj(G(φ)) are isomorphisms.
Hence Hj(ηM ) is an isomorphism. �

Lemma 13.1.30. Let D be a pretriangulated category, let F,G : D → D(N) be
triangulated functors, and let η : F → G be a a morphism of triangulated functors.
The following conditions are equivalent for M ∈ D :

(i) ηM is an isomorphism.
(ii) ηM [i] is an isomorphism for every integer i.
(iii) The morphism

Hj(ηM ) : Hj(F (M))→ Hj(G(M))
is an isomorphism for every integer j.

Proof. The equivalence (i)⇔ (ii) is because both F and G are triangulated functors.
The equivalence (i)⇔ (iii) is because the functor H : D(N)→ G(N) is conservative;
see Corollary 7.1.8. �

Proof of Theorem 13.1.27. (1) First assume P is a bounded complex of finitely
generated free A-modules. Then P is obtained from A by finitely many standard
cones and translations. By Lemmas 13.1.28(1) and 13.1.30 it follows that ηP is an
isomorphism.

Next let P be a bounded above complex of finitely generated free A-modules.
Choose some integer j. Let i1 be an integer such that the integer interval [−∞, i1]
contains the cohomological displacements of F and G. Define P ′ := stt≤j−i1−2(P ),
the stupid truncation of P below j − i1 − 2; and let P ′′ := stt≥j−i1−1(P ), the
complementary stupid truncation. See formulas (13.1.16) and (13.1.17). According
to Proposition 13.1.15, the short exact sequence (13.1.18) gives a distinguished
triangle
(13.1.31) P ′′ → P → P ′ → P ′′[1]
in Df(A). The complex P ′′ is a bounded complex of finitely generated free A-
modules, so we already know that ηP ′′ is an isomorphism. Hence Hj(ηP ′′) is an
isomorphism. On the other hand H(P ′) is concentrated in the interval [−∞, j−i1−
2]. Therefore Hk(F (P ′)) = Hk(G(P ′)) = 0 for all k ≥ j− 1. By Lemma 13.1.28(2),
Hj(ηP ) is an isomorphism. Because j is arbitrary, Lemma 13.1.30 says that ηP is
an isomorphism.

Now take an arbitrary M ∈ D−f (A). By Corollary 10.3.32 and Example 10.3.33
there is a resolution P → M , where P is a bounded above complex of finitely
generated free A-modules. Since ηP is an isomorphism, so is ηM .
(2) Now we assume that the functors F and G have finite cohomological dimensions.
Take any complex M ∈ Df(A). By Lemma 13.1.30 it suffices to prove that Hj(ηM )
is an isomorphism for any integer j.
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Let [i0, i1] be a bounded integer interval that contains the cohomological displace-
ments of the functors F and G. Define M ′′ := smt≤j−i0(M), the smart truncation
of M below j − i0; and let M ′ := smt≥j−i0+1(M), the complementary smart trun-
cation. See formulas (7.3.6) and (7.3.7).
comment: maybe move the material on smart truncation from Sec 7 to Sec
3...
We obtain a short exact sequence

0→M ′′ →M →M ′ → 0

of complexes. The cohomologies satisfy Hi(M ′′) = Hi(M) and Hi(M ′) = 0 for
i ≤ j − i0; and Hi(M ′′) = 0 and Hi(M ′) = Hi(M) for i ≥ j − i0 + 1. Therefore we
have a distinguished triangle

(13.1.32) M ′′ →M →M ′ →M ′′[1]

in Df(A), and M ′′ ∈ D−f (A). By part (1) we know that ηM ′′ is an isomorphism,
and therefore also Hj(ηM ′′) is an isomorphism. The cohomology H(M ′) is concen-
trated in the interval [j − i0 + 1,∞], and therefore the cohomologies H(F (M ′))
and H(G(M ′)) are concentrated in the interval [j+ 1,∞]. In particular the objects
Hj−1(F (M ′)), Hj−1(G(M ′)), Hj(F (M ′)) and Hj(G(M ′)) are zero. By Lemma
13.1.28(2), Hj(ηM ) is an isomorphism. �

Next we give a similar theorem. Recall that if N0 ⊆ N is a thick abelian sub-
category, then DN0(N), the full subcategory of D(N) on the complexes whose coho-
mologies lie inside N0, is a pretriangulated subcategory.

Theorem 13.1.33. Let A be a left noetherian ring, let N be an abelian category,
let N0 ⊆ N be a thick abelian subcategory, and let

F : Df(A)op → D(N)

be a triangulated functor. Assume that F (A) belongs to DN0(N).
(1) If F has bounded below cohomological displacement, then F (M) belongs to

DN0(N) for every M ∈ D−f (A).
(2) If F has bounded cohomological displacement, then F (M) belongs to DN0(N)

for every M ∈ Df(A).

Proof. (1) First assume P is a bounded complex of finitely generated free A-
modules. Then P is obtained from A by finitely many standard cones and trans-
lations. Since DN0(N) is a pretriangulated subcategory and F is a triangulated
functor, it follows that F (P ) ∈ DN0(N).

Next let P be a bounded above complex of finitely generated free A-modules.
Choose some integer j. We want to prove that Hj(F (P )) ∈ N0. Let i0 be an integer
such that the integer interval [i0,∞] contains the cohomological displacement of
F . Define P ′ := stt≤−j−1+i0(P ), the stupid truncation of P below −j − 1 +
i0; and let P ′′ := stt≥j+i0(P ), the complementary stupid truncation. We get a
distinguished triangle (13.1.31) in Df(A). The complex P ′′ is a bounded complex
of finitely generated free A-modules, so we already know that F (P ′′) ∈ DN0(N),
and in particular Hj(F (P ′′)) ∈ N0. On the other hand H(P ′) is concentrated in
the interval [−∞,−j − 1 + i0]. Therefore H(F (P ′)) is concentrated in the interval
[j+1,∞], and in particular Hj−1(F (P ′)) = Hj(F (P ′)) = 0. As we saw in the proof
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of Lemma 13.1.28(2), Hj(F (P ′′))→ Hj(F (P )) is an isomorphism. The conclusion
is that Hj(F (P )) ∈ N0.

Now take an arbitrary M ∈ D−f (A). There is a quasi-isomorphism P → M ,
where P is a bounded above complex of finitely generated free A-modules. So
F (M) ∼= F (P ), and thus F (M) ∈ DN0(N).

(2) Now we assume that the functor F has finite cohomological dimension. Take any
complex M ∈ Df(A). We want to prove that for any j ∈ Z the object Hj(F (M))
lies in N0.

Let [i0, i1] be a bounded integer interval that contains the cohomological dis-
placement of the functor F . Define M ′′ := smt≤−j+1+i1(M), the smart truncation
of M below −j+ 1 + i1; and let M ′ := smt≥−j+2+i1(M), the complementary smart
truncation. As we already noted in the proof of Theorem 13.1.27, there is a distin-
guished triangle (13.1.32) in Df(A). The cohomology of M ′ is concentrated in the
interval [−j+ 2 + i1,∞], and therefore the cohomology of F (M ′) is concentrated in
the interval [−∞, j−2]. In particular the objects Hj−1(F (M ′)) and Hj(F (M ′)) are
zero. By the proof of Lemma 13.1.28(2), the morphism Hj(F (M ′′)) → Hj(F (M))
is an isomorphism. ButM ′′ ∈ D−f (A), so as we proved in part (1), its cohomologies
are inside N0. �

Theorems 13.1.27 and 13.1.33 have several obvious modifications, for instance
changing the variance of the functor F (replacing the source category by its oppo-
site).

13.2. Dualizing Complexes. From here on in this section all rings are commu-
tative noetherian by default.

Let A be a noetherian ring. We have the abelian categories Mf(A) ⊆ M(A) as
before. But because A is commutative, the Hom bifunctor has another target:

HomA(−,−) : M(A)op ×M(A)→M(A).

Likewise for the right derived bifunctor:

RHomA(−,−) : D(A)op ×D(A)→ D(A).

When we fix the second argument M , we get an A-linear triangulated functor:

RHomA(−,M) : D(A)op → D(A).

This is the sort of functor with which we will be concerned.
Let M ∈ C(A). The DG A-module

HomA(M,M) = EndA(M)

is a central noncommutative DG A-ring; there is a ring homomorphism

(13.2.1) αM : A→ HomA(M,M).

When we forget the ring structure, αM becomes a homomorphism in Cstr(A).

Definition 13.2.2. Given a compex M ∈ D(A), the derived homothety morphism

αR
M : A→ RHomA(M,M)

is the morphism in D(A) with this formula:

αR
M := ηM,M ◦Q(αM ).
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Namely the diagram

A
Q(αM )

//

αR
M

��

HomA(M,M)
ηM,M

// RHomA(M,M)

in D(A) is commutative.

Exercise 13.2.3. Prove that if ρ : M → I is a K-injective resolution, then the
diagram

A
Q(αI)

//

αR
M

**

HomA(I, I)
ηI,I

∼=
// RHomA(I, I)

RHom(Q(ρ),Q(ρ)−1)∼=

��

RHomA(R,R)

in D(A) is commutative.

Exercise 13.2.4. Formulate and prove a version of the previous exercise with a
K-projective resolution of M .

Definition 13.2.5. A complex M ∈ D(A) is said to have the derived Morita
property if the derived homothety morphism

αR
M : A→ RHomA(M,M)

in D(A) is an isomorphism.

Proposition 13.2.6. The following conditions are equivalent for a complex M ∈
D(A) :

(i) M has the derived Morita property.
(ii) The canonical ring homomorphism

A→ EndD(A)(M)

is a bijective, and

HomD(A)(M,M [i]) = 0

for all i 6= 0.

Exercise 13.2.7. Prove Proposition 13.2.6. (Hint: see Corollary 12.6.8 and the
preceeding material.)

Remark 13.2.8. In some texts, a complex M with the derived Morita property
is called a semi-dualizing complex. This name is only partly justified, because this
property occurs in the definition of a dualizing complexes – see Definition 13.2.9
below. However, there is a whole other class of complexes with the derived Morita
property – these are the tilting complexes. Often these two classes of complexes
are disjoint. More on these notions, and their noncommutative variants, will be in
Section 18 of the book.

The next definition first appeared in [RD, Section V.2]. The injective dimension
of a complex was defined in Definition 13.1.12.
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Definition 13.2.9. Let A be a noetherian commutative ring. A complex of A-
modules R is called a dualizing complex if it has the following three properties:

(i) R ∈ Db
f (A).

(ii) R has finite injective dimension.
(iii) R has the derived Morita property.
Recall that in the traditional literature (e.g. [Mats]), a noetherian ring A is called

regular if all its local rings Ap are regular local rings. The Krull dimension of A
is the dimension of the scheme Spec(A); namely the supremum of the lengths of
strictly ascending chains of prime ideals in A. In practice we never see regular rings
that are not finite dimensional (there are only pretty exotic examples of them).
The following convention will simplify matters for us:
Convention 13.2.10. We shall say that a noetherian commutative ring A is regular
if it has finite Krull dimension, and all its local rings Ap are regular local rings.

Any field K, and the ring of integers Z, are regular rings. If A is regular, then
so is the polynomial ring A[t1, . . . , tn] in n <∞ variables, and also the localization
of A at any multiplicatively closed set. See [Mats, Chapter 7].
Example 13.2.11. As prove by Serre, see [Mats, Theorem 19.2], a regular ring
A has finite global cohomological dimension. This means that there is a number
d ∈ N such that for any modules M,N ∈ M(A) and any q > d, the Ext module
ExtqA(M,N) vanishes. This implies that any module N has injective dimension ≤ d
(and also projective dimension ≤ d).

Taking R := A we see that R satisfies condition (ii) of Definition 13.2.9. The
other two conditions hold regardless of the regularity of A. Thus R = A is a
dualizing complex over the ring A.

In the Introduction, Subsection 0.1, we used this fact for A = Z.
Definition 13.2.12. Given a dualizing complex R ∈ D(A), the duality functor
associated to it is the triangulated functor

D : D(A)op → D(A), D := RHomA(−, R).
Let I,M ∈ C(A). There is a homomorphism

θ̃M,I : M → HomA

(
HomA(M, I), I

)
in Cstr(A) with formula

θ̃M,I(m)(φ) := (−1)p · q ·φ(m)
for m ∈Mp and φ ∈ HomA(M, I)q.
Lemma 13.2.13. Let R be a dualizing complex over A, with associated duality
functor D. There is a unique morphism

θ : Id→ D ◦D
of triangulated functors from D(A) to itself, such that if ρ : R→ I is a K-injective
resolution, then for any complex M ∈ D(A) the diagram

M
Q(θ̃M,I)

//

θM

��

HomA

(
HomA(M, I), I

)
// RHomA

(
RHomA(M, I), I

)
��

D(D(M)) id // RHomA

(
RHomA(M,R), R

)
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in D(A), in which the unlabeled morphisms are

RHom(η−1
M,I , id) ◦ ηHomA(M,I),I

and
RHom

(
RHom(id,Q(ρ)),Q(ρ)−1),

is commutative.

Exercise 13.2.14. Prove Lemma 13.2.13.

Here is the first important result regarding dualizing complexes.

Theorem 13.2.15. Suppose R is a dualizing complex over the noetherian commu-
tative ring A, with associated duality functor D. Then for any complex M ∈ Df(A)
the following hold:

(1) The complex D(M) belongs to Df(A).
(2) The morphism

θM : M → D(D(M))
in D(A) is an isomorphism.

Proof. (1) Condition (b) of Definition 13.2.9 says that the functor D has finite
cohomological dimension. Condition (a) says that D(A) ∈ Df(A). The assertion
follows from Theorem 13.1.33, with N0 := Mf(A).

(2) The composition D◦D is a functor with finite cohomological dimension (at most
twice the injective dimension of R). The cohomological dimension of the identity
functor is 0 (if A 6= 0). By condition (c) of Definition 13.2.9 we know that θA is an
isomorphism. Now we can use Theorem 13.1.27. �

Corollary 13.2.16. Under the assumptions of Theorem 13.2.15, let ? be one of the
boundedness conditions b, +, − or “empty”, and let −? be the reverse boundedness
condition, namely b, −, + or “empty”, respectively. Then the functor

D : D?
f (A)op → D−?f (A)

is an equivalence of pretriangulated categories.

Proof. The previous theorem tells us that D is its own quasi-inverse. The claim
about the boundedness holds because D has finite cohomological dimension. �

We saw that dualizing complexes exists over regular rings. This fact is used for
the very general existence result below. First a definition and some lemmas.

A ring homomorphism u : A → B is called finite type, and B is called a finite
type A-ring, if B is finitely generated as an A-ring. Literally this means that there
is a surjective A-ring homomorphism A[t1, . . . , tn] � B from a polynomial ring in
n variables, for some natural number n.

Definition 13.2.17. Let u : A → B be a ring homomorphism. We say that u is
an essentially finite type homomorphism (EFT) if it factors as A→ B′ → B, where
A→ B′ is finite type, and B′ → B is a localization at some multiplicatively closed
set. In this case we also say that B is an essentially finite type A-ring.

Example 13.2.18. Let X be a finite type scheme over A, and let x ∈ X be a
point. Then the local ring OX,x is essentially finite type over A.
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A ring homomorphism A → B gives rise to a forgetful functor Rest : M(B) →
M(A), that in turn determines a DG functor Rest : C(B) → C(A) and a triangu-
lated functor Rest : D(B) → D(A). These functors are going to be implicit in the
discussion below.

Lemma 13.2.19. Let A→ B be a ring homomorphism.
(1) If I ∈ C(A) is K-injective, then J := HomA(B, I) ∈ C(B) is K-injective.
(2) Given M ∈ D(A), let us define

N := RHomA(B,M) ∈ D(B).

Then there is an isomorphism

RHomB(−, N) ∼= RHomA(−,M)

of triangulated functors D(B)→ D(B).

Proof. (1) The is an adjunction calculation. Suppose L ∈ C(B) is acyclic. There
are isomorphisms

(13.2.20) HomB(L, J) ∼= HomB

(
L,HomA(B, I)

) ∼= HomA(L, I)

in C(B). Since I is K-injective over A, this complex is acyclic.

(2) Choose a K-injective resolution M → I in C(A). Let J be as above. Then
N → J is a K-injective resolution in C(B). There are isomorphisms of triangulated
functors

(13.2.21) RHomA(−,M) ∼= HomA(−, I)

and

(13.2.22) RHomB(−, N) ∼= HomB(−, J),

where the first functors (13.2.21) are from D(A) to itself, and the functors (13.2.22)
are from D(B) to itself. But given L ∈ C(B) we can view HomA(L, I) as a complex
of B-modules, and in this way the functors (13.2.21) become triangulated func-
tors from D(B) to itself. Formula (13.2.20) shows that the functors (13.2.21) and
(13.2.22) are isomorphic. �

Lemma 13.2.23. Let A→ B be a flat ring homomorphism, let M ∈ D−f (A), and
let N ∈ D+(A). Then there is an isomorphism

RHomA(M,N)⊗A B ∼= RHomB(B ⊗AM,B ⊗A N)

in D(B). This isomorphism is functorial in M and N .

Proof. First we note that since B is a flat A-module, the functor −⊗A B is trian-
gulated (it is its own left derived functor), and it goes D(A)→ D(B).

Let’s choose a resolution P →M where P is a bounded above complex of finitely
generated free A-modules. After possibly truncating the complex N from below, we
can assume it is a bounded below complex of A-modules. There is an isomorphism

(13.2.24) RHomA(M,N)⊗A B ∼= HomA(P,N)⊗A B

in D(B). We claim that the canonical homomorphism

(13.2.25) HomA(P,N)⊗A B → HomA(P,N ⊗A B)
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in C(B) is bijective. This is because of finiteness. To be explicit, in each degree i
we have

HomA(P,N)i =
∏
j

HomA(P j , N i+j).

This is actually a finite product, because P j = 0 for j � 0, and N i+j = 0 for
j � 0. And for each pair (i, j) the module HomA(P j , N i+j) is a finite product of
copies on N i+j , because P j is a finitely generated free A-module. This shows that

HomA(P j , N i+j)⊗A B ∼= HomA(P j , N i+j ⊗A B).

Taking the product on all j we conclude that (13.2.25) is indeed bijective.
Next we apply the usual change of ring adjunction to get the isomorphism

(13.2.26) HomA(P,B ⊗A N) ∼= HomB(B ⊗A P,B ⊗A N)

in C(B). Since B ⊗A P → B ⊗AM is a K-projective resolution over B, there is an
isomorphism

(13.2.27) HomB(B ⊗A P,B ⊗A N) ∼= RHomB(B ⊗AM,B ⊗A N)

in D(B).
Combining the isomorphisms (13.2.24), (13.2.25), (13.2.26) and (13.2.27) gives

us the desired isomorphism. The functoriality is clear. �

Lemma 13.2.28. Let I be an A-module. The following conditions are equivalent:
(i) I is injective.
(ii) For any finitely generated A-module M the module Ext1

A(M, I) is zero.

Exercise 13.2.29. Prove Lemma 13.2.28. (Hint: use the Baer criterion Theorem
2.6.10.)

Lemma 13.2.30. The injective dimension of a complex N ∈ D(A) equals the
cohomological dimension of the functor

RHomA(−, N)|Mf(A)op : Mf(A)op → D(A).

Proof. By definition the injective dimension of N , say d, is the cohomological di-
mension of the functor

RHomA(−, N) : D(A)op → D(A).

Let d′ be the cohomological dimension of the functor RHomA(−, N)|Mf(A)op . Ob-
viously the inequality d ≥ d′ holds. For the reverse inequality we may assume that
H(N) is nonzero and d′ <∞. This implies that there are integers q1 = q0 + d′ such
that for any M ∈Mf(A) there is an inclusion

con
(
RHomA(M,N)

)
⊆ [q0, q1].

In particular, for M = A, we get con(H(N)) ⊆ [q0, q1]. Let N → J be an injective
resolution in C(A) with inf(J) = q0. Take I := smt≤q1(J), the smart truncation
from (7.3.6). The proof of Proposition 13.1.19, plus Lemma 13.2.28, show that
N → I is an injective resolution. But then

RHomA(−, N) ∼= HomA(−, I),

so this functor has cohomological displacement in the interval [q0, q1], that has
length d′. �
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Recall that a ring homomorphism A → B is called finite if it makes B into a
finitely generated A-module.

Proposition 13.2.31. Let A→ B be a finite ring homomorphism, and let RA be
a dualizing complex over A. Then the complex

RB := RHomA(B,RA) ∈ D(B)
is a dualizing complex over B.

Proof. Consider the functors DA := RHomA(−, RA) and DB := RHomB(−, RB).
As explained in the proof of Lemma 13.2.19(2), they are isomorphic as functors
from D(B) to itself. Since RB = DA(B) and B ∈ Db

f (A), by Corollary 13.2.16 we
have RB ∈ Db

f (A). But then also RB ∈ Db
f (B). Next, because DB(L) ∼= DA(L)

for any L ∈ D(B), this implies that the cohomological dimension of DB is at most
that of DA, which is finite. We see that the injective dimension of the complex RB
is finite. Lastly, there is an isomorphism DB ◦ DB

∼= DA ◦ DA as functors from
Db

f (B) to itself, and hence θ : Id→ DB ◦DB is an isomorphism. Applying this to
the object B ∈ Db

f (B) we see that
α = θB : B → (DB ◦DB)(B)

is an isomorphism. So RB has the derived Morita property. The conclusion is that
RB is a dualizing complex over B. �

Proposition 13.2.32. Let A → B be a localization ring homomorphism, and let
RA be a dualizing complex over A. Then the complex

RB := B ⊗A RA ∈ D(B)
is a dualizing complex over B.

Proof. It is clear that RB ∈ Db
f (B). By Lemma 13.2.30, to compute the injective

dimension of RB it is enough to look at RHomB(M,RB) for M ∈Mf(B). We can
find a finitely generated A-submodule M ′ ⊆ M such that B ·M ′ = M ; and then
M ∼= B ⊗AM ′. Lemma 13.2.23 tells us that

RHomB(M,RB) ∼= RHomA(M ′, RA)⊗A B.
We conclude that the injective dimension of RB is at most that of RA, which is
finite. Lastly, by the same lemma we get an isomorphism

RHomB(RB , RB) ∼= RHomA(RA, RA)⊗A B,
and it is compatible with the morphisms from B. Thus RB has the derived Morita
property. �

Theorem 13.2.33. Let K be a regular ring, and let A be an essentially finite type
K-ring. Then A has a dualizing complex.

Proof. The ring homomorphism K → A can be factored as K → Apl → Aft →
A, where Apl = K[t1, . . . , tn] is a polynomial ring, Apl → Aft is surjective, and
Aft → A is a localization. (The subscripts stand for “polynomial” and “finite type”
respectively.) According to [Mats, Theorem 19.5] the ring Apl is regular; so, as
shown in Example 13.2.18, the complex Rpl := Apl is a dualizing complex over Apl.

Define
Rft := RHomApl(Aft, Rpl) ∈ D(Aft).
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By Proposition 13.2.31 this is a dualizing complex over Aft. Finally define

R := A⊗Aft Rft ∈ Db
f (A).

By Proposition 13.2.32 this is dualizing complex over A. �

The proof of Theorem 13.2.33 might give the impression that A could have a lot
of nonisomorphic dualizing complexes. This is not quite true, as we now prove.

Theorem 13.2.34. Let A be a noetherian ring with connected spectrum, and let R
and R′ be dualizing complexes over A. Then there is a rank 1 projective A-module
L and an integer d, such that R′ ∼= R⊗A L[d] in D(A).

Some lemmas first.

Lemma 13.2.35 (Künneth Trick). Let M,M ′ ∈ D−(A), and let i, i′ ∈ Z be such
that sup(H(M)) ≤ i and sup(H(M ′)) ≤ i′. Then

Hi+i′(M ⊗L
AM

′) ∼= Hi(M)⊗A Hi′(M ′).

Exercise 13.2.36. Prove Lemma 13.2.35.

Lemma 13.2.37 (Projective Truncation Trick). Let M ∈ D(A), with i1 :=
sup(H(M)) ∈ Z. Assume the A-module P := Hi1(M) is projective. Then there
is an isomorphism

M ∼= smt≤i1−1(M)⊕ P [−i1]
in D(A).

Exercise 13.2.38. Prove Lemma 13.2.37. (Hint: first replace M with smt≤i1(M).
Then prove that P is a direct summand of M i1 .))

By a principal open set in Spec(A) we mean a set of the form Spec(As), where
As is the localization of A at the element s ∈ A. Note that

Spec(As) = {p ∈ Spec(A) | s /∈ p}.

Lemma 13.2.39. Let M,M ′ ∈Mf(A), and let p ⊆ A be a prime ideal.
(1) If Mp 6= 0 and M ′p 6= 0 then Mp ⊗Ap

M ′p 6= 0.
(2) If Mp ⊗Ap

M ′p
∼= Ap then Mp

∼= M ′p
∼= Ap.

(3) If Mp
∼= Ap, then there is a principal open neighborhood Spec(As) of p in

Spec(A) such that Ms
∼= As as As-modules.

Exercise 13.2.40. Prove Lemma 13.2.39. (Hint: use the Nakayama Lemma.)

Here is a pretty difficult technical lemma.

Lemma 13.2.41. In the situation of the theorem, let M,M ′ ∈ D−f (A) satisfy
M ⊗L

A M ′ ∼= A in D(A). Then M ∼= L[d] in D(A) for some rank 1 projective
A-module L and an integer d.

Proof. For any prime p ⊆ A let Mp := Ap ⊗AM , and define
ep := sup(H(Mp)) ∈ Z ∪ {−∞}.

Define the number e′p similarly.
Fix one prime p. Since

(13.2.42) Mp ⊗L
Ap

M ′p
∼= Ap
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is nonzero, it follows that H(Mp) 6= 0 and H(M ′p) 6= 0. So ep, e′p ∈ Z, and Hep(Mp),
He′p(M ′p) are nonzero finite Ap-modules. By Lemma 13.2.39(1) we know that

Hep(Mp)⊗Ap
He′p(M ′p) 6= 0.

According to Lemma 13.2.35 we have

Hep(Mp)⊗Ap
He′p(M ′p) ∼= H(ep+e′p)(Mp ⊗L

Ap
M ′p) ∼= H(ep+e′p)(Ap).

But Ap is concentrated in degree 0; this forces ep + e′p = 0 and

Hep(Mp)⊗Ap
He′p(M ′p) ∼= Ap

in D(Ap). By Lemma 13.2.39(2) we now see that

(13.2.43) Hep(Mp) ∼= He′p(M ′p) ∼= Ap.

According to Lemma 13.2.37 there are isomorphisms

(13.2.44) Mp
∼= Ap[−ep]⊕ smt≤ep−1(Mp)

and
M ′p
∼= Ap[−e′p]⊕ smt≤e

′
p−1(M ′p)

in D(Ap). These, with (13.2.42), give an isomorphism

(13.2.45)
(
Ap[−ep]⊕ smt≤ep−1(Mp)

)
⊗Ap

(
Ap[−e′p]⊕ smt≤e

′
p−1(M ′p)

) ∼= Ap.

The left side of (13.2.45) is the direct sum of four objects. Passing to the cohomology
of (13.2.45) we see that

N := H
(
smt≤ep−1(Mp)[−e′p]

)
is a direct summand of Ap. But, since e′p + ep = 0, the graded module N is
concentrated in the degree interval [∞,−1]. It follows that N = 0. Therefore, by
(13.2.44), we deduce that

(13.2.46) Mp
∼= Ap[−ep].

The calculation above works for any prime p. From (13.2.46) we get

(13.2.47) Ap ⊗A Hi(M) ∼= Hi(Mp) ∼=

{
Ap if i = ep,

0 otherwise.

We now use Lemma 13.2.39(3) to deduce that for any prime p there is an open
neighborhood Up of p in Spec(A) such that Hep(Mq) ∼= Aq for all q ∈ Up. This
implies, by equation (13.2.47), that eq = ep. Therefore p 7→ ep is a locally constant
function Spec(A) → Z. We assumed that Spec(A) is connected, and this implies
that this is a constant function, say ep = −d for some integer d.

Define L := H−d(M) ∈Mf(A). Using truncation we see that M ∼= L[d] in D(A).
We know that Lp

∼= Ap for all primes p. Finally, Lemma 13.2.23 says that the
A-module L is projective. �

Remark 13.2.48. Lemma 13.2.41 is actually true in much greater generality: the
ring A does not have to be noetherian, and we do not have to assume that the
complexes M and M ′ have bounded above or finite cohomology. The proof is
harder. See [Ye10, Theorem 6.13].
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Proof of Theorem 13.2.34. Define the duality functors D := RHomA(−, R) and
D′ := RHomA(−, R′); these are finite dimensional contravariant triangulated func-
tors from Df(A) to itself. And define F := D′ ◦D and F ′ := D ◦D′, that are finite
dimensional covariant triangulated functors from Df(A) to itself. Let

(13.2.49) M := F (A) = (D′(D(A)) = RHomA(R,R′)

and
M ′ := F ′(A) = (D(D′(A)) = RHomA(R′, R).

These are objects of Db
f (A).

For any object N ∈ D(A) there is a morphism

ψN : N ⊗L
A RHomA(R,R′)→ RHomA

(
RHomA(N,R), R′

)
defined as follows: we choose a K-projective resolution P → N and a K-injective
resolution R′ → I ′. Then ψN is represented by the obvious homomorphism of
complexes

P ⊗A HomA(R, I ′)→ HomA

(
HomA(P,R), I ′

)
.

As N changes, ψN is a morphism of triangulated functors

ψ : −⊗L
AM → D′ ◦D = F.

For N = A the morphism ψA is an isomorphism, by equation (13.2.49). The functor
F has finite cohomological dimension, and the functor −⊗L

AM has bounded above
cohomological displacement. According to Theorem 13.1.27, the morphism ψN is
an isomorphism for any N ∈ D−f (A). In particular this is true for N := M ′. So,
using Theorem 13.2.15, we obtain

M ′ ⊗L
AM

∼= (D′ ◦D)(M ′) ∼= (D′ ◦D ◦D ◦D′)(A) ∼= A.

According to Lemma 13.2.41 there is an isomorphism M ∼= L[d]. Finally, using the
isomorphism ψR, we get

R⊗A L[d] ∼= F (R) = D′(D(R)) ∼= D′(A) = R′.

�

What if Spec(A) has more than one connected component? A decomposition of
Spec(A) into open-closed subschemes

(13.2.50) Spec(A) = Spec(A1) t · · · t Spec(Ar)

corresponds to a decomposition of A into a product of rings:

(13.2.51) A = A1 × · · · ×Ar.

The noetherian property implies that Spec(A) has only finitely many connected
components.
comment: move material on idempotents from subsec 15.5 to here

Definition 13.2.52. Let A be a noetherian ring. The connected component de-
composition of A is the canonical (up to renumbering) ring isomorphism

A = A1 × · · · ×Ar
such that each Spec(Ai) is a connected component of Spec(A).
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Let K1, . . . ,Kr be pretriangulated categories. The product category K :=∏r
i=1 Ki has a pretriangulated structure such that the functors Ki → K → Ki

are triangulated.

Proposition 13.2.53. Given a ring isomorphism A ∼=
∏r
i=1 Ai, the functor

M 7→
∏
i

Ai ⊗AM

is an equivalence of pretriangulated categories

D(A)→
∏
i

D(Ai).

Exercise 13.2.54. Prove Proposition 13.2.53.

Corollary 13.2.55. Let R and R′ be dualizing complexes over A, and let (13.2.51)
be the connected component decomposition of A. Then there is an isomorphism

R′ ∼= R⊗A
(
L1[d1]⊕ · · · ⊕ Lr[dr

]
)

in D(A), where each Li is a rank 1 projective Ai-module, and each di is an integer.
Furthermore, the modules Li are unique up to isomorphism, and the integers di are
unique.

Exercise 13.2.56. Prove Corollary 13.2.55.

Remark 13.2.57. A rank 1 projective A-module L is also called an invertible
A-module. This is because L is invertible for the tensor product. Recall that the
group of isomorphism classes of invertible A-modules is the commutative Picard
group PicA(A).

The commutative derived Picard group DPicA(A) is the abelian group PicA(A)×
Zr that classifies dualizing complexes over A, as in Corollary 13.2.55.

Now assume that A is noncommutative, and flat central over a commutative ring
K. There are noncommutative versions of dualizing complexes and of “invertible”
complexes, that are called tilting complexes. The latter form the nonabelian group
DPicK(A), and it classifies noncommutative dualizing complexes. See [Ric1], [Ric2],
[Kel], [Ye4] and [RoZi]. We hope to get to this material in Section 18 of the book.

Remark 13.2.58. The lack of uniqueness of dualizing complexes has always been
a source of difficulty. A certain uniqueness or functoriality is needed, already for
proving existence of dualizing complexes on schemes.

In [RD] Grothendieck utilized local and global duality in order to formulate a
suitable uniqueness of dualizing complexes. This approach was very cumbersome
(even without providing details!)

Since then there have been a few approaches in the literature to attack this
difficulty. Generally speaking, these approaches came in two flavors:

• Representablity: this started with Deligne’s Appendix to [RD], and contin-
ued most notably in the work of Neeman, and of Lipman et al. See [Ne2],
[Li2] and their references.
• Explicit Constructions: mostly in the early work of Lipman et al., including
[Li1] and [LNS], and in the work of Yekutieli [Ye2], and [Ye3] and [Ye6].
references.

In the Section ??? of the book we will present rigid dualizing complexes, for
which there is a built-in functoriality.
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13.3. More on Injective Resolutions. We start with a few facts about injective
modules over rings that are neither commutative nor noetherian. Sources for this
material are [Rot] and [Lam].

Definition 13.3.1.
(1) Let M be an A-module. A submodule N ⊆ M is called an essential sub-

module if for every nonzero submodule L ⊆ M , the intersection N ∩ L is
nonzero. In this case we also say that M is an essential extension of N .

(2) An essential monomorphism is a monomorphism φ : N �M whose image
is an essential submodule of M .

(3) Let M be an A-module. An injective hull (or injective envelope) of M is
an injective module I, together with an essential monomorphism M � I.

Proposition 13.3.2. Any A-module M admits an injective hull.

Proof. See [Lam, Section 3.D]. �

There is a weak uniqueness result for injective hulls.

Proposition 13.3.3. Let M be an A-module, and suppose φ : M � I and φ′ :
M � I ′ are monomorphisms into injective modules.

(1) If φ is essential, then there is a monomorphism ψ : I '−→ I ′ such that
ψ ◦ φ = φ′.

(2) If φ′ is also essential, then ψ above is an isomorphism.

Exercise 13.3.4. Prove Proposition 13.3.3.

In classical homological algebra we talk about the minimal injective resolution
of a module. Let us recall it. We start with taking the injective hull M � I0. This
gives an exact sequence

0→M → I0 →M1 → 0,
where M1 is the cokernel. Then we take the injective hull M1 � I1, and this gives
a longer exact sequence

0→M → I0 → I1 →M2 → 0,

etc. We want to generalize this idea to complexes.

Definition 13.3.5.
(1) A minimal injective complex of A-modules is a bounded below complex of

injective modules I, such that for every integer q the submodule of cocycles
Zq(I) ⊆ Iq is essential.

(2) Let M ∈ D+(A). A minimal injective resolution of M is a quasi-iso-
morphism M → I into a minimal injective complex I.

Proposition 13.3.6. Let M ∈ D+(A).
(1) There exists a minimal injective resolution φ : M → I.
(2) If φ′ : M → I ′ is another minimal injective resolution, then there is an

isomorphism ψ : I → I ′ in Cstr(A) such that φ′ = ψ ◦ φ.
(3) If M has finite injective dimension, then it has a bounded minimal injective

resolution I.
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Proof. We know that there is a quasi-isomorphism M → J where J is a bounded
below complex of injective modules. For any q let Eq be an injective hull of Zq(I).
By Proposition 13.3.3(1) we can assume that Eq sits inside Jq like this: Zq(I) ⊆
Eq ⊆ Jq. Since Eq is injective, we can decompose Jq into a direct sum: Jq ∼= Eq⊕
Kq. The homomorphism dqJ : Kq → Jq+1 is a monomorphism since Kq∩Zq(I) = 0.
And the image dqJ(Kq) is contained in Eq+1. Thus dqJ(Kq) is a direct summand of
Eq+1, and this shows that the quotient

Iq+1 := Eq+1/dqJ(Kq) ∼= Jq+1/(Kq+1 ⊕ dqJ(Kq))
is an injective module. The canonical surjection of graded modules π : J → I is a
homomorphism of complexes, with kernel the acyclic complex⊕

q

(
Kq[−q]

dq
J−−→ dqJ(Kq)[−q − 1]

)
.

Therefore π is a quasi-isomorphism. A short calculation shows that I is a minimal
injective complex, i.e. Zq(I) ⊆ Iq is essential.
(2) See next exercise. (We will not need this fact.)
(3) According to Proposition 13.1.19, the complex J that appears in item (1) can
be chosen to be bounded. �

Exercise 13.3.7. Prove Proposition 13.3.6(2).

Remark 13.3.8. There is a more general version of minimal injective complex: it
is a K-injective complex I consisting of injective modules, such that each Zq(I) ⊆ Iq
is essential. See [Kr, Appendix B].

Remark 13.3.9. Important: the isomorphisms ψ in Propositions 13.3.3 and 13.3.6
are not unique (see next exercise). We will see below (in Subsection ???? that a
rigid residue complex is a minimal injective complex that has no nontrivial rigid
automorphisms.

Exercise 13.3.10. Take A := K[[t]], the power series ring over a field K. Let
M := A/(t), the trivial module (the residue field viewed as an A-module).

(1) Find the minimal injective resolution

0→M → I0 → I1 → 0.
(2) Find nontrivial automorphisms of the complex I in Cstr(A) that fix the

submodule M ⊆ I0.

Now we add the noetherian condition.

Proposition 13.3.11. Assume A is a left noetherian ring. Let {Iz}z∈Z be a col-
lection of injective A-modules. Then I =

⊕
z∈Z Iz is an injective A-module.

Exercise 13.3.12. Prove Proposition 13.3.11. (Hint: use the Baer criterion.)

From here all rings here are noetherian commutative. For them much more can
be said.

Recall that a module M is called indecomposable is it not the direct sum of two
nonzero modules.

Definition 13.3.13. Let a ⊆ A be an ideal.
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(1) Let M be an A-module. The a-torsion submodule of M is the submodule
Γa(M) consisting of the elements that are annihilated by powers of a. Thus

Γa(M) = lim
i→

HomA(A/ai,M) ⊆M.

(2) If Γa(M) = M then M is called an a-torsion module.

Perhaps the most important theorem about injective modules over noetherian
commutative rings is the following structural result due to Matlis [Matl] from 1958.
See also [Ste, Section IV.4], [Lam, Sections 3.F and 3.I], [Mats, Section 18] and
[BrSh].

Theorem 13.3.14 (Matlis). Let A be a noetherian commutative ring.
(1) Let p ⊆ A be a prime ideal, and let J(p) be the injective hull of the Ap-

module k(p). Then, as an A-module, J(p) is injective, indecomposable and
p-torsion.

(2) Suppose I is an indecomposable injective A-module. Then I ∼= J(p) for a
unique prime ideal p ⊆ A.

(3) Every injective A module I is a direct sum of indecomposable injective A-
modules.

Theorem 13.3.14 tells us that any injective A-module I can be written as a direct
sum
(13.3.15) I ∼=

⊕
p∈Spec(A)

J(p)⊕µp

for a collection of cardinal numbers {µp}∈Spec(A), called the Bass numbers. General
counting tricks can show that the multiplicity µp is an invariant of I. But we can
be more precise:

Proposition 13.3.16. Assume A is a noetherian commutative ring. Let I be an
injective A-module, with decomposition (13.3.15). Then for any p there is equality

µp = rankk(p)
(
HomAp

(
k(p), Ap ⊗A I

))
.

Proof. Consider another prime q. If q * p then there is an element a ∈ q− p, and
then a is both invertible and locally nilpotent on Ap ⊗A J(q). This implies that
Ap ⊗A J(q) = 0. On the other hand, if q ⊆ p, then Ap ⊗A J(q) ∼= J(q). Therefore

Ap ⊗A I ∼=
⊕
q⊆p

J(p)⊕µp .

Next, if q  p, then there is an element b ∈ p − q, and it is both invertible and
zero on the module

HomAp

(
k(p), J(q)

)
.

The implication is that this module is zero.
Finally, if q = p then we have

HomAp

(
k(p), J(p)

) ∼= HomAp

(
k(p),k(p)

) ∼= k(p),
because the inclusion k(p) ⊆ J(p) is essential.

Putting all these cases together we see that
HomAp

(
k(p), Ap ⊗A I

)) ∼= k(p)⊕µp

as k(p)-modules. �
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13.4. Residue Complexes. In this subsection A is a noetherian commutative
ring. Here we introduce residue complexes (called residual complexes in [RD]).
Most of the material is taken from the original [RD]. In Example 13.4.12 we will
see the relation between the geometry of Spec(A) and the structure of dualizing
complexes over A (continuing Example 0.1.8 from the Introduction). The relation
to residues in the classical sense will be explained in Subsection 15.7.

Lemma 13.4.1. Let R be a dualizing complex over A and let p ⊆ A be a prime
ideal. There is an integer d such that

ExtiAp
(k(p), Rp) ∼=

{
k(p) if i = −d,
0 otherwise.

Proof. By Proposition 13.2.32, Rp is a dualizing complex over the local ring Ap.
And by Proposition 13.2.31,

S := RHomAp
(k(p), Rp)

is a dualizing complex over the residue field k(p). Since k(p) is a regular ring, it is
also a dualizing complex over itself. Theorem 13.2.34 tells us that S ∼= k(p)[d] in
D(k(p)) for some integer d. �

Definition 13.4.2. The number d in Lemma 13.4.1 is called the dimension of p
relative to R, and is denoted by dimR(p). In this way we obtain a function

dimR : Spec(A)→ Z,

called the dimension function associated to R.

Let us recall a few notions regarding the combinatorics of prime ideals in a ring
A. A prime ideal q is an immediate specialization of another prime p if p  q, and
there is no other prime p′ such that p  p′  q. In other words, if the dimension of
the local ring Aq/pq is 1.

A chain of prime ideals in A is a sequence (p0, . . . , pn) of primes such that
pi  pi+1 for all i. The number n is the length of the chain. The chain is called
saturated if for each i the prime pi+1 is an immediate specialization of pi.

Theorem 13.4.3. Let R be a dualizing complex over A and let p, q ⊆ A be prime
ideals. Assume that q is an immediate specialization of p. Then

dimR(q) = dimR(p)− 1.

To prove this theorem we need a baby version of local cohomology: codimension
1 only.

Let a be an ideal in A. The torsion functor Γa has a right derived functor RΓa.
For any complex M ∈ D(A), the module Hp

a(M) := Hp(RΓa(M)) is called the p-th
cohomology of M with supports in a. In case A is a local ring and m is its maximal
ideal, then Hp

m(M) is also called the local cohomology of M .
Now suppose a is a principal ideal in A, generated by an element a. Let Aa =

A[a−1] be the localized ring. For any A-moduleM we writeMa = Aa⊗AM . There
is a canonical exact sequence

(13.4.4) 0→ Γa(M)→M →Ma.

Lemma 13.4.5. Let a = (a) be a principal ideal in A.
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(1) For any injective module I the sequence
0→ Γa(I)→ I → Ia → 0

is exact.
(2) For any M ∈ D+(A) and any there is a long exact sequence of A-modules

· · · → Hp
a(M)→ Hp(M)→ Hp(Ma)→ Hp+1

a (M)→ · · · .

Proof. (1) Let J(q) be an indecomposable injective A-module. According to The-
orem 13.3.14(1), if a ∈ q then Γa(J(q)) = J(q) and J(q)a = 0. But if a /∈ q then
J(q) = J(q)a and Γa(J(q)) = 0. By Theorem 13.3.14 we see that any injective
module I breaks up into a direct sum I = Γa(I) ⊕ Ia, and this proves that the
sequence is split exact.
(2) Choose a resolution M → I by a bounded below complex of injectives. We
obtain an exact sequence of complexes as in item (1). The long exact sequence in
cohomology

· · · → Hp(Γa(I))→ Hp(I)→ Hp(Ia)→ Hp+1(Γa(I))→ · · ·
is what we want. �

Lemma 13.4.6. Suppose A is an integral domain, with fraction field K, such that
A 6= K. Then K is not a finitely generated A-module.

Proof. Let a ∈ A be a nonzero element that is not invertible. Then
A  a−1 ·A  a−2 ·A  · · · ⊆ K

is an infinite ascending sequence of A-submodules in K. �

Lemma 13.4.7. For any ideal a and any M ∈ D(A) there is an isomorphism of
A-modules

Hp
a(M) ∼= lim

k→
ExtpA(A/ak,M).

Proof. Choose a K-injective resolution M → I. Then, using the fact that cohomol-
ogy commutes with direct limits, we have

Hp
a(M) ∼= Hp(Γa(I)) ∼= Hp

(
lim
k→

HomA(A/ak, I)
)

∼= lim
k→

Hp
(
HomA(A/ak, I)

) ∼= lim
k→

ExtpA(A/ak,M).

�

Lemma 13.4.8. Assume A is local, with maximal ideal m. Let R be a dualizing
complex over A, and let d := dimR(m). Then for any i 6= −d the local cohomology
Hi

m(R) vanishes.

See Remark 13.4.24 for more about H−dm (R).

Proof. We know that

ExtiA(k(m), R) ∼=

{
k(m) if i = −d,
0 otherwise.

Let N be a finite length A-module. Since N is gotten from the residue field k(m) by
finitely many extensions, induction on the length of N shows that ExtiA(N,R) = 0
for all i 6= −d. This holds in particular for N := A/mk. Now use Lemma 13.4.7. �
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Proof of Theorem 13.4.3. After replacing A with Aq/pq, we can assume that p = 0
and A = Aq. Thus A is a 1-dimensional local integral domain, with only two primes
ideals: 0 = p and the maximal ideal q. Take any nonzero element a ∈ q. Then the
localization Aa is the field of fractions of A, i.e. Aa = k(p). On the other hand,
letting a := (a) ⊆ A, the quotient A/a is a finite length A-module, so the ideal a is
q-primary, and Γa = Γq.

Define d := dimR(q) and e := dimR(p). By Lemma 13.4.5 there is an exact
sequence of A-modules

· · · → H−ea (R)→ H−e(R) φ−→ H−e(Ra)→ H−e+1
a (R)→ · · · .

Since a 6= 0 there are equalities Aa = Ap = Frac(A) = k(p). Then H−e(Ra) ∼= k(p),
and this is not a finitely generated A-module by Lemma 13.4.6. On the other hand
the A-module H−e(R) is finitely generated. We conclude that homomorphism φ is
not surjective, and thus H−e+1

a (R) 6= 0. But H−e+1
a (R) = H−e+1

q (R), so according
to Lemma 13.4.8 we must have −e+ 1 = −d. Thus e = d+ 1 as claimed. �

Corollary 13.4.9. If A has a dualizing complex, then the Krull dimension of A is
finite. More precisely, if R is a dualizing complex over A, then dim(A) is at most
the injective dimension of R.

Proof. Let [i0, i1] be the injective concentration of the complex R. See Definition
13.1.12. This is a bounded interval. Since

ExtiAp
(k(p), Rp) ∼= ExtiA(A/p, R)p,

we see that the number dimR(p) ∈ [i0, i1].
Let (p0, . . . , pn) be a chain of prime ideals in A. Because A is noetherian, we

can squeeze more primes into this chain, until after finitely many steps it becomes
saturated. According to Theorem 13.4.3 we have

n = dimR(p0)− dimR(pn).
Therefore n ≤ i1 − i0. �

Definition 13.4.10. The ring A is called catenary if for any pair of primes p ⊆ q
there is a number np,q such that for any saturated chain (p0, . . . , pn) with p0 = p
and pn = q, there is equality n = np,q.

Corollary 13.4.11. If A has a dualizing complex, then it is catenary.

Proof. Let R be a dualizing complex over A. The proof of the previous corollary
shows that the number

np,q = dimR(p)− dimR(q)
has the desired property. �

Example 13.4.12. This is a continuation of Example 0.1.8 from the Introduction.
Consider the ring

A = R[t1, t2, t3]/(t3 · t1, t3 · t2).
The affine algebraic variety

X = Spec(A) ⊆ A3
R

is shown in figure 8. It is the union of a plane Y and a line Z, meeting at the origin.
Since the ring A is finite type over the field R, it has a dualizing complex R. We

will now prove that there is some integer i s.t. Hi(R) and Hi+1(R) are nonzero.
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Figure 8. An algebraic variety X that is connected but not
equidimensional: it has irreducible components Y and Z of dimen-
sions 2 and 1 respectively. The generic points p ∈ Y and q ∈ Z are
shown.

Define the prime ideals m := (t1, t2, t3), q := (t1, t2) and p := (t3). Thus m is
the origin, q is the generic point of the line Z = Spec(A/q), and p is the generic
point of the plane Y = Spec(A/p). By translating R as needed, we cam assume
that dimR(m) = 0. Since m is an immediate specialization of q, Theorem 13.4.3
tells us that dimR(q) = 1. Similarly, since any line in Y passing through the origin
gives rise to a saturated chain (p, q′,m), we see that dimR(p) = 2.

Since q is the generic point of Z, its local ring is the residue field: Aq = k(q).
We know that dimR(q) = 1. Hence

k(q) ∼= Ext−1
Aq

(k(q), Rq) = Ext−1
Aq

(Aq, Rq) ∼= Ext−1
A (A,R)q ∼= H−1(R)q.

Therefore H−1(R) 6= 0. A similar calculation involving p shows that H−2(R) 6= 0.

Example 13.4.13. Let A be a local ring, with maximal ideal m and residue field
k(m). Recall that A is called Gorenstein if the free module A has finite injective
dimension. The ring A is called called Cohen-Macaulay if its depth is equal to its
dimension, where the depth of A is the minimal integer i such that ExtiA(k(m), A) 6=
0. It is known that Gorenstein implies Cohen-Macaulay. See [Mats] for details.

As is our usual practice (cf. Convention 13.2.10) we shall say that a noetherian
commutative ring A is Cohen-Macaulay (resp. Gorenstein) if it has finite Krull
dimension, and all its local rings Ap are Cohen-Macaulay (resp. Gorenstein) local
rings, as defined above.

Assume A has a connected spectrum, and let R be a dualizing complex over
A. Grothendieck showed in [RD, Section V.9] that A is a Cohen-Macaulay ring iff
R ∼= L[d] for some finitely generated module L and some integer d; the proof is
not easy. It is however pretty easy to prove (using Theorem 13.2.34) that A is a
Gorenstein ring iff R ∼= L[d] for some invertible module L and some integer d.

There is a lot more to say about the relation between the CM (Cohen-Macaulay)
property and duality. See Remark 13.4.26
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Recall that for any p ∈ Spec(A) we denote by J(p) the corresponding indecom-
posable injective module.
Definition 13.4.14. A residue complex over A is a complex of A-module K having
these properties:

(i) K is a dualizing complex.
(ii) For any integer d there is an isomorphism of A-modules

K−d ∼=
⊕

p∈Spec(A)
dimK(p)=d

J(p) .

The reason we like residue complexes is this:
Theorem 13.4.15. Suppose K and K′ are residue complexes over A that have the
same dimension function. Then the homomorphism

Q : HomCstr(A)(K,K′)→ HomD(A)(K,K′)
is bijective.

In more words: for any morphism ψ : K → K′ in D(A) there is a unique strict
homomorphism of complexes φ : K → K′ such that ψ = Q(φ).

Proof. Since the complex K′ is K-injective, by Theorem ????
comment: creat new thm just before Cor 9.1.13
we know that the homomorphism

Q : HomK(A)(K,K′)→ HomD(A)(K,K′)
is bijective. And by definition the homomorphism

P : HomCstr(A)(K,K′)→ HomK(A)(K,K′)
is surjective. It remains to prove that

HomA(K,K′)−1 = 0,
i.e. here are no nonzero degree −1 homomorphisms γ : K → K′.

The residue complexes K and K′ decompose into indecomposable summands by
the formula in property (ii) of Definition 13.4.14. A homomorphism γ : K → K′ of
degree −1 is nonzero iff at least one of its components

γp,q : J(p)→ J(q)
is nonzero, for some J(p) ⊆ K−i and J(q) ⊆ K′ −i−1. Denoting by dim the di-
mension function of both these dualizing complexes, we have dim(p) = i and
dim(q) = i + 1. But the lemma below says that q has to be a specialization of
p. Therefore, as in the proof of Corollary 13.4.9, there is an inequality in the op-
pose direction: dim(p) ≥ dim(q). We see that it is impossible to have a nonzero
degree −1 homomorphism γ : K → K′. �

Lemma 13.4.16. Let p, q be prime ideals. If there is a nonzero homomorphism
γ : J(p)→ J(q), then q is a specialization of p.
Proof. Assume q is not a specialization of p; i.e. p ( q. So there is an element
a ∈ p − q. Let γ : J(p) → J(q) be a homomorphism, and consider the module
N := γ(J(p)) ⊆ J(q). Since J(p) is p-torsion, the element a acts on N locally-
nilpotently. On the other hand, J(q) is a module over Aq, so a acts invertibly on
J(q), and hence it has zero annihilator in N . The conclusion is that N = 0. �
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Here is a general existence theorem.

Theorem 13.4.17. Suppose the ring A has a dualizing complex R. Let R→ K be
a minimal injective resolution of R. Then K is a residue complex over A.

The proof is after two lemmas.

Lemma 13.4.18. Let S ⊆ A be a multiplicatively closed set, with localization AS.
For any A-module M we write MS := AS ⊗AM .

(1) If I is an injective A-module, then IS is an injective AS-module.
(2) If I is an injective A-module and M ⊆ I is an essential A-submodule, then

MS ⊆ IS is an essential AS-submodule.
(3) If I is a minimal injective complex of A-modules, then IS is a minimal

injective complex of AS-modules,

Proof. (1) By Theorem 13.3.14 there is a direct sum decomposition I ∼= I ′ ⊕ I ′′,
where

I ′ ∼=
⊕

p∩S=∅
J(p)⊕µp and I ′′ ∼=

⊕
p∩S 6=∅

J(p)⊕µp .

If p ∩ S = ∅ then J(p) ∼= J(p)S is an injective AS-module; and if p ∩ S 6= ∅ then
J(p)S = 0. We see that IS ∼= I ′ is an injective AS-module.

(2) Denote by λ : I → IS the canonical homomorphism. Under the decomposition
I ∼= I ′ ⊕ I ′′ above, λ|I′ : I ′ → IS is an isomorphism.

Let L be a nonzero AS-submodule of IS . Since λ is split, we can lift it to a
submodule L′ ⊆ I ′ ⊆ I, such that λ : L′ → L is bijective. Because M ⊆ I is
essential, we know that M ∩ L′ is nonzero. But M ∩ L′ ⊆ I ′, so λ(M ∩ L′) is a
nonzero submodule of L. Yet M ∩L′ ⊆M , so λ(M ∩L′) ⊆ λ(M) ⊆MS . Therefore
MS ∩ L 6= 0.

(3) By part (1) the complex IS is a bounded below complex of injective AS-modules.
Exactness of localization shows that Zn(IS) = Zn(I)S inside InS ; so by part (2) the
inclusion Zn(IS)� InS is essential. �

Lemma 13.4.19. Let a ⊆ A be an ideal, and define B := A/a.
(1) If I is an injective A-module, then J := HomA(B, I) is an injective B-

module.
(2) Let I and J be as above. If M ⊆ I is an essential A-submodule, then

N := HomA(B,M) is an essential B-submodule of J .
(3) If I is a minimal injective complex of A-modules, then J := HomA(B, I) is

a minimal injective complex of B-modules,

Proof. (1) This is imemdiate from adjunction.

(2) We identity J and N with the submodules of I and M respectively that are
the annihilators of a. Let L ⊆ J be a nonzero B-submodule. Then L is a nonzero
A-submodule of I. . Because M is essential, the intersection L ∩M is nonzero.
But L ∩M is annihilated by a, so it sits inside N , and in fact L ∩M = L ∩N .

(3) By part (1) the complex J is a bounded below complex of injective B-modules.
Left exactness of HomA(B,−) shows that Zn(J) = HomA(B,Zn(I)) inside Jn; so
by part (2) the inclusion Zn(J)� Jn is essential. �
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Proof of Theorem 13.4.17. Since K ∼= R in D(A) it follows that K is a dualizing
complex. To show that K has property (ii) of Definition 13.4.14 we have to count
multiplicities. For any p and d let µp,d be the multiplicity of J(p) in K−d, so that

K−d ∼=
⊕

p∈Spec(A)

J(p)⊕µp,d .

We have to prove that

(13.4.20) µp,d =
{

1 if dimK(p) = d,

0 otherwise.

Now by Lemma 13.4.18(3) the complexKp = Ap⊗AK is a minimal injective complex
of Ap-modules. Because Kp is K-injective over Ap we get

Ext−dAp
(k(p), Rp) ∼= H−d

(
HomAp

(k(p),Kp)
)

as k(p)-modules. By Lemma 13.4.19(3) the complex HomAp
(k(p),Kp) is a minimal

injective complex of k(p)-modules. It is easy to see (and we leave this verifica-
tion to the reader) that a minimal injective complex over a field must have trivial
differential. Therefore

Hd
(
HomAp

(k(p),Kp)
) ∼= HomAp

(k(p),K−dp ).
Now by arguments like in the proof of Lemma 13.4.18(1) we know that

HomAp
(k(p), J(q)p) ∼=

{
k(p) if q = p,

0 otherwise.
It follows that

HomAp
(k(p),K−dp ) ∼= k(p)⊕µp,d .

We see that
rankk(p)

(
Ext−dAp

(k(p), Rp)
)

= µp,d.

But by Definition 13.4.2 this number satisfies (13.4.20). �

Corollary 13.4.21. If K is a residue complex over A then it is a minimal injective
complex.

Proof. Let φ : K → K′ be a minimal injective resolution of K. According to Theo-
rem 13.4.17, K′ is also a residue complex. Now Q(φ) : K → K′ is an isomorphism
in D(A), so by Theorem 13.4.15 we know that φ : K → K′ is an isomorphism in
Cstr(A). �

Exercise 13.4.22. Find a direct proof of Corollary 13.4.21, without resorting to
Theorems 13.4.17 and 13.4.15. (Hint: look at the proof of Proposition 13.3.6.)

We end this section with three remarks.

Remark 13.4.23. Here is a brief explanation of Matlis duality. For more details
see [RD, Section V.5], [Mats, Theorem 18.6] or [BrSh, Section 10.2]. Assume A is a
complete local ring with maximal ideal m. As usual, the category of finitely gener-
ated A-modules is Mf(A). There is also the category Ma(A) of artinian A-modules.
These are full abelian subcategories of M(A). Note that these subcategories are
characterized by dual properties: the objects of Mf(A) are noetherian, i.e. they sat-
isfy the ascending chain condition; and the objects of Ma(A) satisfy the descending
chain condition.
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Consider the indecomposable injective module J(m). The functor D :=
HomA(−, J(m)) is exact of course. Matlis duality asserts that

D : Mf(A)op →Ma(A)

is an equivalence, with quasi-inverse D.

Remark 13.4.24. We now provide a brief discussion of local duality, based on
[RD, Section V.6]. (There is a weaker variant of this result, for modules instead
of complexes, that can be found in [BrSh, Theorem 11.2.6].) Again A is local,
with maximal ideal m. Let R be a dualizing complex over A. By translating R
we can assume that dimR(m) = 0. Lemma 13.4.8 tells us that Hi

m(R) = 0 for all
i 6= 0. A calculation, that relies on Matlis duality, shows that H0

m(R) ∼= J(m), the
indecomposable injective corresponding to m.

Let us fix an isomorphism β : H0
m(R) '−→ J(m). This induces a morphism

(13.4.25) θM : RΓm(M)→ HomA

(
RHomA(M,R), J(m)

)
,

functorial in M ∈ D+(A). The Local Duality Theorem [RD, Theorem V.6.2] says
that θM is an isomorphism if M ∈ D+

f (A).
Here is a modern take on this theorem: we can construct the morphism θM for

any M ∈ D(A). Let’s replace R by the residue complex K (the minimal injective
resolution of R). Then β is just a module isomorphism β : K0 '−→ J(m) . For any
complexM we choose a K-injective resolutionM → I(M). Then θM is represented
by the homomorphism

Γm(I(M))→ HomA

(
HomA(I(M),K),K0)

in Cstr(A) that sends an element u ∈ Γm(I(M))p and a homomorphism

φ ∈ HomA(I(M),K)−p

to φ(u) ∈ K0.
We know that the functors appearing in equation (13.4.25) have finite cohomo-

logical dimensions. Since A ∈ D+
f (A), the local duality theorem from [RD] tells us

that θA is an isomorphism. Now we can apply Theorem 13.1.27 to conclude that
θM is an isomorphism for any M ∈ Df(A).

Remark 13.4.26. Here is more on the CM property and duality. Let A be a
noetherian ring with connected spectrum. Assume A has a dualizing complex R,
and corresponding dimension function dimR.

Consider a complex M ∈ Db
f (A). In [RD] Grothendieck defines M to be a CM

complex with respect to R if for any prime ideal p ⊆ A and every i 6= −dimR(p) the
local cohomology satisfies Hi

p(Mp) = 0. Notice that this is a property of the sheaf
M (the sheafification of the module M) on the topological space X := Spec(A).

It is proved in [RD] that when A is a regular ring, R = A, and M is a finitely
generated A-module, then M is a CM module (in the conventional sense) iff it is a
CM complex.

Let D0
f (A) be the full subcategory of Db

f (A) on the complexes M such that
Hi(M) = 0 for all i 6= 0. We know that D0

f (A) is equivalent to Mf(A) = Modf A. In
[YeZh2] it was proved that the following are equivalent for a complex M ∈ Db

f (A):
(i) The complex M is CM w.r.t. R.
(ii) The complex RHomA(M,R) belongs to D0

f (A).
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It follows that the CM complexes form an abelian subcategory of Db
f (A), dual

to Mf(A). In fact, they are the heart of a perverse t-structure on Db
f (A), and hence

they deserve to be called perverse finitely generated A-modules. Geometrically,
on the scheme X := Spec(A), the CM complexes inside Db

c (X) form a stack of
abelian categories, and so they are perverse coherent sheaves. All this is explained
in [YeZh2, Section 6].
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Third Part

comment: Start of course IV

14. Rigid Complexes over Commutative Rings

As we saw in the previous section, a dualizing complex R over a noetherian
commutative ring A is not unique. This was the source of major difficulties in
[RD], first for gluing dualizing complexes on schemes, and then for producing the
trace morphisms.

In 1997, M. Van den Bergh [VdB] discovered the idea of rigidity for dualizing
complexes. This was done in the context of noncommutative ring theory: A is
a noncommutative noetherian ring, central over a base field K. The theory of
noncommutative rigid dualizing complexes was developed further in several papers
of Zhang and Yekutieli, among them [YeZh1] and [YeZh2]. Some of this material
will be discussed in Section 18 of the book.

Here we will deal with the commutative side only, which turns out to be extremely
powerful. Before explaining it, let us first observe that this is one of the rare cases
in which an idea originating from noncommutative algebra had significant impact
in commutative algebra.

In this section we define rigid dualizing complexes, and prove their existence
and uniqueness, in the following context: K is a regular noetherian commutative
ring (e.g. a field or the ring of integers Z), and A is a flat essentially finite type
commutative K-ring. We then introduce the functorial properties of rigid dualizing
complexes: rigid traces and rigid localization morphisms. After that we pass to
rigid residue complexes. For them we also define the ind-rigid trace morphisms.
These concepts will allow us (in Section 17) to geometrize all the above – namely
to produce rigid residue complexes of essentially finite type K-schemes, and to
manipulate them effectively. The material here is based on several papers of Zhang
and Yekutieli, including them [YeZh1], [YeZh2], [YeZh3], [YeZh4], [Ye11] and [Ye13].

The theory of rigid dualizing complexes does not really require the flatness as-
sumption (of A over K). In the papers [YeZh3] and [YeZh4] the authors had already
developed this theory without flatness, using flat DG ring resolutions. This is a
much more difficult theory, and in fact there were a few crucial mistakes in these two
papers. These mistakes were discovered by Avramov, Iyengar, Lipman and Nayak
in the paper [AILN], and one error was corrected there. The remaining mistakes
have since been rectified (in [Ye11] and [Ye13]). See Remark 14.1.26 below.

14.1. The Squaring Operation and Rigid Complexes. In this subsection we
work in the following setup:

Setup 14.1.1. A is a nonzero commutative ring, and B is a flat commutative
A-ring.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Consider the enveloping ring B ⊗A B. It comes equipped with a few ring homo-
morphisms:

(14.1.2) B
ηi−→ B ⊗A B

ε−→ B,

where η0(b) := b⊗1, η1(b) := 1⊗b, and ε(b0⊗b1) := b0 · b1. We view B as a module
over B ⊗A B via ε. Of course ε ◦ ηi = idB .

Remark 14.1.3. It will be helpful to consider a (B ⊗A B)-module M as an A-
central B-B-bimodule, where the left B-action on M is through η0, and the right
action is through η1. This is the noncommutative point of view. To be precise, if
B had been a noncommutative central A-ring, then the enveloping ring would have
been B ⊗A Bop. More on this in Section 18.

Suppose we are given B-modulesM0 andM1. Then the tensor productM0⊗AM1
is a (B ⊗A B)-module. In this way we get an additive bifunctor

(−⊗A −) : M(B)×M(B)→M(B ⊗A B).
Passing to complexes, and then to homotopy categories, we obtain a triangulated
bifunctor
(14.1.4) (−⊗A −) : K(B)×K(B)→ K(B ⊗A B).

Lemma 14.1.5. The bifunctor (14.1.4) has a left derived bifunctor
(−⊗L

A −) : D(B)×D(B)→ D(B ⊗A B).
If either M0 or M1 is a complex of B-modules that is K-flat over A, then the
morphism

ηM0,M1 : M0 ⊗L
AM1 →M0 ⊗AM1

in D(B ⊗A B) is an isomorphism.

Proof. This is a variant of Theorem 12.8.1. We know by Corollary 10.3.27 and
Proposition 9.3.2 that any complex M ∈ C(B) admits a K-flat resolution P →M .
Because B is flat over A, the complex P is also K-flat over A. By Theorem 12.7.7
the left derived functor −⊗L

A − exists, and the condition on ηM0,M1 holds. �

Remark 14.1.6. The innocuous looking Lemma 14.1.5 is actually of tremendous
importance. Without the flatness of A → B we could do very little homological
algebra of bimodules. Getting around the lack of flatness requires the use of flat
DG ring resolutions, as explained in Remark 14.1.26.

Any module L ∈M(B) has an action by B⊗AB coming from the homomorphism
ε in (14.1.2). Consider now a module N ∈ M(B ⊗A B). The abelian group N has
two possible B-module structures, coming from the homomorphisms ηi. Thus the
abelian group HomB⊗AB(L,N) has three possible B-module structures: there is one
action from the B-module structure on L, and there are two from the B-module
structures on N . The next easy lemma is crucial.

Lemma 14.1.7. The three B-module structures on HomB⊗AB(L,N) coincide.

Exercise 14.1.8. Prove the lemma.

We are mostly interested in the B-module L = B. As the module N changes,
we get an additive functor

HomB⊗AB(B,−) : M(B ⊗A B)→M(B).
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Passing to complexes, and then to homotopy categories, we get a triangulated
functor

HomB⊗AB(B,−) : K(B ⊗A B)→ K(B).
This has a right derived functor

(14.1.9) RHomB⊗AB(B,−) : D(B ⊗A B)→ D(B),

that is calculated by K-injective resolutions. Namely if N ∈ C(B ⊗A B) is a K-
injective complex, then the morphism

ηN : HomB⊗AB(B,N)→ RHomB⊗AB(B,N)

in D(B) is an isomorphism.
By composing the bifunctor (− ⊗L

A −) from Lemma 14.1.5 and the functor
RHomB⊗AB(B,−) from (14.1.9) we obtain a triangulated bifunctor

(14.1.10) RHomB⊗AB(B,−⊗L
A −) : D(B)×D(B)→ D(B).

Definition 14.1.11. Under Setup 14.1.1, the squaring operation is the functor

SqB/A : D(B)→ D(B)

defined as follows:
(1) For a complex M ∈ D(B), its square is the complex

SqB/A(M) := RHomB⊗AB(B,M ⊗L
AM) ∈ D(B).

(2) For a morphism φ : M → N in D(B), its square is the morphism

SqB/A(φ) := RHomB⊗AB(B,φ⊗L
A φ) : SqB/A(M)→ SqB/A(N)

in D(B).

It will be good to have an explicit formulation of the squaring operation. Let us
first choose a K-projective resolution σ : P → M in C(B). Note that P is unique
up to homotopy equivalence. Since B is flat over A, the complex P is K-flat over
A. We get an isomorphism

(14.1.12) presP : P ⊗A P
'−→M ⊗L

AM

in D(B ⊗A B) that we call a presentation. It is uniquely characterized by the
commutativity of the diagram

M ⊗L
AM

ηM,M
// M ⊗AM

P ⊗L
A P

ηP,P

∼=
//

Q(σ)⊗L
AQ(σ) ∼=

OO

P ⊗A P

presP
∼=

dd

Q(σ⊗Aσ)

OO

in D(B ⊗A B).
Next we choose a K-injective resolution ρ : P ⊗A P → I in C(B ⊗A B). It is

unique up to homotopy equivalence. The resolution ρ gives rise to an isomorphism

(14.1.13) presI : HomB⊗AB(B, I) '−→ RHomB⊗AB(B,P ⊗A P )
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in D(B) such that the diagram

HomB⊗AB(B,P ⊗A P )
ηM,P⊗AP //

Q(HomB⊗AB(B,ρ))

��

RHomB⊗AB(B,P ⊗A P )

RHomB⊗AB(B,Q(ρ))∼=

��

HomB⊗AB(B, I)
ηM,I

∼=
//

presI
∼=

55

RHomB⊗AB(B, I)

is commutative.
The combination of the presentations presP and presI gives an isomorphism

(14.1.14) presP,I : HomB⊗AB(B, I) '−→ SqB/A(M)

in D(B), that we also call a presentation.
Let φ : M → N be a morphism in D(B). The morphism SqB/A(φ) can also

be made explicit using presentations. For that we need to choose a K-projective
resolution σN : Q→ N in C(B), and a K-injective resolution ρN : Q⊗A Q→ J in
C(B ⊗A B). These provide us with a presentation

presQ,J : HomB⊗AB(M,J) '−→ SqB/A(N).

There are homomorphisms φ̃ : P → Q in Cstr(B), and χ : I → J in Cstr(B ⊗A B),
both unique up to homotopy, such that the diagrams

P
Q(σ)
∼=
//

Q(φ̃)

��

M

φ

��

Q
Q(σN )
∼=

// N

M ⊗L
AM

φ⊗L
Aφ

��

P ⊗A P
presP
∼=

oo
Q(ρ)
∼=

//

Q(φ̃⊗Aφ̃)

��

I

Q(χ)

��

N ⊗L
A N Q⊗A Q

presQ
∼=

oo
Q(ρN )
∼=

// J

in D(C) and D(B ⊗A B) respectively are commutative. See Subsections 9.1 and
9.2. Then the diagram

(14.1.15) HomB⊗AB(B, I)
presP,I
∼=

//

Q(HomB⊗AB(idB ,χ))

��

SqB/A(M)

SqB/A(φ)

��

HomB⊗AB(B, J)
presQ,J
∼=

// SqB/A(N)

in D(B) is commutative.
The squaring operation is not an additive functor. In fact, it is a quadratic

functor:

Theorem 14.1.16. Let φ : M → N be a morphism in D(B) and let b ∈ B. Then

SqB/A(b ·φ) = b2 · SqB/A(φ),

as morphisms SqB/A(M)→ SqB/A(N) in D(B).
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Proof. We shall use presentations. Let φ̃ : P → Q be a homomorphism in Cstr(B)
that represents φ, as above. Then the homomorphism

b · φ̃ : P → Q

Cstr(B) represents b ·φ. Tensoring we get a homomorphism

(b · φ̃)⊗A (b · φ̃) : P ⊗A P → Q⊗A Q
Cstr(B ⊗A B). But

(b · φ̃)⊗A (b · φ̃) = (b⊗ b) · (φ̃⊗A φ̃).
Hence on the K-injectives we get the homomorphism

(b⊗ b) ·χ : I → J

Cstr(B ⊗A B). We conclude that
HomB⊗AB(idB , (b⊗ b) ·χ) : HomB⊗AB(B, I)→ HomB⊗AB(B, J)

represents SqB/A(b ·φ). Finally, by Lemma 14.1.7 we know that

HomB⊗AB(idB , (b⊗ b) ·χ) = HomB⊗AB(b2 · idB , χ) = b2 · HomB⊗AB(idB , χ).
�

Definition 14.1.17. Let M ∈ D(B). A rigidifying isomorphism for M over B
relative to A is an isomorphism

ρ : M '−→ SqB/A(M)

in D(B).

Definition 14.1.18. A rigid complex over B relative to A is a pair (M,ρ), con-
sisting of a complex M ∈ D(B) and a rigidifying isomorphism

ρ : M '−→ SqB/A(M)

in D(B).

Definition 14.1.19. Suppose (M,ρ) and (N, σ) are rigid complexes over B relative
to A. A morphism of rigid complexes

φ : (M,ρ)→ (N, σ)
is a morphism φ : M → N in D(B), such that the diagram

M
ρ
//

φ

��

SqB/A(M)

SqB/A(φ)

��

N
σ // SqB/A(N)

in D(B) is commutative.
The category of rigid complexes over B relative to A is denoted by D(B)rig/A.

Recall that a complex M ∈ D(B) has the derived Morita property if the derived
homothety morphism

αR
M : B → RHomB(M,M)

in D(B) is an isomorphism.
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Theorem 14.1.20. Let (M,ρ) be a rigid complex over B relative to A. If M has
the derived Morita property, then the only automorphism of (M,ρ) in D(B)rig/A is
the identity.

Proof. Let
φ : (M,ρ) '−→ (M,ρ)

be an automorphism in D(B)rig/A. By Proposition 13.2.6, there is a unique invert-
ible element b ∈ B such that φ = b · idM , as morphisms M →M in D(B).

Next, according to Theorem 14.1.16, we have
SqB/A(φ) = SqB/A(b · idM ) = b2 · SqB/A(idM ).

Plugging this into the diagram in Definition 14.1.19 we get a commutative diagram

M
ρ

∼=
//

b · idM
��

SqB/A(M)

b2 · idM
��

M
ρ

∼=
// SqB/A(M)

in D(B). Once more using Proposition 13.2.6 we see that b2 = b. Because b is an
invertible element, it follows that b = 1. Thus φ = idM . �

Example 14.1.21. Assume B = A, and take M := B. Then B ⊗A B ∼= B,
M ⊗L

AM
∼= M , and there are canonical isomorphisms

SqB/A(M) = RHomB⊗AB(B,M ⊗L
AM) ∼= HomB(B,M) ∼= M.

Thus the pair (M, id) belongs to D(B)rig/A. Furthermore, the complex M has the
derived Morita property, so Theorem 14.1.20 applies.

To the reader who might object to this as being a ridiculously stupid example,
we say that in all important situations, there is exactly one object in D(B)rig/A
(up to unique isomorphism, according to Theorem 14.1.20). And it is induced, in
a suitable sense, from the one in the example above. See Subsection 14.4.

The next exercise and examples exhibit rigid complexes that are far from trivial.
These constructions will reappear later, as steps to produce rigid complexes over A
relative to K, where K is a regular ring and A is an essentially finite type K-ring.

Exercise 14.1.22. Take B := A[t1, . . . , tn], the polynomial ring in n variables.
(1) Let C := B ⊗A B. Prove that

ExtiC(B,C) ∼=

{
B if i = n

0 if i 6= n.

(Hint: Let I be the kernel of the multiplication homomorphism C → B.
Show that I is generated by the sequence c = (c1, . . . , cn), where cj :=
tj ⊗ 1 − 1 ⊗ tj . Then show that the Koszul complex K(C; c) is a free
resolution of B over C. Finally calculate the cohomology of the complex
HomC

(
K(C; c), C

)
.

(2) Conclude from (1) that the complex B[n] ∈ D(B) is rigid relative to A;
namely that there is a rigidifying isomorphism

ρ : B[n] '−→ SqB/A
(
B[n]

)
.
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Example 14.1.23. Let A be a noetherian ring, and let B := A[t1, . . . , tn] as in
the exercise above. Let ∆B/A := ΩnB/A be the module of degree n differential
forms. It is the n-th exterior power of Ω1

B/A, so it is a free B module of rank
1, with basis d(t1) ∧ · · · ∧ d(t1). We will show later, in Subsection 15.6, that the
complex ∆B/A[n] has a canonical rigidifying isomorphism relative to A. I.e. there
is a rigidifying isomorphism

ρ : ∆B/A[n] '−→ SqB/A
(
∆B/A[n]

)
in D(B) that is invariant under A-ring automorphisms of B.

Example 14.1.24. Let A be a noetherian ring, and let A→ B be a finite flat ring
homomorphism. So B is a finitely generated projective A-module. Define

∆B/A := HomA(B,A) ∈M(B).

We will see later, in Subsection 15.6, that the complex ∆B/A has a canonical rigid-
ifying isomorphism relative to A. I.e. there is a rigidifying isomorphism

ρ : ∆B/A
'−→ SqB/A(∆B/A)

in D(B) that is invariant under A-ring automorphisms of B.

Remark 14.1.25. The squaring operation is related to Hochschild cohomology.
Assume for simplicity that A is a field and M is a B-module. Then for each i the
cohomology

Hi(SqB/A(M)) = ExtiB⊗AB(B,M ⊗AM)
is the i-th Hochschild cohomology with values in the B-bimodule M ⊗A M . For
more on this material see [AILN], [Sha1] and [Sha2].

Remark 14.1.26. It is possible to avoid the assumption that B is flat over A.
This is done by choosing a DG ring B̃ that is K-flat as a DG A-module, and a DG
ring quasi-isomorphism B̃ → B over A. Such resolutions always exist. Then we
take

(14.1.27) SqB/A(M) := RHomB̃⊗AB̃(B,M ⊗L
AM).

This was the construction used by Zhang and Yekutieli in the paper [YeZh3].
Unfortunately there was a serious error in [YeZh3]: we did not prove that formula

(14.1.27) does not depend on the resolution B̃. This error was discovered, and
corrected, by Avramov, Iyengar, Lipman and Nayak in in their paper [AILN].

There were ensuing errors in [YeZh3] regarding the functoriality of the squaring
operation in the ring B (this will be studied in Subsection 14.3 below). The paper
[AILN] did not treat such functoriality at all, and the construction and proofs were
corrected only in our recent paper [Ye11]. It in worthwhile to mention that the
correct proofs (both in [AILN] and [Ye11]) rely on noncommutative DG rings and
DG bimodules over them.

Because the non-flat case is so much more complicated, we have decided not to
reproduce it in the book. The interested reader can look up the research papers
[Ye11], [Ye13], [Ye14] and [Ye15], the survey article [Ye6], and the lecture notes
[Ye12].

A general treatment of derived categories of bimodules, based on K-flat DG ring
resolutions, is in the paper [Ye16].
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14.2. Adjunctions. Before we can tackle the functorial behavior of the squaring
operation, we need some more basic facts relating the derived categories D(A) and
D(B) in the presence of a ring homomorphism A→ B. In this subsection all rings
are commutative.

comment: this should be moved to an earlier location in the book

Suppose u : A → B is a ring homomorphism. The restriction (or forgetful)
functor

Restu : M(B)→M(A)
sends a B-module N to the same abelian group, made into an A-module via u.
This functor extends to a DG functor on complexes:
(14.2.1) Restu : C(B)→ C(A).
Because it is an exact functor, it extends to derived categories:

Restu : D(B)→ D(A).
We shall usually supress this functor when the meaning is clear, in order to reduce
clutter.

For any A-module M there are functorial isomorphisms

A⊗AM
'−→M

and
HomA(A,M) '−→M

in M(A). These isomorphisms extend to the derived category: for any complex of
A-modules M there are functorial isomorphisms

(14.2.2) A⊗L
AM

'−→M

and
(14.2.3) RHomA(A,M) '−→M

in D(A). Again, to reduce clutter, we will use these canonical isomorphisms im-
plicitly.

Definition 14.2.4. A ring homomorphism u : A → B is called a localization
homomorphism if there is an isomorphism of A-rings B ∼= A[S−1] = AS some
multiplicatively closed set S ⊆ A.

Note that a localization ring homomorphism is flat.

Definition 14.2.5. Let u : A → B be a ring homomorphism, and let M ∈ D(A)
and N ∈ D(B) be complexes.

(1) A morphism
θ : N →M

in D(A) is called a backward (or trace) morphism over u.
(2) A morphism

λ : M → N

in D(A) is called a forward morphism over u. In case the ring homo-
morphism u is a localization homomorphism, we also call λ a localization
morphism over u.
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The concepts of forward and backward morphisms make sense also in the cate-
gories M(−), C(−), Cstr(−) and K(−).

There is an additive functor
(14.2.6) CIndu : M(A)→M(B), CIndu(M) := HomA(B,M)
called coinduction. It has a right derived functor
(14.2.7) RCIndu : D(A)→ D(B), RCIndu(M) := RHomA(B,M).

comment: below change HomA(B,M) to CIndu(M) ?

The standard adjunction formula give rise to a bifunctorial bijection (an isomor-
phism of A-modules in fact)

(14.2.8) badju,M,N : HomM(A)(N,M) '−→ HomM(B)
(
N,HomA(B,M)

)
for M ∈M(A) and N ∈M(B). We refer to this isomorphism as backward adjunc-
tion, since it takes a backward morphism θ : N →M in M(A) to the morphism

badju,M,N (θ) : N → HomA(B,M)
in M(B).

We have already encountered the induction functor
(14.2.9) Indu : M(A)→M(B), Indu(M) := B ⊗AM,

and its left derived functor
(14.2.10) LIndu : D(A)→ D(B), LIndu(M) = B ⊗L

AM.

comment: below change B ⊗AM to Indu(M) ?

Likewise, there is a bifunctorial bijection

(14.2.11) fadju,M,N : HomM(A)(M,N) '−→ HomM(B)
(
B ⊗AM,N

)
forM ∈M(A) and N ∈M(B). We refer to this isomorphism as forward adjunction,
since it takes a forward morphism λ : M → N in M(A) to the morphism
(14.2.12) fadju,M,N (λ) : B ⊗AM → N

in M(B).
The backward and forward adjunctions extend to derived categories:

Proposition 14.2.13. Let u : A→ B be a ring homomorphism.
(1) There is a unique isomorphism

dbadju,M,N : HomD(A)(N,M) '−→ HomD(B)
(
N,RHomA(B,M)

)
called derived backward adjunction, which is functorial in M ∈ D(A) and
N ∈ D(B), and such that the diagram

HomCstr(A)
(
N,M

) dbadj
//

Q

��

HomCstr(B)
(
N,HomB(C,M)

)
Θb◦Q

��

HomD(A)
(
N,M

) badj
// HomD(B)

(
N,RHomB(C,M)

)
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is commutative.
(2) There is a unique isomorphism

dfadju,M,N : HomD(A)(M,N) '−→ HomD(B)
(
B ⊗L

AM,N
)

called derived forward adjunction, which is functorial in M ∈ D(A) and
N ∈ D(B), and such that the diagram

HomCstr(A)
(
M,N

) dfadj
//

Q

��

HomCstr(B)
(
B ⊗AM,N

)
Θf◦Q

��

HomD(A)
(
M,N

) fadj
// HomD(B)

(
B ⊗L

AM,N
)

is commutative.

Exercise 14.2.14. Prove Proposition 14.2.13. Give precise formulas for the mor-
phisms Θb and Θf . (Hint: in item (1) (resp. (2)), look what happens when M is
K-injective (resp. K-projective).)

Definition 14.2.15. Let u : A→ B be a ring homomorphism, and let M ∈ D(B)
and N ∈ D(C) be complexes.

(1) A backward morphism θ : N →M in D(A) over u is called a nondegenerate
backward morphism if the corresponding morphism

dbadju,M,N (θ) : N → RHomA(B,M)
in D(B) is an isomorphism.

(2) A forward morphism λ : M → N in D(A) over u is called nondegenerate
forward morphism if the corresponding morphism

dfadju,M,N (λ) : B ⊗L
AM → N

in D(C) is an isomorphism.

Example 14.2.16. Given u : A → B and M ∈ D(B), let N := RHomA(B,M) ∈
D(B). The identity morphism idN : N → N in D(B) corresponds by adjunction to
a trace morphism

Tru,M : N →M

in D(B). Since
dbadju,M,N (Tru,M ) = idN ,

we see that Tru,M is a nondegenerate trace morphism.

Example 14.2.17. Given u : A → B and M ∈ D(A), let N := B ⊗L
AM ∈ D(B).

The identity morphism idN : N → N in D(B) corresponds by adjunction to a
forward morphism
(14.2.18) qv,M : M → N

in D(A). Since
dfadju,M,N (qu,M ) = idN ,

we see that qu,M is a nondegenerate forward morphism.

Example 14.2.19. If A = B and u = idA, then backward and forward mor-
phisms over u are just morphisms in D(A). Nondegenerate (backward or forward)
morphisms are just isomorphisms in D(A).
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We end this subsection with a useful theorem, borrowed from [YeZh3]. It will
be needed later on.
comment: is this the optimal place for this thm?

Theorem 14.2.20. Let A → B → C be homomorphisms between commutative
rings, and let L ∈ D(C), M ∈ D(B) and N ∈ D(A) be complexes. There is a
morphism

ΨL,M,N : RHomB(L,M)⊗L
A N → RHomB(L,M ⊗L

A N)

in D(C), called tensor-evaluation, which is functorial in these complexes. Moreover,
if conditions (a) and (b) below hold, then ΨL,M,N is an isomorphism.

(a) The ring B is noetherian.
(b) The restriction of L to B is in D−f (B), the complex M is in D+(B), and

the complex N has has finite flat dimension over A.

Proof. Let ρ : M → I be a K-injective resolution in C(B), let σ : P → N be a
K-flat resolution in C(A), and let τ : I ⊗A P → J be a K-injective resolution in
C(B). There is an obvious homomorphism

(14.2.21) Ψ̃L,I,P : HomB(L, I)⊗A P → HomB(L, I ⊗A P )

in Cstr(C). Its formula is

Ψ̃(ψ ⊗ p)(l) := ±τ(ψ(l)⊗ p)

for homogeneous elements ψ ∈ HomB(L, I), p ∈ P and l ∈ L, and with the Koszul
sign rule. There also the homomorphism

(14.2.22) HomB(L, τ) : HomB(L, I ⊗A P )→ HomB(L, J).

The composition

(14.2.23) HomB(L, τ) ◦ Ψ̃L,I,P : HomB(L, I)⊗A P → HomB(L, J)

represents a morphism ΨL,M,N in D(C), and this is functorial in the complexes
L,M,N .

Now suppose conditions (a) and (b) hold. It suiffices to prove that for a good
choice of resolutions, the homomorphism in (14.2.23) is a quasi-isomorphism. for
this we might as well forget C, and work in Cstr(B).

By smart truncation we can assume that M is a bounded below complex of B-
modules. Because B is noetherian and L ∈ D−f (B), according to Corollary 10.3.32
there is a quasi-isomorphism π : Q → L, where Q is a bounded above complex of
finitely generated free B-modules. Since N has finite flat dimension, we can assume
that P is a bounded complex of flat A-modules.
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Consider the next commutative diagram in Cstr(B).

HomB(L, I)⊗A P

HomB(π,id)⊗Aidqi

��

Ψ̃L,I,P
// HomB(L, I ⊗A P )

HomB(id,τ)
//

HomB(π,id)

��

HomB(L, J)

HomB(π,id)

��

HomB(Q, I)⊗A P
Ψ̃Q,I,P

// HomB(Q, I ⊗A P )
HomB(id,τ)

qi
// HomB(Q, J)

HomB(Q,M)⊗A P

HomB(id,ρ)⊗Aidqi

OO

Ψ̃Q,M,P
// HomB(Q,M ⊗A P )

HomB(id,ρ⊗Aid)qi

OO

The homomorphisms marked “qi” are quasi-isomorphisms. The various bounded-
ness conditions on the complexes Q,M,P imply that in each degree i we have a
finite sums (as opposed to infinite products)

(HomB(Q,M)⊗A P )i =
⊕
j,k

HomB(Qj ,Mk)⊗A P i−k+j

and
(HomB(Q,M ⊗A P ))i =

⊕
j,k

HomB(Qj ,Mk ⊗A P i−k+j).

Because each Qj is a finitely generated free module, there is an isomorphism

HomB(Qj ,Mk)⊗A P i−k+j '−→ HomB(Qj ,Mk ⊗A P i−k+j).
Therefore Ψ̃Q,M,P is an isomorphism in Cstr(B). �

Exercise 14.2.24. Show that the tensor-evaluation morphism ΨL,M,N in Theorem
14.2.20 exists when A,B,C are arbitrary DG rings and A → B → C are DG ring
homomorphisms. Try to find sufficient conditions on the DG rings and the DG
modules for ΨL,M,N to be an isomorphism. (See [YeZh3, Proposition 1.12], [Ye10,
Theorem 5.20] and [Sha3, Proposition 1.5] for a few variations.)
14.3. Functoriality of the Squaring Operation. We now return to the flatness
setup. In this subsection we assume:
Setup 14.3.1. A is a commutative ring, and the rings B,C,D,B′, C ′, B′′ are flat
commutative A-rings.

To simplify notation we are going to borrow the “enveloping” notation from
noncommutative ring theory. This is the content of the next definition.
Definition 14.3.2. Suppose u : B → C is an A-ring homomorphism.

(1) We write Ben := B ⊗A B, Cen := C ⊗A C and uen := u ⊗A u. Thus
uen : Ben → Cen is a homomorphism between flat A-rings.

(2) Suppose θ : N → M is a trace homomorphism in Cstr(B) over u (see
Definition 14.2.5(1)). We write M en := M ⊗A M , N en := N ⊗A N and
θen := θ ⊗A θ. Thus θen : N en → M en is a trace homomorphism in
Cstr(Ben) over uen.

(3) Suppose θ : N → M is a forward homomorphism in Cstr(B) over u (see
Definition 14.2.5(2)). We write M en := M ⊗A M , N en := N ⊗A N and
λen := λ ⊗A λ. Thus λen : M en → N en is a forward homomorphism in
Cstr(Ben) over uen.
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Let u : B → C be an A-ring homomorphism, and let θ : N → M be a trace
morphism in D(B) over u. We choose a K-projective resolution P → M in C(B),
and then a K-injective resolution P en → I in C(Ben). These give us a presentation
presP,I of SqB/A(M); see formula (14.1.14). Similarly we choose a K-projective
resolution Q → N in C(C), and then a K-injective resolution Qen → J in C(Cen).
These give us a presentation presQ,J of SqC/A(N).

Next let us choose a K-projective resolution Q̃ → Q of Q in C(B). The trace
morphism θ : N → M in D(B) is represented by a homomorphism θ̃ : Q̃ → P in
Cstr(B). Namely the diagram

(14.3.3) Q̃
∼= //

Q(θ̃)
��

Q
∼= // N

θ

��

P
∼= // M

in D(B) is commutative.
Since B and C are flat over A, the complexes P,Q, Q̃ are all K-flat over A. We

obtain the solid diagram

(14.3.4) Q̃en qis
//

θ̃en

!!

Qen qis
// J

χ

��

P en qis
// I

in Cstr(Ben), in which the arrows marked “qis” are quasi-isomorphism. Since I is K-
injective, there is a homomorphism χ : J → I that makes this diagram commutative
up to homotopy. This induces a homomorphism

(14.3.5) Homuen(u, χ) : HomCen(C, J)→ HomBen(B, I)

in Cstr(B).

Proposition 14.3.6 (Trace Functoriality). Let u : B → C be homomorphism
between flat A-rings, and let θ : N → M be a trace morphism in D(B) over u.
There is a unique trace morphism

Squ/A(θ) : SqC/A(N)→ SqB/A(M)

in D(B) over u, called the square of θ, that has the following property:
(�) For any choices P,Q, Q̃, θ̃, I, J, χ as above, the diagram

HomCen(C, J)
presQ,J

//

Q(Homuen (u,χ))

��

SqC/A(N)

Squ/A(θ)

��

HomBen(B, I)
presP,I

// SqB/A(M)

in D(B) is commutative.

Proof. This is because the complexes P,Q, Q̃, I, J are unique up to homotopy equiv-
alence, and the homomorphisms θ̃, χ are unique up to homotopy. �
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Proposition 14.3.7. We are given this input:
• Homomorphisms of flat A-rings u : B → C and v : C → D.
• Complexes M ∈ D(B), N ∈ D(C) and L ∈ D(D).
• A trace morphism θ : N → M in D(B) over u, and a trace morphism
ζ : L→ N in D(C) over v.

Then the following hold:
(1) There is equality

Squ/A(θ) ◦ Sqv/A(ζ) = Sqv◦u/A(θ ◦ ζ)
of trace morphisms SqD/A(L)→ SqB/A(M) in D(B) over v ◦ u.

(2) If C = B and u = idB, then
Squ/A(θ) = SqB/A(θ),

where the latter is the morphism from Definition 14.1.11(2).
Proof. (1) Say we choose a presentation presR,K of SqD/A(L). Then there is a
homomorphism ξ : J → K such that Homven(v, ξ) represents Sqv/A(ζ), as in
Proposition 14.3.6. Due to the uniqueness up to homotopy of these choices, the
homomorphism

Hom(v◦u)en(v ◦ u, χ ◦ ξ)
represents Sqv◦u/A(θ ◦ ζ). But

Hom(v◦u)en(v ◦ u, χ ◦ ξ) = Homuen(u, χ) ◦Homven(v, ξ).

(2) Clear. �

Now consider a localization homomorphism v : B → B′ of A-rings. Suppose
we are given complexes M ∈ D(B) and M ′ ∈ D(B′), and a localization morphism
λ : M → M ′ in D(B) over v. Let’s choose a K-projective resolution P → M
in C(B), and then a K-injective resolution ρ : P en → I in C(Ben). Likewise
let’s choose a K-projective resolution P ′ → M ′ in C(B′), and then a K-injective
resolution ρ′ : P ′ en → I ′ in C(B′ en). These choices give us presentations presP,I
and presP ′,I′ of SqB/A(M) and SqB′/A(M ′) respectively.

Because P is K-projective, there is a homomorphism λ̃ : P → P ′ in Cstr(B) that
makes the diagram

P
∼= //

Q(λ̃)
��

M

λ

��

P ′
∼= // M ′

in D(B) commutative. On bimodules we get a homomorphism
λ̃en : P en → P ′ en

in Cstr(Ben).
We have the following solid diagram in Cstr(B′ en) :

(14.3.8) B′ en ⊗Ben P en

fadjven (λ̃en)

��

id⊗ ρ
// B′ en ⊗Ben I

ξ̃

��

P ′ en ρ′
// I ′
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where fadj(λ̃en) is the forward adjunction from (14.2.12). Since ven : Ben → B′ en

is flat, the homomorphism id⊗ ρ above is a quasi-isomorphism. On the other hand
the complex I ′ is K-injective. Therefore there is a homomorphism

ξ̃ : B′ en ⊗Ben I → I ′

in Cstr(B′ en) that makes the diagram (14.3.8) commutative up to homotopy. By
forward adjunction, ξ̃ = fadjven(ξ) for a unique homomorphism
(14.3.9) ξ : I → I ′

in Cstr(Ben). We obtain a diagram

(14.3.10) P en

λ̃en

��

ρ
// I

ξ

��

P ′ en ρ′
// I ′

in Cstr(Ben). Since (14.3.8) is commutative up to homotopy, the same is true for
(14.3.10).

The homomorphism ξ induces a homomorphism
(14.3.11) HomBen(B, ξ) : HomBen(B, I)→ HomBen(B, I ′)
in Cstr(B). By the forward adjunction formula (14.2.11) there is an isomorphism

fadjven,B,I′ : HomBen
(
B, I ′) '−→ HomB′ en(B′ en ⊗Ben B, I ′).

But B → B′ is a localization, so there are unique B-ring isomorphisms
B′ en ⊗Ben B = (B′ ⊗A B′)⊗B⊗AB B ∼= B′ ⊗B B′ ∼= B′.

Therefore in this particular situation we get an isomorphism

(14.3.12) fadjven,B,I′ : HomBen
(
B, I ′) '−→ HomB′ en(B′, I ′)

in Cstr(B).
Proposition 14.3.13 (Localization Functoriality). Let v : B → B′ be a localiza-
tion homomorphism between flat A-rings, and let λ : M → M ′ be a localization
morphism in D(B) over v. There is a unique localization morphism

Sqv/A(λ) : SqB/A(M)→ SqB′/A(M ′)
in D(B) over v, called the square of λ, that has the following property:

(†) For any choices of resolutions and homomorphisms as above, the diagram

HomBen(B, I)
presP,I

//

HomBen (B,ξ)

��

SqB/A(M)

Sqv/A(λ)

��

HomBen(B, I ′)

fadjven,B,I′

��

HomB′ en(B′, I ′)
presP ′,I′

// SqB′/A(M ′)

in D(B) is commutative.
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Proof. The reason is that the choices made are unique up to homotopy. �

In case B′ = C = B, v = u = idB and λ = θ, there is an apparent con-
flict between the morphisms Sqv/A(λ) from Proposition 14.3.13 and Squ/A(θ) from
Proposition 14.3.6. This apparent conflict is removed by part (2) of Proposition
14.3.14 below, in conjunction with part (2) of Proposition 14.3.7.

Proposition 14.3.14. We are given this input:
• Localization homomorphisms v : B → B′ and v′ : B′ → B′′ between flat
A-rings.
• Complexes M ∈ D(B), M ′ ∈ D(B′) and M ′′ ∈ D(B′′).
• A localization morphism λ : M → M ′ in D(B) over v, and a localization
morphism λ′ : M ′ →M ′′ in D(B′) over u′.

Then the following hold:
(1) There is equality

Sqv′/A(λ′) ◦ Sqv/A(λ) = Sqv′◦v/A(λ′ ◦ λ)

of localization morphisms SqB/A(M)→ SqB′′/A(M ′′) in D(B) over v′ ◦ v.
(2) If B′ = B and v = idB, then

Sqv/A(λ) = SqB/A(λ),

where the latter is the morphism from Definition 14.1.11(2).

Proof. This is similar to the proof of Proposition 14.3.7. We leave the details to
the reader. �

Exercise 14.3.15. Give a detailed proof of Proposition 14.3.14.

The next result relates the two type of functorialities of the squaring operation.

Theorem 14.3.16 (Compatibility of Traces and Localizations). We are given a
commutative diagram of homomorphisms between flat A-rings

B
u //

v

��

C

w

��

B′
u′ // C ′

in which v is a localization, and

u′ ⊗B w : B′ ⊗B C → C ′

is an isomorphism (i.e. the diagram is cocartesian). We are also given this infor-
mation:

• Complexes M ∈ D(B), N ∈ D(C), M ′ ∈ D(B′) and N ′ ∈ D(C ′).
• A trace morphism θ : N →M in D(B) over u.
• A localization morphism λ : M →M ′ in D(B) over v.
• A trace morphism θ′ : N ′ →M ′ in D(B′) over u′.
• A localization morphism µ : N → N ′ in D(C) over w.
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These morphisms are required to render the diagram

M

λ

��

N
θoo

µ

��

M ′ N ′
θ′oo

in D(B) commutative.
Then the diagram

SqB/A(M)

Sqv/A(λ)

��

SqC/A(N)
Squ/A(θ)

oo

Sqw/A(µ)

��

SqB′/A(M ′) SqC′/A(N ′)
Squ′/A(θ′)
oo

in D(B) is commutative.

Proof. By the forward adjunction formula (14.2.11), the given morphisms in D(B)
fit into a larger commutative diagram

(14.3.17) M

qv,M
��

N
θoo

qw,N
��

B′ ⊗B M

dfadjv(λ)
��

B′ ⊗B N
id⊗ θ

oo

dfadjw(µ)
��

M ′ N ′
θ′oo

in which the bottom square is in the category D(B′). Applying the squaring to
(14.3.17) we obtain a diagram

(14.3.18) SqB/A(M)

Sqv/A(qv,M )

��

SqC/A(N)
Squ/A(θ)

oo

Sqw/A(qw,N )

��

SqB′/A(B′ ⊗B M)

SqB′/A(dfadjv(λ))

��

SqC′/A(B′ ⊗B N)
Squ′/A(id⊗ θ)
oo

SqC′/A(dfadjw(µ))

��

SqB′/A(M ′) SqC′/A(N ′)
Squ′/A(θ′)

oo

The bottom square is commutative by Proposition 14.3.7. It remains to prove that
the top square is commutative.

Thus we can assume that M ′ = B′⊗BM , N ′ = C ′⊗C N ∼= B′⊗B N , λ = qv,M ,
µ = qw,N and θ′ = id⊗ θ. Let us choose resolutions P → M , Q → N and Q̃ → Q
as we did before Proposition 14.3.6. Letting P ′ := B′ ⊗B P , Q′ := B′ ⊗B Q
and Q̃′ := B′ ⊗B Q̃, these are resolutions of M ′ and N ′ respectively. Choose a

251



Derived Categories | Amnon Yekutieli 24 June 2017 | part3_170603d2.tex

homomorphism θ̃ : Q̃→ P that represents θ, as in diagram (14.3.3). Then

θ̃′ := idB′ ⊗ θ̃ : Q̃′ → P ′

represents θ′. There is a diagram

(14.3.19) P

qv,P
��

Q̃

qv,Q̃
��

θ̃oo Q

qw,Q
��

oo

P ′ Q̃′
θ̃′oo Q′oo

in Cstr(B) that’s commutative up to homotopy. The unmarked arrows are quasi-
isomorphisms.

Now we pass to bimodules. As before we choose K-injective resolutions P en → I
in C(Ben), Qen → J in C(Cen), P ′ en → I ′ in C(B′ en) and Q′ en → J ′ in C(C ′ en).
Consider the following complicated diagram in Cstr(Ben) :

(14.3.20) I

ξI

��

P en

qven,Pen

��

oo Q̃en

qven,Q̃en

��

θ̃en
oo Qen

qwen,Qen

��

oo // J

χ

}}

ξJ

��

I ′ P ′ enoo Q̃′ enθ̃′oo Q′ enoo // J ′

χ′

]]

The unmarked arrows are quasi-isomorphisms. The top and bottom half-moons are
two versions of diagram (14.3.4), and they are commutative up to homotopies. The
two squares in the middle are the bimodule version of of diagram (14.3.19), and
too they are commutative up to homotopies. The two squares on the extreme left
and right are two versions of (14.3.10), so they are commutative up to homotopies.
Therefore the diagram

(14.3.21) I

ξI
��

J

ξJ
��

χ
oo

I ′ J ′
χ′
oo

in Cstr(Ben), that is the outer boundary of (14.3.20), is commutative up to homo-
topy.
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Finally, applying Hom−en(−,−) to the diagram (14.3.21) we obtain the diagram

HomBen(B, I)

HomBen (B,ξI)

��

HomCen(C, J)

HomCen (C,ξJ )

��

Homuen (u,χ)
oo

HomBen(B, I ′)

fadjven,B,I′

��

HomCen(C, J ′)

fadjwen,C,J′

��

Homuen (u,χ′)
oo

HomB′ en(B′, I ′) HomC′ en(C ′, J ′)
Homu′ en (u′,χ′)
oo

in Cstr(B). It is commutative up to homotopy. By Proposition 14.3.13, the outer
boundary of this diagram represents the diagram

SqB/A(M)

Sqv/A(qv,M )

��

SqC/A(N)
Squ/A(θ)

oo

Sqw/A(qw,N )

��

SqB′/A(B′ ⊗B M) SqC′/A(B′ ⊗B N)
Squ′/A(id⊗ θ)
oo

in D(B), and therefore this last diagram is commutative. �

comment: leave the cup product until later - need it only for residue thm

14.4. Functoriality of Rigid Complexes. In this subsection we continue with
Setup 14.3.1: A is a commutative ring, and the rings B,C,D,B′, C ′, B′′ are flat
commutative A-rings.

The next definition is a generalization of Definition 14.1.19.

Definition 14.4.1. Let u : B → C be a homomorphism of A-rings, let (M,ρ) ∈
D(B)rig/A, and let (N, σ) ∈ D(C)rig/A. A rigid trace morphism over u relative to
A, denoted by

θ : (N, σ)→ (M,ρ),
is a trace morphism θ : N →M in D(B) over u (in the sense of Definition 14.2.5(1)),
such that the diagram

N

θ

��

σ // SqC/A(N)

Squ/A(θ)

��

M
ρ
// SqB/A(M)

in D(B) is commutative.

It is clear that if w : C → D is another homomorphism of A-rings, if (L, τ) ∈
D(D)rig/A, and if ζ : (L, τ)→ (N, σ) is a rigid trace morphism over v relative to A,
then

θ ◦ ζ : (L, τ)→ (M,ρ)
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is a rigid trace morphism over w ◦ v relative to A.
Here is a generalization of Theorem 14.1.16.

Lemma 14.4.2. Let u : B → C be a homomorphism of A-rings, let (M,ρ) ∈
D(B)rig/A, let (N, σ) ∈ D(C)rig/A, and let θ : (N, σ) → (M,ρ) be a rigid trace
morphism over u relative to A. For any element c ∈ C there is equality

Squ/A(c · θ) = c2 · Squ/A(θ),

as trace morphisms SqC/A(N)→ SqB/A(M) in D(B) over u.

Proof. It is very similar to the proof of Theorem 14.1.16, using any presentation of
Squ/A(θ) as in property (�) in Proposition 14.3.6. �

Theorem 14.4.3 (Uniqueness of the Nondegenerate Rigid Trace). Let u : B → C
be a homomorphism of A-rings, let (M,ρ) ∈ D(B)rig/A and let (N, σ) ∈ D(C)rig/A.
Assume that N ∈ D(C) has the derived Morita property. There is at most one
nondegenerate rigid trace morphism

θ : (N, σ)→ (M,ρ)

in D(B) over u.

Proof. Suppose that
θ0, θ1 : (N, σ)→ (M,ρ)

are both nondegenerate rigid trace morphisms over u relative to A. For i = 0, 1 let

φi : N → RHomB(C,M)

be the morphism in D(C) that corresponds to θi by backward adjunction. Since
the θi are nondegenerate, it follows that the φi are isomorphisms. Thus φ−1

1 ◦φ0 is
an automorphism of N in D(C). The derived Morita property of C says that

φ−1
1 ◦ φ0 = c · idC

for some invertible element c ∈ C. Thus φ0 = c ·φ1, and therefore θ0 = c · θ1.
By Lemma 14.4.2 we know that

Squ/A(θ1) = Squ/A(c · θ0) = c2 · Squ/A(θ0) =

Because θi is rigid, there is equality

ρ ◦ θi = Squ/A(θi) ◦ σ.

Hence

(14.4.4) c · ρ ◦ θ0 = ρ ◦ θ1 = Squ/A(θ1) ◦ σ = c2 · Squ/A(θ0) ◦ σ = c2 · ρ ◦ θ0.

Now because θ0 is nondegenerate, there is a bijection

HomD(B)(N, SqB/A(M)) '−→ HomD(C)(N,N)

that sends ρ ◦ θ0 7→ idN . This bijection is C-linear. Equation (14.4.4) tells us that
c · idN = c2 · idN . By the derived Morita property, it follows that c = c2. Hence
c = 1, and therefore θ0 = θ1. �

The next definition is another generalization of Definition 14.1.19.
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Definition 14.4.5. Let v : B → B′ be a localization homomorphism of A-rings, let
(M,ρ) ∈ D(B)rig/A, and let (M ′, ρ′) ∈ D(B′)rig/A. A rigid localization morphism
over v relative to A, denoted by

λ : (M,ρ)→ (M ′, ρ′),

is a localization morphism λ : M → M ′ in D(B) over v (in the sense of Definition
14.2.5(2)), such that the diagram

M

λ

��

ρ
// SqB/A(M)

Sqv/A(λ)

��

M ′
ρ′
// SqB′/A(M ′)

in D(B) is commutative.

It is clear that if v′ : B′ → B′′ is another localization homomorphism of A-rings,
if (M ′′, ρ′′) ∈ D(B′′)rig/A, and if λ′ : (M ′, ρ′) → (M ′′, ρ′′) is a rigid localization
morphism over v′ relative to A, then

λ ◦ λ : (M,ρ)→ (M ′′, ρ′′)

is a rigid localization morphism over v ◦ v relative to A.
Since D(B′) is a B′-linear category, for any forward morphism λ : M → M ′ in

D(B′) over v, and any element b ∈ B′, it makes sense to talk about the forward
morphism b ·λ : M →M ′; this is the composition of λ with b · idM ′ .

Lemma 14.4.6. Let v : B → B′ be a homomorphism of A-rings, let (M,ρ) ∈
D(B)rig/A, let (M ′, ρ′) ∈ D(B′)rig/A, and let λ : (M,ρ) → (M ′, ρ′) be a rigid
localization morphism over v relative to A. For any element b ∈ B′ there is equality

Sqv/A(b ·λ) = b2 · Sqv/A(λ),

as localization morphisms SqB/A(B)→ SqB′/A(M ′) in D(B) over v.

Proof. Again, this is very similar to the proof of Theorem 14.1.16, using any pre-
sentation of Sqv/A(λ) as in property (†) in Proposition 14.3.13. �

Theorem 14.4.7 (Uniqueness of the Nondegenerate Rigid Localization). Let
v : B → B′ be a localization homomorphism of A-rings, let (M,ρ) ∈ D(B)rig/A
and let (M ′, ρ′) ∈ D(B′)rig/A. Assume that M ′ ∈ D(M ′) has the derived Morita
property. There is at most one nondegenerate rigid localization morphism

λ : (M,ρ)→ (M ′, ρ′)

in D(B) over v.

Exercise 14.4.8. Prove Theorem 14.4.7. (Hint: modify the proof of Theorem
14.4.3.)
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14.5. Interlude: DG Ring Resolutions.

comment: Move this subsec to a new section “DG Ring Quasi-
Iosomorphisms”, just after Sec 10.
The first part will be a subsec: “An Equivalence of Derived Categories”.

For establishing the existence of coinduced rigidifying isomorphisms (in Subsec-
tion 14.6) we need to use DG rings a bit. (Not nearly as deeply as what is outlined
in Remark 14.1.26.

Suppose A and B are central DG K-rings. A homomorphism of DG K-rings
u : A → B induces a homomorphism of graded K-rings H(u) : H(A) → H(B); cf.
Example 3.3.19. The DG ring homomorphism u is called a quasi-isomorphism of
DG rings if H(u) is an isomorphism.

A DG ring homomorphism u : A→ B induces a K-linear DG functor
Restu : C(B)→ C(A)

called restriction, that was already encountered in Subsection 14.2. Since Restu is
exact, it passes to a triangulated functor

Restu : D(B)→ D(A).
There is also the induction functor

Indu : C(A)→ C(B), Indu(M) := B ⊗AM.

It has a left derived functor
LIndu : D(A)→ D(B), LIndu(M) := B ⊗L

AM,

which is a K-linear triangulated functor.

Proposition 14.5.1. Let u : A → B be a homomorphism of central DG K-rings.
The functor LIndu is a left adjoint to Restu. That is to say, for any M ∈ D(A)
and N ∈ D(B) there is a K-linear bijection

dfadju : HomD(A)(M,Restu(N)) '−→ HomD(B)(LIndu(M), N),
and it is functorial in M and N .

Proof. Choose a K-projective resolution ρ : P → M in C(A). This gives us a
presentation

LIndu(M) ∼= B ⊗A P
in D(B). Now B ⊗A P is K-projective in C(B). Thus we get isomorphisms

HomD(A)(M,N) ∼= H0(HomA(P,N)
)

∼= H0(HomB(B ⊗A P,N)
) ∼= HomD(B)

(
LIndu(M), N

)
.

The composed isomorphism if easily seen to be dfadju. �

Here is a fundamental result. It is the justification behind the use of DG ring
resolutions. We do not know who discovered it.

Theorem 14.5.2. Let u : A → B be a quasi-isomorphism of central DG K-rings.
Then

Restu : D(B)→ D(A)
is an equivalence of K-linear triangulated categories, with quasi-inverse LIndu.
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Proof. Take any N ∈ D(B). Let M := Restu(N) ∈ D(A). Choose a K-projective
resolution ρ : P → M in C(A), so that LIndu(M) ∼= B ⊗A P . There is an obvious
homomorphism

(14.5.3) ψ : B ⊗A P → N = M

in Cstr(B), namely ψ(b ⊗ p) := b · ρ(p). We claim that ψ is a quasi-isomorphism.
To see that, we look at the commutative diagram

B ⊗A P
ψ

// N

A⊗A P

u⊗ idP

OO

idA⊗ ρ // A⊗A N

∼=

OO

in Cstr(A). The homomorphism u ⊗ idP is a quasi-isomorphism because u is
a quasi-isomorphism and P is K-flat. The homomorphism idA⊗ ρ is a quasi-
isomorphism because ρ is a quasi-isomorphism and A is K-flat. Therefore ψ is
a quasi-isomorphism.

This means that we have an isomorphism

Q(ψ) : (LIndu ◦Restu)(N) '−→ N

in D(B), and it is functorial in N .
On the other hand, starting from a complex M ∈ D(A), and choosing a K-

projective resolution ρ : P → M as above, we can view the quasi-isomorphism ψ
from (14.5.3) as a quasi-isomorphism in Cstr(A). Thus we get an isomorphism

Q(ψ) : (Restu ◦LIndu)(M) '−→M

in D(A), and this is functorial in M . �

Here is a useful strengthening of the theorem.

Proposition 14.5.4. Let u : A → B be a quasi-isomorphism between central DG
K-rings. For any L ∈ D(B), M ∈ D(Bop) and N ∈ D(B), there are isomorphisms

M ⊗L
A N

'−→M ⊗L
B N

and
RHomA(L,N) '−→ RHomB(L,N)

in D(K). These isomorphisms are functorial in M and N .

Notice that the restriction functor Restu is suppressed in the proposition.

Proof. Choose a K-projective resolution ρ : P → M in C(Aop). This produces an
isomorphism

ψ1 : P ⊗A N
'−→M ⊗L

A N.

in D(K). Next let us look at the DG module P ⊗A B ∈ C(Bop). This is K-
projective over Bop; and as shown in the proof of Theorem 14.5.2(2), the canonical
homomorphism P ⊗A B →M in Cstr(Bop) is a quasi-isomorphism. In this way we
have an isomorphism

ψ2 : P ⊗A N
'−→ (P ⊗A B)⊗B N

'−→M ⊗L
B N

in D(K). The functorial isomorphism we want is ψ2 ◦ ψ−1
1 .
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Now to the RHom. Let us choose a K-projective resolution σ : Q→ L in C(A).
This produces an isomorphism

φ1 : HomA(Q,N) '−→ RHomA(L,N)
in D(K). Again, the DG module B⊗AQ ∈ C(B) is K-projective, and the canonical
homomorphism B ⊗A Q → L in Cstr(B) is a quasi-isomorphism. In this way we
have an isomorphism

φ2 : HomA(Q,N) '−→ HomB(B ⊗A Q,N) '−→ RHomB(L,N)
in D(K). The functorial isomorphism we want is φ2 ◦ φ−1

1 . �

comment: maybe the def below and text after it should move to Sec 3

Definition 14.5.5. Let A =
⊕

i∈ZA
i be a central DG K-ring.

(1) A is called weakly commutative if
b · a = (−1)i · j · a · b

for all a ∈ Ai and b ∈ Aj .
(2) A is called strongly commutative if it is weakly commutative, and also a2 = 0

for all a ∈ Ai such that i is odd.
(3) A is called nonpositive if Ai = 0 for all i > 0.
(4) A is called a commutative DG ring if it is nonpositive and strongly com-

mutative.
This definition is taken from [Ye11]. In [YeZh3] the term “super-commutative”

was used instead of “strongly commutative”. We already encountered weak and
strong commutativity in Example 3.1.8.
Remark 14.5.6. Weak commutativity is the obvious commutativity condition in
the graded setting, and is the prototype for the Koszul sign rule.

Strong commutativity has another reason. It’s role is to guarantee that a graded
commutative polynomial ring Z[X] (see equation (14.5.10)) is flat over Z. Without
this condition, the square of an odd variable x would be a nonzero 2-torsion element.

Of course, if 2 is invertible in K (e.g. if K contains Q), then weak and strong
commutativity of a central DG K-ring coincide. Since most texts dealing with DG
rings assume that Q ⊆ K, the subtle distinction we make is absent from them.

A weakly commutative DG ring A is isomorphic to its opposite Aop; the isomor-
phism u : A '−→ Aop is

u(a) := (−1)i · a
for a ∈ Ai. This implies that any left DG A-module can be made into a right DG
A-module, and vice-versa. The formula relating the left and right actions is

m · a = (−1)i · j · a ·m
for a ∈ Ai and m ∈ M j . On the level of categories we obtain an isomorphism of
DG categories C(A) ∼= C(Aop).

When A is weakly commutative, the tensor and Hom functors are A-bilinear (in
the graded sense), and therefore their derived functors have more structure: they
are H0(A)-bilinear triangulated bifunctors
(14.5.7) (−⊗L

A −) : D(A)×D(A)→ D(A)
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and
(14.5.8) RHomA(−,−) : D(A)op ×D(A)→ D(A).

When the DG rings in Proposition 14.5.4 are weakly commutative, this result
can be amplified:

Corollary 14.5.9. In the situation of Proposition 14.5.4, assume that A and B
are weakly commutative. Then the isomorphisms

M ⊗L
A N

'−→M ⊗L
B N

and
RHomA(L,N) '−→ RHomB(L,N)

are in D(B), when we consider these objects as DG B-modules via the actions on
M and L respectively.

Proof. Going over the steps in the proof of the proposition, we see that all the
moves are B-linear (in the graded sense). �

comment: this will be a subsec: “DG Ring Resolutions”

By nonpositive graded set we mean a set X that is partitioned into subsets
X =

∐
i≤0 X

i. The elements of Xi are said to have degree i.
Given a nonpositive graded set X, we can form the noncommutative polynomial

ring Z〈X〉 in X over Z. As a graded Z-module, Z〈X〉 is free with basis the collection
of monomials

{x1 · · ·xl}x1,...,xl∈X .

The degree of a monomial x1 · · ·xl, with xp ∈ Xip , is i1+· · ·+il. The multiplication
in Z〈X〉 is defined by

(x1 · · ·xl) · (xl+1 · · ·xm) := x1 · · ·xm.
The commutative polynomial ring in X over Z is the quotient ring

(14.5.10) Z[X] := Z〈X〉/I,
where I is the two-sided ideal of Z〈X〉 generated by the elements

y ·x− (−1)i · j ·x · y
for all x ∈ Xi and y ∈ Xj , and x ·x if i is odd.

Recall that for a DG object M , the graded object gotten by forgetting the
differential is denoted by M \.

Definition 14.5.11. Let A → B̃ be a homomorphism between commutative DG
rings. We say that B̃ is a semi-free commutative DG ring over A if there is an
isomorphism of graded A\-rings

B̃\ ∼= A\ ⊗Z Z[X]
for some nonpositive graded set X.

Definition 14.5.12. Let f : A → B be a homomorphism of commutative DG
rings. A semi-free commutative DG ring resolution of B over A is a semi-free
commutative DG ring B̃ over A, together with a surjective quasi-isomorphism of
DG A-rings B̃ → B.
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Theorem 14.5.13. Let f : A→ B be a homomorphism of commutative DG rings.
There exists a semi-free commutative DG ring resolution B̃ → B of B over A.

Proofs of Theorem 14.5.13 can be found in [YeZh3, Proposition 1.7(1)] and [Ye11,
Theorem 3.21(1)]. We will not use this general theorem, but rather the slightly
different Theorem 14.5.16 below, for which we provide a proof.

Example 14.5.14. Take A := Z and B := Z/(6). The Koszul complex B̃ :=
K(Z, 6) from Example 3.3.8 is a semi-free commutative DG ring resolution of B
over A.

Definition 14.5.15. Let f : A→ B be a homomorphism of commutative DG rings.
A K-projective commutative DG ring resolution of B over A is a commutative DG
ring B̃ over A, which is K-projective as a DG A-module, together with a surjective
quasi-isomorphism of DG A-rings B̃ → B.

Of course a semi-free commutative DG ring resolution is K-projective too. But
often (and unlike Example 14.5.14) we can’t produce semi-free commutative DG
ring resolutions with suitable finiteness properties.

Theorem 14.5.16. Let A → B be a homomorphism of commutative rings. As-
sume A is noetherian and B is finite over A. Then there exists a K-projective
commutative DG ring resolution v : B̃ → B of B over A, such that each B̃i is a
finitely generated free A-module.

Proof. This is [YeZh3, Proposition 1.7(3)], but we will give the whole proof here.
The strategy is this: we will construct an ascending sequence of commutative DG

A- rings {Fj(B̃)}j≥0, together with DG A-ring homomorphisms Fj(v) : Fj(B̃)→ B.
For every j the DG ring Fj(B̃) will have the property that each Fj(B̃)i is a finitely
generated free A-module. For i ≥ −j the inclusion Fj+1(B̃)i → Fj(B̃)i will be
bijective. In cohomology, the homomorphism

Hi(Fj(v)) : Hi(Fj(B̃))→ Hi(B)
will be surjective for all i ≥ −j and bijective for all i ≥ −j + 1. Then

B̃ := lim
j→

Fj(B̃)

and
v := lim

j→
Fj(v)

will have the desired properties.
We start by choosing a finite collection {bx}x∈X0 of elements of B that generate

it as an A-ring. We consider the finite set X0 to be of degree 0. Because the
ring homomorphism A→ B is finite, each bx ∈ B satisfies some monic polynomial
fx(t) ∈ A[t]. Define the ring F0(B̃) to be

F0(B̃) := A[X0]/({fx(bx)}x∈X0).
This ring is a finitely generated free A-module, and there is a surjection of A-rings

F0(v) : F0(B̃)→ B.

Now take any j ≥ 0, and assume that : Fj(B̃) → B has been constructed, and
it satisfies the conditions stated above. In degree i := −j we consider the finitely
generated A-module

Nj := Ker(H−j(Fj(v))).
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It sits in an exact sequence

0→ Nj → H−j(Fj(B̃)) H−j(Fj(v))−−−−−−−→ H−j(B)→ 0.
Let us choose a finite collection of A-module generators on Nj , indexed by a finite
set X−j−1. We can left these generators to a collection {bx}x∈X−j−1 of cocycles in
Fj(B̃)−j .

Now we define the DG ring Fj+1(B̃). As a graded ring it is:

Fj+1(B̃)\ := Fj(B̃)\ ⊗Z Z[X−j−1]
where Z[X−j−1] is the commutative polynomial ring in the finite graded set of
degree −j − 1 elements X−j−1. The differential of Fj+1(B̃) extends that of Fj(B̃),
and satifies d(x) := bx for any variable x ∈ X−j−1. Such a differential exists (and
is unique) because there are no relations on the elements x ∈ X−j−1 except for
the strong commutativity relations, the ring Fj(B̃) is commutative, and d(bx) = 0.
The homomorphism Fj+1(v) must vanish on X−j−1 by degree considerations. We
leave it to the reader to verify that the conditions stated above hold for Fj+1(B̃)
and Fj+1(v). �

Remark 14.5.17. If A→ B is surjective, then we can choose X0 = ∅. With this
choice the DG ring B̃ is semi-free over A. Moreover, the DG ring F1(B̃) is just
the Koszul complex over A of the collection {bx}x∈X−1 of elements of A = F0(B̃).
Compare to Examples 14.5.14 and 3.3.8.

14.6. Induced and Coinduced Rigid Complexes. In this subsection we con-
tinue with Setup 14.3.1: A is a commutative ring, and the rings B,C,D,B′, C ′, B′′
are flat commutative A-rings. The puprpose of this portion of the section is to show
how rigidity is propagated along certain ring homomorphisms.

Surprisingly we shall have to resort to DG ring resolutions to prove the next
theorem. See Question 14.6.7 about this issue.

Theorem 14.6.1. Let u : B → C be a homomorphism of A-rings, let M ∈ D(B),
let N ∈ D(C), and let θ : N → M be a nondegenerate trace morphism in D(B)
over u. Assume these conditions hold:

• The complexes M and N have finite flat dimensions over A.
• The ring B is noetherian, and the ring homomorphism B → C is finite.

Then the trace morphism
Squ/A(θ) : SqC/A(N)→ SqB/A(M)

in D(B) over u is nondegenerate.

Before proving this theorem we need several lemmas. The catch in the next
lemma is that the complex P of flat A-module is bounded below, not above.

Lemma 14.6.2. Let P and N be bounded below complexes of A-modules. Assume
that each P i is a flat A-module, and that N has finite flat dimension over A. Then
the canonical morphism P ⊗L

A N → P ⊗A N in D(A) is an isomorphism.

Proof. Choose a bounded flat resolution Q → N over A. We have to show that
P ⊗A Q → P ⊗A N is a quasi-isomorphism. Let L be the cone on the quasi-
isomorphism Q→ N . It is enough to show that the complex P ⊗AL is acyclic. We
note that L is a bounded below acyclic complex and P is a bounded below complex
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of flat modules. To prove that Hi(P ⊗A L) = 0 for any given i we might as well
replace P with its stupid truncation

P ′ := stt≤j1(P ) = (· · · → P j1−1 → P j1 → 0→ · · · )
for j1 � i. Now P ′ is K-flat, so P ′ ⊗A L is acyclic. �

Lemma 14.6.3. There is an isomorphism

Φ : RHomB(C,M)⊗L
A RHomB(C,M) '−→ RHomBen(Cen,M ⊗L

AM)
in D(Cen) such that the diagram

RHomB(C,M)⊗L
A RHomB(C,M)

Φ′

))

Φ

��

RHomBen(Cen,M ⊗L
AM)

Φ′′
// M ⊗L

AM

in D(Ben), with
Φ′ := RHomu(u, id)⊗L

A RHomu(u, id)
and

Φ′′ := RHomuen(uen, id),
is commutative.

Proof. Let us choose a K-projective commutative DG ring resolution v : C̃ → C
over B, such that each C̃i is a finitely generated free B-module. This can be done by
Theorem 14.5.16. Because of flatness, the DG ring homomorphism ven : C̃en → Cen

is a quasi-isomorphism. According to Theorem 14.5.2 the restriction functor
Restven : D(Cen)→ D(C̃en)

is an equivalence. And by Corollary 14.5.9 the operations RHom and ⊗L respect
this restriction functor.

Let P → M be a resolution by a bounded complex P of B-modules that are
flat over A. This can be done using truncation, and the fact that M has finite flat
dimension over A. Because C̃ is K-projective over C, there is an isomorphism

RHomB(C,M) ∼= HomB(C̃, P )
in D(C̃). The complex HomB(C̃, P ) is bounded below, and consists of flat A-
modules. Also, since HomB(C̃, P ) ∼= N , this has finite flat dimension over A. By
Lemma 14.6.2 there is an isomorphism
(14.6.4) RHomB(C,M)⊗L

A RHomB(C,M) ∼= HomB(C̃, P )⊗A HomB(C̃, P )
in D(C̃en).

Similarly, because C̃en is K-projective over Cen, there is an isomorphism
(14.6.5) RHomBen(Cen,M ⊗L

AM) ∼= HomBen(C̃en, P ⊗A P )
in D(C̃en).

The finiteness of C̃ over B implies – as in the proof of Theorem 14.2.20 – that
the canonical homomorphism
(14.6.6) HomB(C̃, P )⊗A HomB(C̃, P )→ HomBen(C̃en, P ⊗A P )
is an isomorphism in Cstr(C̃en).
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The combination of (14.6.4), (14.6.5) and (14.6.6) gives us the isomorphism Φ.
Since these isomorphisms commute with the homomorphisms to P ⊗A P it follows
the diagram above is commutative, i.e. Φ′′ ◦ Φ = Φ′. �

Question 14.6.7. Is it really necessary to employ DG ring resolutions in the proof
of this lemma?
Lemma 14.6.8. Suppose

φ : SqC/A(RCIndu(M))→ RCIndu(SqB/A(M))
is a morphism in D(C) such that the diagram

SqC/A(RCIndu(M))

φ

��

Squ/A(Tru,M )

))

RCIndu(SqB/A(M))
Tru,SqB/A(M)

// SqB/A(M)

in D(B) is commutative. Then
φ = dbadju(Squ/A(Tru,M )).

Exercise 14.6.9. Prove Lemma 14.6.8. (Hint: it is easy, just a bit confusing.)
Proof of Theorem 14.6.1. Because the trace morphism θ : N → M is nondegener-
ate, we can assume that

N = RCIndu(M) = RHomB(C,M)
and θ = Tru,M . The trace morphism

Squ/A(θ) : SqC/A(N)→ SqB/A(M)
in D(B) is nondegenerate iff the morphism

dbadju(Squ/A(θ)) : SqC/A(N)→ RCIndu(SqB/A(M))
in D(C) is an isomorphism.

We have this sequence of isomorphisms in D(C) :

(14.6.10)

SqC/A(N) = RHomCen(C,N ⊗L
A N)

= RHomCen
(
C,RHomB(C,M)⊗L

A RHomB(C,M)
)

∼=♦ RHomCen
(
C,RHomBen(Cen,M ⊗L

AM)
)

∼=† RHomBen(C,M ⊗L
AM)

∼=‡ RHomB

(
C,RHomBen(B,M ⊗L

AM)
)

= RCIndu(SqB/AM).
The isomorphism marked ♦ is RHomCen(C,Φ), where Φ is the isomorphism from
Lemma 14.6.3. The isomorphism † comes from the Hom-tensor adjunction for-
mula, applied to the ring homomorphisms Ben → Cen → C. And the isomorphism
‡ comes from the Hom-tensor adjunction formula, applied to the ring homomor-
phisms Ben → B → C. All objects appearing in (14.6.10) admit obvious morphisms
to SqB/A(M) in D(B), the all the isomorphisms in (14.6.10) respect them. There-
fore, by Lemma 14.6.8, the composition of the isomorphisms in (14.6.10) equals
dbadju(Squ/A(Tru,M )). �

263



Derived Categories | Amnon Yekutieli 24 June 2017 | part3_170603d2.tex

Theorem 14.6.11 (Coinduced Rigidity for Finite Homomorphisms). Let
u : B → C be a homomorphism of A-rings, and let (M,ρ) ∈ D(B)rig/A. Define

N := RHomB(C,M) ∈ D(C).

Assume these conditions hold:
• The complexes M and N have finite flat dimensions over A.
• The ring B is noetherian, and the ring homomorphism B → C is finite.

Then the complex N has a unique rigidifying isomorphism

σ : N '−→ SqC/A(N)

in D(C), such that the nondegenerate trace morphism

Tru,M : N →M

in D(B) over u becomes a rigid trace morphism

Tru,M : (N, σ)→ (M,ρ)

over u relative to A.

Proof. Consider the solid diagram below:

(14.6.12) N
σ //

θ

��

SqC/A(N)

Squ/A(θ)

��

M
ρ
// SqB/A(M)

in D(B), where θ := Tru,M . We are looking for an isomorphism σ in D(C) that
will make (14.6.12) into a commutative diagram.

Let us apply the functor RCIndu to the bottom row of (14.6.12). There is a
functorial morphism dbadju going down, so we get this solid diagram in D(C) :

(14.6.13) N
σ //

idN ∼=

��

SqC/A(N)

dbadju(Squ/A(θ))∼=

��

RCIndu(M)
RCIndu(ρ)

∼=
// RCIndu(SqB/A(M))

Here we used the equality dbadju(θ) = idN . The morphism Squ/A(θ) is nondegen-
erate by Theorem 14.6.1, and thus dbadju(Squ/A(θ)) is an isomorphism. It follows
that there is a unique isomorphism σ in D(C) that makes diagram (14.6.13) com-
mutative. By backward adjunction, the σ is the unique morphism N → SqC/A(N)
in D(C) that makes diagram (14.6.12) in D(B) commutative. �

We now move to localization homomorphisms.

Theorem 14.6.14. Let v : B → B′ be a localization homomorphism of A-rings,
and let λ : M →M ′ be a nondegenerate localization morphism over v. Assume that
the next conditions hold:

• The complex M has finite flat dimension over A.
• The ring Ben = B ⊗A B is noetherian.
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Then the localization morphism
Sqv/A(λ) : SqB/A(M)→ SqB′/A(M ′)

in D(B) over v is nondegenerate .

Proof. We need to show that the morphism
(14.6.15) dfadjv(Sqv/A(λ)) : B′ ⊗B SqB/A(M)→ SqB′/A(M ′)

in D(B′) is an isomorphism. Recall that

SqB/A(M) = RHomBen(B,M ⊗L
AM)

and
SqB′/A(M ′) = RHomB′ en(B′,M ′ ⊗L

AM
′).

We begin be examining the following morphism:
(14.6.16) Ψ : RHomBen(B,M ⊗L

AM)⊗Ben B′ en → RHomB′ en(B′,M ′ ⊗L
AM

′)
in D(B). Recall that the B structure on the objects comes from the action on
the first arguments (B and B′ respectively) of RHom. It is a tensor-evaluation
morphism, of the sort studied in Theorem 14.2.20. The assumption on M ensures
that the complex M ⊗L

A M has bounded cohomology. Clearly B ∈ D−f (Ben), and
B′ en has finite flat dimension over Ben. Hence, by Theorem 14.2.20, the morphism
(14.6.16) is an isomorphism.

Because B′ ⊗B B′ = B′, if we apply B′ ⊗B (−) = LIndv to (14.6.16) it remains
an isomorphism, but now in D(B′). We obtain a commutative diagram

(14.6.17) B′ ⊗B SqB/A(M)

��

dfadjv(Sqv/A(λ))

))

B′ ⊗B SqB/A(M)⊗Ben B′ en
B′⊗BΨ

∼= // SqB′/A(M ′)

It remains to prove that the vertical morphism in (14.6.17) is an isomorphism. For
that we use Lemma 14.1.7 – it tells us that

B′ ⊗B SqB/A(M)⊗Ben B′ en ∼= B′ ⊗B B′ ⊗B B′ ⊗B SqB/A(M)

in D(B′). But B′ ⊗B B′ ⊗B B′ = B′. �

Theorem 14.6.18 (Induced Rigidity for Localization Homomorphisms). Let
v : B → B′ be a localization homomorphism of A-rings, and let (M,ρ) ∈ D(B)rig/A.
Define

M ′ := B′ ⊗B M ∈ D(B′).
Assume these conditions hold:

• The complex M has finite flat dimension over A.
• The ring Ben = B ⊗A B is noetherian.

Then the complex M ′ has a unique rigidifying isomorphism

ρ′ : M ′ '−→ SqB′/A(M ′)

in D(B′), such that the nondegenerate localization morphism
qv,M : M →M ′

265



Derived Categories | Amnon Yekutieli 24 June 2017 | part3_170603d2.tex

in D(B) over v becomes a rigid localization morphism

qv,M : (M,ρ)→ (M ′, ρ′)

over v relative to A.

Exercise 14.6.19. Prove Theorem 14.6.18. (Hint: modify the proof of Theorem
14.6.11, using Theorem 14.6.14 instead of Theorem 14.6.1 of course.)

The last theorem in this subsection says that coinduced rigidity respects “local-
ization base change”. Here is the setup:

Setup 14.6.20. We are given a commutative diagram of homomorphisms of A-
rings

B
u //

v

��

C

w

��

B′
u′ // C ′

such that
u′ ⊗B w : B′ ⊗B C → C ′

is an isomorphism (i.e. the diagram is cocartesian). We are also given a rigid
complex

(M,ρ) ∈ D(B)rig/A.

Based on this input we define these complexes:
. N := RHomB(C,M) ∈ D(C).
. M ′ := B′ ⊗B M ∈ D(B′).
. N ′ := C ′ ⊗C N ∈ D(C ′).

We are given this further information:
• The ring homomorphism u is finite.
• The ring homomorphism v is a localization.
• The rings B and Ben are noetherian.
• The complexes M and N have finite flat dimensions over A.

It is easy to see that the homomorphism u′ is finite, and the homomorphism w
is a localization.

Lemma 14.6.21. There is a unique isomorphism

N ′ ∼= RHomB′(C ′,M ′)

in D(C ′), that makes the diagram

M

qv,M

��

N
Tru,M
oo

qw,N

��

M ′ N ′
Tru′,M′
oo

in D(B) commutative.

Exercise 14.6.22. Prove Lemma 14.6.21.
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Theorem 14.6.23 (Compatibility of Coinduced and Induced Rigidity). Consider
Setup 14.6.20. Let

σ : N '−→ SqC/A(N)
and

ρ′ : M ′ '−→ SqB′/A(M ′)
be the coinduced and induced rigidifying isomorphisms from Theorems 14.6.11 and
14.6.18 respectively. There is a unique rigidifying isomorphism

σ′ : N ′ '−→ SqC′/A(N ′)
in D(C ′), such that in the diagram

(M,ρ)

qv,M

��

(N, σ)
Tru,M
oo

qw,N

��

(M ′, ρ′) (N ′, σ′)
Tru′,M′
oo

the morphism Tru′,M ′ is a nondegenerate rigid trace morphism relative to A, and
the morphism qw,N is a nondegenerate rigid localization morphism relative to A.

Proof. Let’s write θ := Tru,M , θ′ := Tru′,M ′ , λ := qv,M and µ := qw,n. Define

σ′ : N ′ '−→ SqC′/A(N ′)
to be the rigidifying isomorphism induced from

σ : N '−→ SqC/A(N),
as in Theorem 14.6.18. Consider the following cube diagram in D(B), where we
omit subscripts from the Sq−/−(−) to reduce clutter.

M

λ

��

ρ

((

N
θoo

µ

��

σ

))

M ′

ρ′

((

N ′
θ′

oo

σ′

((

Sq(M)

Sq(λ)

��

Sq(N)
Sq(θ)

oo

Sq(µ)

��

Sq(M ′) Sq(N ′)
Sq(θ′)

oo

The top face is commutative because θ is a rigid trace morphism. The rear
vertical face is commutative by Lemma 14.6.21. The left and right vertical faces
are commutative because λ and µ are rigid localization morphisms. The front
vertical face is commutative due to Theorem 14.3.16. All four vertical morphisms
are nondegenerate localization morphisms: λ and µ are so by definition; and Sq(λ)
and Sq(µ) are so by Theorem 14.6.14. Therefore, by forward adjunction, the bottom
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face is isomorphic to the square diagram gotten by applying LIndv to the top face.
We conclude that the bottom face is also a commutative diagram. This says that

θ′ : (N ′, σ′)→ (M ′, ρ′)
is a rigid trace morphism. We already know that θ′ is a nondegenerate trace
morphisms. �

Remark 14.6.24. The results in Subsections 14.3, 14.4 and 14.6 on localization
homomorphisms are actually true (with some subtle changes) for essentially étale
homomorphisms. The proofs are much harder. They will be included in the paper
[Ye13]. See an oultine in the lecture notes [Ye12].
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15. Rigid Dualizing Complexes over Commutative Rings

In section we combine the material on dualizing complexes from Section 13 with
the material on rigid complexes from Section 14.

15.1. Rigid Dualizing Complexes. Essentially finite type (EFT) ring homomor-
phisms were introduced in Definition 13.2.17.
Definition 15.1.1. For a noetherian commutative ring K we denote by Ringc/feftK
the category whose objects are the flat essentially finite type (FEFT) commutative
K-rings. The morphisms in Ringc/feftK are the K-ring homomorphisms A → B
(these are not required to be flat).

Here there is a more restrictive setup than Setup 14.3.1:
Setup 15.1.2. We fix a regular noetherian commutative base ring K. The rings
A,B,C,A′, B′, A′′, and the homomorphisms between them, are in Ringc/feftK.

Recall the special meaning of “regular ring” in this book – see Convention 13.2.10.
It is easy to see that al rings in Ringc/feftK are noetherian and have finite Krull
dimensions; and all homomorphisms A → B in Ringc/feftK are essentially finite
type.

Because K is regular, any complex M ∈ Db(K) automatically has finite flat
dimension over. In particular this is true for dualizing complexes over any ring
A ∈ Ringc/feftK.

In Subsection 15.3 we will require the base ring K to be a field, for technical
reasons.
Definition 15.1.3. A rigid dualizing complex over A relative to K is a rigid complex
(R, ρ) over A realtive to K, as in Definition 14.1.18, such that R is a dualizing
complex over A, in the sense of Definition 13.2.9.

The category of rigid complexes over A relative to K is denoted by D(A)rig/K.
See Definition 14.1.19.
Theorem 15.1.4. Let A be a flat essentially finite type ring over the regular noe-
therian ring K. Then A has a rigid dualizing complex (RA, ρA), and it is unique
up to a unique isomorphism in D(A)rig/K.
Proof. We first prove existence. As in the proof of Theorem 13.2.33, we factor the
ring homomorphism K→ A into K→ Apl → Aft → A, where Apl = K[t1, . . . , tn] is
a polynomial ring, Apl → Aft is surjective, and Aft → A is a localization.

According to Exercise 14.1.22 (that is solved in Theorem 15.4.22), the ring Apl
has a rigid complex (Rpl, ρpl) relative to K, where Rpl = Apl[n]. Since Apl is a
regular ring, (Rpl, ρpl) is a rigid dualizing complex.

Let
Rft := RHomApl(Aft, Rpl) ∈ D(Aft).

This is a dualizing complex over Aft; and by Theorem 14.6.11 it has a coinduced
rigidifying isomorphism ρft. Thus (Rft, ρft) is a rigid dualizing complex over Aft
relative to K.

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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Finally let
RA := A⊗Aft Rft ∈ D(A).

This is a dualizing complex over A. According to Theorem 14.6.18 it has an induced
rigidifying isomorphism ρA. Thus (RA, ρA) is a rigid dualizing complex over A
relative to K.

Now let us prove uniqueness. Suppose (R′, ρ′) is another rigid dualizing complex
over A relative to K. Let A =

∏r
i=1Ai be the connected component decomposition

of A. Corollary 13.2.55 says that

R′ ∼= R⊗L
A P,

where P ∼=
⊕r

i=1 Li[ni] for integers ni and rank 1 projective Ai-modules Li. Let’s
write Aen := A⊗K A. There is an isomorphism

(15.1.5) R′ ⊗L
K R
′ = (R⊗L

A P )⊗L
K (R⊗L

A P ) ∼= (R⊗L
K R)⊗L

Aen (P ⊗L
K P )

in D(Aen), and P ⊗L
KP has finite flat dimension over Aen. So we have this sequence

of isomorphisms in D(A) :

(15.1.6)

R⊗L
A P
∼= R′ ∼= SqA/K(R′) = RHomAen(A,R′ ⊗L

K R
′)

∼=♦ RHomAen
(
A, (R⊗L

K R)⊗L
Aen (P ⊗L

K P )
)

∼=† RHomAen(A,R⊗L
K R)⊗L

Aen (P ⊗L
K P )

= SqA/K(R)⊗L
Aen (P ⊗L

K P )
∼= R⊗L

Aen (P ⊗L
K P ) ∼= R⊗L

A P ⊗L
A P.

The isomorphism ∼=♦ is by (15.1.5), and the isomorphism ∼=† is by Theorem 14.2.20.
We also used the rigidifying isomorphisms of R and R′. Now

RHomA(R,R⊗L
A P ) ∼= RHomA(R,R)⊗L

A P
∼= P,

again using Theorem 14.2.20, and by the derived Morita property of R. Likewise

RHomA(R,R⊗L
A P ⊗L

A P ) ∼= P ⊗L
A P.

Thus, together with (15.1.6), we deduce that P ⊗L
A P ∼= P . But then on each

connected component Ai we have

Li[ni] ∼= Li[ni]⊗A Li[ni] = (Li ⊗A Li)[2 ·ni].

This implies that Li ∼= Ai and ni = 0. We see that actually P ∼= A, so there is an
isomorphism φ� : R '−→ R′ in D(A).

The isomorphism φ� might not be rigid; but due to the derived Morita property,
there is an invertible element a ∈ A such that

SqA/K(φ�) ◦ ρA = a · ρ′ ◦ φ�

as isomorphisms R '−→ R′. Define φ := a−1 ·φ�. Then, according to Theorem
14.1.16, we have

SqA/K(φ) ◦ ρA = a−2 · SqA/K(φ�) ◦ ρA = a−2 · a · ρ′ ◦ φ� = ρ′ ◦ φ.

We see that
φ : (RA, ρA) '−→ (R′, ρ′)

is a rigid isomorphism. Its uniqueness is already known. �
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The dimension function dimR relative to a dualizing complex R was introduced
in Definition 13.4.2. If R′ ∼= R, then of course the dimension functions satisfy
dimR′ = dimR. In view of the previous theorem, the next definition is valid.

Definition 15.1.7. Let A ∈ Ringc/feftK. The rigid dimension function relative to
K is the dimension function

rig.dimK : Spec(A)→ Z

given by the formula
rig.dimK(p) := dimR(p),

where R is any rigid dualizing complex over A relative to K. We often abbreviate
this to rig.dim, leaving the base ring K implicit.

Exercise 15.1.8.
(1) Take K = A = Z. Show that for a maximal ideal p = (p) ⊆ Z we

have rig.dimK(p) = −1; and for the generic ideal q = (0) ⊆ Z we have
rig.dimK(q) = 0

(2) Let K be a field and A a finite type K-ring. Show that for any p ∈ Spec(A)
there is equality

rig.dimK(p) = dim(A/p),
where the latter is the Krull dimension of the ring A/p.

Theorem 15.1.9. Let u : A→ B be a finite homomorphism in Ringc/feftK. There
is a unique nondegenerate rigid trace morphism

Tru/K = TrB/A/K : (RB , ρB)→ (RA, ρA)

in D(A) over u relative to K.

Proof. According to Theorem 14.4.3 there is at most one such morphism.
Let us prove existence. Consider the complex N := RHomA(B,RA) ∈ D(B).

This is a dualizing complex by Proposition 13.2.31. On the other hand, by Theorem
14.6.11 the complex N has a rigidifying isomorphism σ, such that

Tru,RA : (N, σ)→ (RA, ρA)

is a nondegenerate rigid trace morphism. But by the uniqueness in Theorem 15.1.4,
there is an isomorphism

(N, σ) ∼= (RB , ρB)
in D(B)rig/K. �

Definition 15.1.10. Let u : A→ B be a finite homomorphism in Ringc/feftK, and
let RA and RB be the respective rigid dualizing complexes. The morphism

Tru/K = TrB/A/K : RB → RA

in D(A) from Theorem 15.1.9 is called the rigid trace over u.

In the definition above we are hiding the rigidifying isomorphisms ρA and ρB .
But of course without them we can’t make any sense of “the respective rigid dual-
izing complexes”.
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Corollary 15.1.11. Let u : A → B and v : B → C be finite homomorphisms in
Ringc/feftK. The rigid traces satisfy

Tru/K ◦Trv/K = Trv◦u/K

as morphisms RC → RA in D(A).

Proof. Both are nondegenerate rigid trace morphisms

(RC , ρC)→ (RA, ρA).

�

Theorem 15.1.12. Let v : A→ A′ be a localization homomorphism in Ringc/feftK.
There is a unique nondegenerate rigid localization morphism

qv/K = qA′/A/K : (RA, ρA)→ (RA′ , ρA′)

in D(A) over v relative to K.

Proof. According to Theorem 14.4.7 there is at most one such morphism.
Let us prove existence. Consider the complex M ′ := A′ ⊗A RA ∈ D(A′). This

is a dualizing complex by Proposition 13.2.32. On the other hand, by Theorem
14.6.18 the complex M ′ has a rigidifying isomorphism ρ′, such that

qv,RA : (RA, ρA)→ (M ′, ρ′)

is a nondegenerate rigid localization morphism. By the uniqueness in Theorem
15.1.4, there is an isomorphism

(M ′, ρ′) ∼= (RA′ , ρA′)

in D(A′)rig/K. �

Definition 15.1.13. Let v : A → A′ be a localization homomorphism in
Ringc/feftK, and let RA and RA′ be the respective rigid dualizing complexes. The
morphism

qv/K = qA′/A/K : RA → RA′

in D(A) from Theorem 15.1.12 is called the rigid localization over v.

Again, in the definition above we are hiding the rigidifying isomorphisms ρA and
ρA′ .

Corollary 15.1.14. Let v : A → A′ and v′ : A′ → A′′ be localization homomor-
phisms in Ringc/feftK. The rigid localizations satisfy

qv′/K ◦ qv/K = qv′◦v/K

as morphisms RA → RA′′ in D(A).

Proof. Both are nondegenerate rigid localization morphisms

(RA, ρA)→ (RA′′ , ρA′′).

�
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Theorem 15.1.15 (Base Change for the Rigid Trace). We are given a commutative
diagram

A
u //

v

��

B

w

��

A′
u′ // B′

in Ringc/feftK, in which u is finite, v is a localization, and

u′ ⊗A w : A′ ⊗A B → B′

is an isomorphism (i.e. the diagram is cocartesian). Then the diagram

RA

qv/K

��

RB
Tru/K
oo

qw/K

��

RA′ RB′
Tru′/K
oo

in D(A), in which the horizontal arrows are the rigid traces, and the vertical arrows
are the rigid localizations, is commutative.

Proof. Define M ′ := A′ ⊗A RA, and give it the rigidifying isomorphism ρ′ induced
from ρA. Then define N ′ := B′⊗BRB . By Lemma 14.6.21 there is an isomorphism
N ′ ∼= RHomA′(B′,M ′). And by Theorem 14.6.23 the complex N ′ has a rigidifying
isomorphism σ′ such that the diagram

(RA, ρA)

qv,RA

��

(RB , ρB)
Tru/K
oo

qw,RB

��

(M ′, ρ′) (N ′, σ′)
Tru′,M′
oo

is commutative, the morphism Tru′,M ′ is a nondegenerate rigid trace morphism rel-
ative to K, and the morphism qw,RB is a nondegenerate rigid localization morphism
relative to K.

Now N ′ is a dualizing complex over B′. This means that (N, σ′) is a rigid
dualizing complex over B′ relative to K. By Theorem 15.1.4 there is an isomorphism

ψ : (N ′, σ′) '−→ (RB′ , ρB′)

in D(B′)rig/K. Similarly there is an isomorphism

φ : (M ′, ρ′) '−→ (RA′ , ρA′)
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in D(A′)rig/K. Let’s examine the next commutative diagram, in which the dashed
arrows are the unique ones that fit.

(RA, ρA)

qv,RA

��

��

(RB , ρB)
Tru/K
oo

qw,RB

��

��

(M ′, ρ′)

φ ∼=

��

(N ′, σ′)
Tru′,M′
oo

ψ∼=

��

(RA′ , ρA′) (RB′ , ρB′)oo

The dashed arrow leaving (RB , ρB) is a nondegenerate rigid localization morphism,
so by Theorem 15.1.12 it must be qw/K. Similarly, the dashed arrow leaving
(RA, ρA) must be qv/K. The dashed arrow leaving (RB′ , ρB′) is a nondegenerate
rigid trace morphism, so by Theorem 15.1.9 it must be Tru/K. �

15.2. Rigid Residue Complexes. We begin this subsection with the assumptions
of Setup 15.1.2. This means that K is a regular noetherian ring, and all other rings
are in the category Ringc/feftK.

Residue complexes were introduced in Subsection 13.4.

Definition 15.2.1. A rigid residue complex over A relative to K is a rigid complex
(KA, ρA) over A relative to K, such that KA is a residue complex over A.

Using the rigid dimension function relative to K, we have this decomposition of
the A-module K−iA for each i :

K−iA ∼=
⊕

rig.dim(p)=i

J(p),

where J(p) is the indecomposable injective module corresponding to the prime ideal
p.

In Definition 14.1.19 we introduced the category D(A)rig/K. Recall that the
objects of D(A)rig/K are rigid complexes (M,ρ) over A relative to K; and the mor-
phisms

φ : (M,ρ)→ (N, σ)

are the morphisms φ : M → N in D(A) for which there is equality

σ ◦ φ = SqA/K(φ) ◦ ρ.

Rigid residue complexes live, or rather move, in another category.

Definition 15.2.2. The category C(A)rig/K is defined as follows. Its objects are
the rigid complexes (M,ρ) over A relative to K. Given two objects (M,ρ) and
(N, σ), a morphism

φ : (M,ρ)→ (N, σ)
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in C(A)rig/K is a morphism φ : M → N in Cstr(A), such that the diagram

M

Q(φ)

��

ρ

∼=
// SqA/K(M)

SqA/K(Q(φ))

��

N
σ
∼=

// SqA/K(N)

in D(A) is commutative.

Let us emphasize the hybrid nature of the category C(A)rig/K: the morhisms
are homomorphisms of complexes (literally degree 0 homomorphisms graded A-
modules φ : M → N that commute with the differentials); but they must satisfy a
compatibility condition (rigidity) in the derived category.

Theorem 15.2.3. Let A be an FEFT ring over the regular noetherian ring K. The
ring A has a rigid residue complex (KA, ρA) relative to K, and it is unique, up to a
unique isomorphism in C(A)rig/K.

Proof. Existence: by Theorem 15.1.4 there is a rigid dualizing complex (RA, ρA)
overA/K. LetKA be the minimal injective resolution of the complexRA. According
to Theorem 13.4.17, KA is a residue complex. It inherits the rigidifying isomorphism
ρA from RA. So the pair (KA, ρA) is a residue complex over A/K.

Uniqueness: suppose (K′, ρ′) is another residue complex over A/K. Theorem
15.1.4 tells us that there is a unique isomorphism

φ : (KA, ρA) '−→ (K′, ρ′)
in D(A)rig/K. But by Theorem 13.4.15 the function

Q : HomC(A)rig/K

(
(KA, ρA), (K′, ρ′)

)
→ HomD(A)rig/K

(
(KA, ρA), (K′, ρ′)

)
is bijective. �

Lemma 15.2.4. Let u : A → B be a finite homomorphism in Ringc/feftK. There
is a unique homomorphism

Tru/K : KB → KA
in Cstr(A), such that

Q(Tru/K) : (KB , ρB)→ (KA, ρA)
is the nondegenerate rigid trace morphism in D(A) over u from Definition 15.1.10.

Proof. Since
KB ∼= HomA(B,KB) = CIndu(KA) ∼= RCIndu(KA)

in Cstr(B), backward adjunction says that
HomCstr(A)(KB ,KA) ∼= HomCstr(B)

(
KB ,CIndu(KA)

)
.

As in the proof of Theorem 15.2.3, there is an isomorphism
Q : HomCstr(B)

(
KB ,CIndu(KA)

) ∼= HomD(B)
(
KB ,RCIndu(KA)

)
.

Finally, by derived backward adjunction there is an isomorphism
HomD(A)(KB ,KA) ∼= HomD(B)

(
KB ,CIndu(KA)

)
.
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The homomorphism Tru/K that we are looking for is the one that is sent to nonde-
generate rigid trace morphism in D(A) from Definition 15.1.10. �

Definition 15.2.5. Let u : A→ B be a finite homomorphism in Ringc/feftK. The
homomorphism

Tru/K = TrB/A/K : KB → KA
in Cstr(A) from Lemma 15.2.4 is called the rigid trace homomorphism in Cstr(A)
over u.

Lemma 15.2.6. Let v : A → A′ be a localization homomorphism in Ringc/feftK.
There is a unique homomorphism

qv/K : KA → KA′

in Cstr(A), such that

Q(qv/K) : (KA, ρA)→ (KA′ , ρA′)

is the nondegenerate rigid localization morphism in D(A) over v from Definition
15.1.13.

Exercise 15.2.7. Prove Lemma 15.2.6. (Hint: like the proof of Lemma 15.2.4, but
using forward adjunction.)

Definition 15.2.8. Let v : A→ A′ be a localization homomorphism in Ringc/feftK.
The homomorphism

qv/K = qA′/A/K : KA → KA′
in Cstr(A) from Lemma 15.2.4 is called the rigid localization homomorphism in
Cstr(A) over v.

Theorem 15.2.9. Let K be a regular noetherian ring. All rings and homomor-
phisms below are in the category Ringc/feftK.

(1) Let u : A→ B and v : B → C be finite homomorphisms. Then

Tru/K ◦Trv/K = Trv◦u/K,

as homomorphisms KC → KA in Cstr(A).
(2) Let v : A→ A′ and v′ : A′ → A′′ be localization homomorphisms. Then

qv′/K ◦ qv/K = qv′◦v/K,

as homomorphisms KA → KA′′ in Cstr(A).
(3) In the situation of Theorem 15.1.15, the diagram

KA

qv/K

��

KB
Tru/K
oo

qw/K

��

KA′ KB′
Tru′/K
oo

in Cstr(A) is commutative.

Proof. (1) Because the composition of two nondegenerate rigid trace homomor-
phisms is again a nondegenerate rigid trace homomorphism, this is a consequence
of the uniqueness in Lemma 15.2.4.
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(2) Because the composition of two nondegenerate rigid localization homomor-
phisms is again a nondegenerate rigid localization homomorphism, this is a conse-
quence of the uniqueness in Lemma 15.2.6.
(3) Several steps involving backward and forward adjunctions, as done in the proofs
of Theorem 15.2.3 and the lemmas following it, imply that there is a canonical
bijection

Q : HomCstr(A)(KB ,KA′)
'−→ HomD(A)(KB ,KA′).

The commutativity of the diagram here is then a consequence of the commutativity
of the diagram in Theorem 15.1.15. �

15.3. The Ind-Rigid Trace homomorphism. In this subsection we must use
infinitesimal methods. By necessity this introduces torsion (cf. Example 15.3.3
below). If we had DG ring resolutions at our disposal (see Remark 14.1.26) that
would not pose a problem. But in this book we choose not to do that (because it
is too complicated). Thus we are forced to make the next restrictive assumption in
the current subsection. See Question 15.3.29 about this difficulty.

Setup 15.3.1. The base ring K is a field. The category of essentially finite type
commutative K-rings will be denoted by Ringc/eftK. The rings A,B,C,A′, B′, A′′,
and the homomorphisms between them, are in Ringc/eftK.

Definition 15.3.2. For a prime ideal p ⊆ A and a number l ∈ N we write
Ap,l := Ap/p

l+1
p .

This is an artinian local ring, with maximal ideal pp/pl+1
p , and we call it the l-th

infinitesimal neighborhood of the residue field k(p).

Observe that for l = 0 we do have Ap,0 = k(p). This justifies the name given to
Ap,l.

Example 15.3.3. Assume (contrary to Setup 15.3.1) that K = Z. Let A := Z, and
let p := (p) for some positive prime p. Then A is flat over K, but Ap,l = Z/(pl+1)
is not a flat K-ring for any l ∈ N.

We begin with an analysis of the structure of the rigid residue complex KA.
The rigid dimension function relative to K, denoted by rig.dimK, was introduced in
Definition 15.1.7.

Definition 15.3.4. Let A ∈ Ringc/feftK be an artinian local ring, with maximal
ideal m. We define

rig.dimK(A) := rig.dimK(m).

This definition makes sense, because the maximal ideal m is the only point in the
set Spec(A). Of course the Krull dimension of the ring A is zero. To have cleaner
notation, we shall often omit the letter K and just write rig.dim(A).

Proposition 15.3.5. Let L ∈ Ringc/eftK be a field. There is equality
rig.dimK(L) = tr.degK(L),

where the second number is the transcendence degree of the field extension K→ L.

Exercise 15.3.6. Prove this proposition. (Hint: find a rational function field
K(t1, . . . , tn) such that L is a finite extension of it. Then use Theorem 15.1.9.
Compare to Exercise 15.1.8(2).)
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Definition 15.3.7. Let A ∈ Ringc/eftK be an artinian local ring, with rigid residue
complex KA, and with i := rig.dim(A). We define the rigid dual module of A relative
to K to be the A-module K(A) := K−iA .

The A-module K(A) is an indecomposable injective (it is an injective hull of the
residue field k(m) = A/m). And the rigid residue complex of A/K is

(15.3.8) (KA, ρA) =
(
K(A)[i], ρA

)
∈ C(A)rig/K.

Remark 15.3.9. An explanatory remark is due here. Consider the situation of
Definition 15.3.7. The rigid dual module K(A) has more structure than just an in-
decomposable injective. It, or rather the rigid residue complex K(A)[i], is equipped
with a rigidifying isomorphism

ρA : K(A)[i] '−→ SqA/K
(
K(A)[i]

)
in D(A). This is what makes the constructions below work.

Lemma 15.3.10. Let u : A→ B be a homomorphism between artinian local rings
in Ringc/eftK. Let m ⊆ A and n ⊆ B be the maximal ideals. The three conditions
below are equivalent.

(i) The ring homomorphism u : A→ B is finite.
(ii) The field extension k(m)→ k(n) is finite.
(iii) The rigid dimensions rig.dim(A) and rig.dim(B) are equal.

Proof. The implication (i) ⇒ (ii) is trivial. The other direction is proved by in-
duction on l ≥ 0 that Am,l → Bn,l is finite. For l = 0 this is the given finite
homomorphism k(m)→ k(n), and for l� 0 we get A→ B.

The implication (i) ⇒ (iii) is a consequence of Theorem 15.1.9, which tells us
that

KB ∼= HomA(B,KA)
in Cstr(B).

Finally, given (iii), Proposition 15.3.5 says that tr.degK(L) = 0. Hence L is a
finite extension of K, which is condition (ii). �

Definition 15.3.11. Let u : A → B be finite homomorphism between artinian
local rings in Ringc/eftK, and let i := rig.dim(A) = rig.dim(B). The rigid trace
homomorphism in M(A) over u relative to K is the A-module homomorphism

TrB/A : K(B)→ K(A)

which is the degree −i component of the rigid trace homomorphism

TrB/A : KB → KA
in Cstr(A).

By Definition 13.4.14, the rigid residue complex KA has this decomposition:

K−iA ∼=
⊕

rig.dim(p)=i

J(p),

where J(p) is the indecomposable injective module corresponding to the prime ideal
p. Recall that for an A-module M we denote by Γp(M) the p-torsion submodule.
The next lemmas let us give a more effective decomposition of K−iA .
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Lemma 15.3.12. Let A ∈ Ringc/eftK. Consider a prime ideal p in A with i :=
rig.dim(p). Then:

(1) The A-modules Γp(K−iA ) and Ap ⊗A K−iA are both isomorphic to J(p).
(2) The rigid localization homomorphism

qAp/A : KA → KAp

in Cstr(A) induces an isomorphism

qAp/A : Γp(K−iA ) '−→ K−iAp

in M(A).

Proof. (1) The catenary property implies that for any q ∈ Spec(A) distinct from
p but with rig.dim(q) = i, there is no inclusion between these ideals. So there is
some element s ∈ p−q. But J(q) is an Aq-module. This implies that Γp(J(q)) = 0.
There is also an element t ∈ q − p. But J(q) is a q-torsion module, and thus
Ap ⊗A J(q) = 0.

The only summand of K−iA that survives is J(p), which is a p-torsion Ap-module.
(2) Because qAp/A is a nondegenerate localization, it induces an isomorphism

Ap ⊗A K−iA
'−→ K−iAp

in degree −i. But by item (1) the canonical homomorphism

Γp(K−iA )→ Ap ⊗A K−iA
is an isomorphism. For the local ring the same reasoning gives isomorphisms

Γp(K−iAp
) '−→ K−iAp

'−→ Ap ⊗A K−iAp
.

�

Lemma 15.3.13. Let A ∈ Ringc/eftK. Fix an integer i. Then the homomorphism
of A-modules ∑

rig.dim(p)=i

qAp/A : K−iA →
⊕

rig.dim(p)=i

K−iAp

is bijective.

Proof. By Lemma 15.3.12(1) there is a canonical A-module decomposition

K−iA =
⊕

rig.dim(p)=i

Γp(K−iA ).

Part (2) of that lemma asserts that each summand Γp(K−iA ) goes bijectively to K−iAp

under the homomorphism qAp/A. �

Let p and i be as in the Lemma 15.3.12. We consider the infinitesimal neigh-
borhoods Ap,l, for l ≥ 0, of the residue field k(p) = Ap,0. For every l the canonical
surjection Ap,l+1 → Ap,l is a finite homomorphism in Ringc/eftK, and hence there
is the rigid trace homomorphism
(15.3.14) TrAp,l/Ap,l+1 : K(Ap,l)→ K(Ap,l+1)

in M(Ap). Due to functoriality (Theorem 15.2.9(1)) these homomorphisms make
the collection of Ap-modules

{
K(Ap,l)

}
l∈N into a direct system. There are also the
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canonical surjective ring homomorphisms Ap → Ap,l, and the corresponding rigid
trace homomorphisms

(15.3.15) TrAp,l/Ap
: K(Ap,l)→ K−iAp

in M(A). The diagram below in M(A) is commutative.

(15.3.16) K(Ap,l)

TrAp,l/Ap

((

TrAp,l/Ap,l+1
// K(Ap,l+1)

TrAp,l+1/Ap

��

K−iAp

Lemma 15.3.17. Let A ∈ Ringc/eftK, and let p ⊆ A with rig.dim(p) = i. Then:
(1) For any l the homomorphism of Ap-modules

TrAp,l/Ap,l+1 : K(Ap,l)→ K(Ap,l+1)

is injective.
(2) The homomorphism of Ap-modules

lim
l→

TrAp,l/Ap
: lim

l→
K(Ap,l) → K−iAp

is bijective.

Proof. (1) By backward adjunction and the fact that TrAp,l/Ap,l+1 is a nondegener-
ate trace homomorphism, we get a commutative diagram

K(Ap,l)
∼= //

TrAp,l/Ap,l+1

  

HomAp,l+1

(
Ap,l,K(Ap,l+1)

) ⊆
// K(Ap,l+1)

The arrow “⊆” is the inclusion into K(Ap,l+1) of the submodule annihilated by
pl+1
p .

(2) By backward adjunction and the fact that TrAp,l/Ap
is a nondegenerate trace

homomorphism, we get a commutative diagram

K(Ap,l)
∼= //

TrAp,l/Ap

  

HomAp

(
Ap,l,K−iAp

) ⊆
// K−iAp

.

The arrow “⊆” is the inclusion into K−iAp
of the submodule annihilated by pl+1.

But according to Lemma 15.3.12 and the Matlis classification, the module K−iAp
is

p-torsion. �

Combining Lemmas 15.3.13 and 15.3.17 we get this useful fact: there is a canon-
ical isomorphism of A-modules

(15.3.18) K−iA ∼=
⊕

rig.dim(p)=i

lim
l→
K(Ap,l).
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In words: the degree −i term of the rigid residue complex KA is approximated,
as a direct limit, by the rigid dual modules K(Ap,l) of the various infinitesimal
neighborhoods of the residue fields k(p), for the primes p ⊆ A of rigid dimension i.

For a convenient reference, here is the same formula for a second ring B:

(15.3.19) K−iB ∼=
⊕

rig.dim(q)=i

lim
l→
K(Bq,l).

Here we run over the prime ideals q ⊆ B. In view of the direct limit expression
(15.3.18) and (15.3.19), giving a homomorphism

φ : KB → KA
in G0(A) amounts to specifying, for any i ∈ Z, any q ∈ Spec(B) with rig.dim(q) = i,
and any l ∈ N, a homomorphism

φq,l : K(Bq,l)→ K−iA ,

such that
φq,l = φq,l+1 ◦ TrAp,l/Ap,l+1 .

Definition 15.3.20 (The Ind-Rigid Trace). Let K be a field, and let u : A → B
be a homomorphism in Ringc/eftK. The ind-rigid trace homomorphism in G0(A)
over u relative to K is the homomorphism

Tru = TrB/A : KB → KA
defined as follows. As explained above, it suffices to define the A-module homo-
morphism

Tru |K(Bq,l) : K(Bq,l)→ K−iA
for any i ∈ Z, any q ∈ Spec(B) with rig.dim(q) = i, and any l ∈ N. There are two
cases, depending on the prime ideal p := u−1(q) ∈ Spec(A).

• (Finite case) If rig.dim(p) = i, then the induced homomorphism

uq,l : Ap,l → Bq,l

is finite. We define Tru |K(Bq,l) to be the composition of the trace

TrBq,l/Ap,l
: K(Bq,l)→ K(Ap,l)

from Definition 15.3.11 with the inclusion

K(Ap,l)� K−iA .

from (15.3.18).
• (Infinite case) If rig.dim(p) < i, then we define Tru |K(Bq,l) := 0.

Notice that in the finite case the homomorphisms agree for varying l, due to the
functoriality of the traces (see the commutative diagram (15.3.16)).

Theorem 15.3.21 (Properties of the Ind-Rigid Trace). Fix a base field K.
(1) Let u : A→ B and v : B → C be homomorphisms in Ringc/eftK. Then

Tru ◦Trv = Trv◦u
as homomorphisms KC → KA in G0(A).
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(2) If u : A → B is a finite homomorphism in Ringc/eftK, then the ind-rigid
trace

Tru : KB → KA
in G0(A) over u equals the rigid trace in Cstr(A) over u. In particular, this
is a strict homomorphism of complexes.

(3) Suppose we are given a commutative diagram

A
u //

v

��

B

w

��

A′
u′ // B′

in Ringc/eftK, in which v is a localization, and

u′ ⊗A w : A′ ⊗A B → B′

is an isomorphism (i.e. the diagram is cocartesian). Then the diagram

KA

qv

��

KB
Truoo

qw

��

KA′ KB′
Tru′oo

in G0(A), in which the horizontal arrows are the ind-rigid traces, and the
vertical arrows are the rigid localizations, is commutative.

Proof. (1) Take some r ∈ Spec(C), with rig.dim(r) = i. We have to compare the
trace homomorphisms

Tru ◦Trv, Trv◦u : K(Cr,l)→ K−iA
for any l ≥ 0. If

rig.dim(p) = rig.dim(q) = i

then we are in the finite case: the ring homomorphisms

Ap,l → Bq,l → Cr,l

are finite, and the traces are equal by functoriality of the rigid trace (Theorem
15.2.9(1)).

If there is a dimension jump: either rig.dim(p) < rig.dim(q) or rig.dim(q) <
rig.dim(r), then also rig.dim(p) < rig.dim(r), so we are in the infinite case, and
both Tru ◦Trv and Trv◦u vanish on K(Cr,l).

(2) Now u : A → B is finite. Let us use the geometric notation X := Spec(A),
Y := Spec(B) and f := Spec(u). So f : Y → X is a finite map of affine schemes.
For any p = x ∈ X the set Y (x) := f−1(x) ⊆ Y is finite, and the the ring

(15.3.22) Bp := Ap ⊗A B

is semi-local, with set of maximal ideals Y (x). Another way to say it is this: the
local ring at x is Ap = OX,x, and we define Xx := Spec(Ap) and Yx := Spec(Bp).
Then

Yx := Y ×X Xx,
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and the map of affine schemes

fx : Yx → Xx

is finite.
For any l ∈ N the fiber ring B⊗AAp,l is a semi-local artinian ring, with spectrum

the finite set Y (x), and there are finite ring homomorphism

(15.3.23) Ap,l → B ⊗A Ap,l →
∏

q∈Y (x)

Bq,l.

We have a commutative diagram in Ringc/eftK

(15.3.24) A
u

fin
//

loc

��

B

loc

��

Ap

fin

����

up

fin
// Bp

fin
����

Ap,l
up,l

fin
//

∏
q∈Y (x)

Bq,l

in which the arrows marked “fin” are finite, and the arrows marked “loc” are local-
izations. The top square is cocartesian.

By Theorems ????
comment: fill
we have a commutative diagram in Cstr(A) :

(15.3.25) KA

qAp/A

��

KB
Truoo

qBp/B

��

KAp

⊕
q∈Y (x)

KBq
Trup

oo

KAp,l

TrAp,l/Ap

OO

⊕
q∈Y (x)

KBq,l

Trup,l
oo

∑
TrBq,l/Bq

OO
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Let i := rig.dim(p). Then the degree −i part of diagram (15.3.25), localized at p,
becomes a commutative diagram in M(A) :

(15.3.26) K−iA

qAp/A

��

K−iB
Truoo

qBp/B

��

K−iAp

⊕
q∈Y (x)

K−iBq

Trup
oo

K(Ap,l)

TrAp,l/Ap

OO

⊕
q∈Y (x)

K(Bq,l)Trup,l
oo

∑
TrBq,l/Bq

OO

A comparison of the commutative diagram (15.3.26) with Definition 15.3.20
shows that the ind-rigid trace and the rigid trace coincide in this situation.
(3) The proof is similar to the arguments given in the proof of item (2) above, and
we leave the details to the reader. �

Exercise 15.3.27. Give a detailed proof of item (3) of the last theorem.

Remark 15.3.28. Item (2) in the last theorem implies that for a finite homomor-
phism u : A → B, the ind-rigid trace is a homomorphism of complexes. Later,
once we have made everything geometric, this property – that the ind-rigid trwce
commutes with the differentials – will be the Residue Theorem for a proper map of
schemes f : X → Y .

Question 15.3.29. Is there a reasonably easy way to remove the assumption that
K is a field? (We know it can be done using DG ring resolutions, but that is quite
hard.)

15.4. Interlude: Regular Sequences and Generalized Fractions.

comment: this should be made a subsec of a new sec “Complements on
Commutative Algebra”, that should be just before sec “Dualizing Complexes...”

Here we first recall several notions of regularity for sequences of elements. These
notions seems to have originated with Grothendieck in [LC], [RD] and [EGA 0IV].
We then introduce generalized fractions in Koszul cohomology, and prove some
useful facts about them.

Setup 15.4.1. In this subsection all rings are commutative and noetherian.

Much of the material holds also for non-noetherian rings, but this is not the
focus here.

Let A be a ring, and let a = (a1, . . . , an) be a finite sequence of elements of
A. The property of a being a regular sequence is the most familiar among the
regularity concepts; but this concept is not useful for us, so we will not talk about
it. There is much written about regular sequences in many texts, including [LC],
[Eis], [Mats], [SP].
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The least familiar version of regularity seems to be that of weak proregularity.
It also originated in [LC], but most research on it is pretty recent – see [AlJeLi],
[Scz], [PSY] and [VyYe]. This notion is also not relevant to our discussion.

We shall be interested in two other types of regularity: quasi-regular sequences
and Koszul regular sequences. They turn out to be equivalent (this is Theorem
15.4.13).

An ideal a ⊆ A gives rise to the descending a-adic filtration, and thus to the
graded ring

(15.4.2) gra(A) =
⊕
i≥0

gria(A),

where
gria(A) := ai/ai+1

for i ∈ N. This construction is standard; see [Eis] or [Mats]. For any i ≥ 0 we have
the i-th symbol homomorphism

(15.4.3) symbia : ai → ai/ai+1 = gria(A).

It sends an element a ∈ ai to its class in a+ ai+1 ∈ gria(A).
The ring gra(A) is commutative and is graded. However, it is not a weakly com-

mutative graded ring in the sense of Example 3.1.8 and Definition 14.5.5; namely
the Koszul sign rule does not apply.

Remark 15.4.4. This is a good place to mention the two different types of grad-
ings, and related commutativity.

In the DG world (that is prevalent in our book) graded commutativity is always
in terms of the Koszul sign rule. Also the differentials of DG objects (rings and
modules) have degree 1 for these gradings. See Definition 14.5.5.

On the other hand, there is an abundance of literature on graded rings for
which commutativity does not involve signs. These are the graded rings that occur
in commutative ring theory (see [Mats], [Eis] or [AlKl]); in projective algebraic
geometry (see [Har]); and in noncommutative ring theory (see [Row] or [ArZh]).
The graded ring in (15.4.2) belongs to this kind. In the related homological algebra,
differentials of complexes have degree 0.

In order to distinguish between the two types of gradings, we propose to call
them cohomological gradings and algebraic gradings, respectively.

Given a finite sequence a = (a1, . . . , an) of elements of A, let a ⊆ A be the
ideal that is generated by this sequence. Suppose t = (t1, . . . , tn) is a sequence
of variables. We put an algebraic grading on the commutative polynomial ring
gr0

a(A)[t] by placing gr0
a(A) in degree 0, and giving each variable ti the degree 1.

Then there is a graded ring homomorphism

(15.4.5) uA;a : gr0
a(A)[t]→ gra(A),

that is the identity on gr0
a(A), and sends the variable ti to the element symb1

a(ai) ∈
gr1

a(A).
The next definition is taken from [EGA 0IV, Définition 15.1.7]. It repeated in

[Kab], [Mats, Section 16] and [SP, Subsection 061M].

Definition 15.4.6. Let a = (a1, . . . , an) be a finite sequence of elements of a
noetherian commutative ring A, and let a be the ideal in A that is generated by this

285



Derived Categories | Amnon Yekutieli 24 June 2017 | part3_170603d2.tex

sequence. The sequence a is called quasi-regular if the graded ring homomorphism
uA;a in formula (15.4.5) is bijective.

Lemma 15.4.7. Let a be a finite sequence in A, and let a ⊆ A be the ideal generated
by a. The following two conditions are equivalent.

(i) The sequence a is quasi-regular.
(ii) For every prime ideal q ⊆ A such that a ⊆ q, the sequence a in the ring Aq

is quasi-regular.

Proof. Consider the graded ring homomorphism
uA;a : gr0

a(A)[t]→ gra(A)
from (15.4.5). Let Ā := gr0

a(A) = A/a. Since the homomorphism uA;a is Ā-linear,
it is bijective if and only if for every prime q̄ ∈ Spec(Ā) the localized homomorphism

(uA;a)q̄ :
(
gr0

a(A)[t]
)
q̄
→
(
gra(A)

)
q̄

is bijective. But (uA;a)q̄ is gotten from uA;a by applying Aq ⊗A (−) to it, where
q ⊆ A is the ideal such that q̄ = q + a ⊆ Ā. Namely (uA;a)q̄ coincides with the
homomorphism

uAq;a : gr0
aq

(Aq)[t]→ graq
(Aq)

that we get from the sequence a in the ring Aq. �

The Koszul complex K(A;a) associated to the finite sequence a was recalled in
Examples 3.3.8 and 3.3.10. For other descriptions of the Koszul complex see [Eis]
or [Mats].

Of course the coboundaries in K(A;a)0 = A form the ideal a ⊆ A generated by
the sequence a. So there is a canonical A-ring isomorphism
(15.4.8) H0(K(A;a)

) ∼= A/a.

The following definition seems to have first appeared in [Kab]. See also [SP,
Subsection 062D].

Definition 15.4.9. A finite sequence a = (a1, . . . , an) of elements of a noetherian
commutative ring A is called Koszul regular if the Koszul complex K(A;a) satisfies

Hi
(
K(A;a)

)
= 0

for all i < 0.

What Koszul regularity gives is the next proposition (whose easy proof we leave
out).

Proposition 15.4.10. If a is a Koszul regular sequence in the ring A, and if a ⊆ A
is the ideal generated by this sequence, then the Koszul complex K(A;a) is a free
resolution over A of the module Ā := A/a.

Remark 15.4.11. As noted before (see Definitions 3.3.8 and 3.3.10), the Koszul
complex K(A;a) has more structure on it: it is a semi-free commutative DG A-
ring. Thus, if a is a Koszul regular sequence, then the Koszul complex K(A;a) is
a semi-free DG ring resolution of the ring A/a over A. See Example 14.5.14.

Lemma 15.4.12. Let a be a finite sequence in A, and let a ⊆ A be the ideal
generated by a. The following two conditions are equivalent.

(i) The sequence a is Koszul regular.
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(ii) For every prime ideal q ⊆ A such that a ⊆ q, the sequence a in the ring Aq

is Koszul regular.

Proof. The cohomology modules Hi
(
K(A;a)

)
are finitely generated modules over

the ring Ā := A/a. Their vanishing can be tested locally, namely at all prime ideals
of Ā. The proof goes very much like the proof of Lemma 15.4.7, and we leave the
details to the reader. �

Theorem 15.4.13. Let A be a noetherian commutative ring, and let a be a finite
sequence of elements of A. The following two conditions are equivalent.

(i) The sequence a is Koszul regular.
(ii) The sequence a is quasi-regular.

Proof. Lemmas 15.4.7 and 15.4.12 allow us to assume that A is a local noetherian
ring, with maximal ideal m, and that the sequence a is inside m.

In this case we can use [Mats, Theorems 16.3 and 16.5], [SP, Lemma 09CC], or
[Kab]. �

Remark 15.4.14. The history of this theorem is not clear. It does not seems to
be in [EGA 0IV], [EGA IV], [Kab], [Mats], [Eis] or [SP]. However, we did locate it
as [Li3, Example 3.2(b)] from 1987, and – in slightly different terminology – it is
[BAH, Théorème 9.7.1], from 1980.

We need some notation for elements of Koszul cohomology. Consider a ring A
and a finite sequence a = a1, . . . , an in it. It is now advantageous to view the
Koszul complex K(A;a) as a semi-free commutative DG ring. Thus as a graded
commutative ring we have

(15.4.15) K(A;a) = A[t] = A[t1, . . . , tn],

the free strongly commutative A-ring on the degree −1 variables t1, . . . , tn. See
Definitions 14.5.5 and 14.5.11. The differential d is the unique degree +1 derivation
of A[t] such that d(ti) = ai. In degree −n the A-module K(A;a)−n is free of rank
1 with basis t1 · · · tn.

For any A-module M we have the complex of A-modules

(15.4.16) HomA

(
K(A;a),M

)
that’s concentrated in degrees 0, . . . , n. The degree n piece of this complex consists
of cocycles.

Definition 15.4.17. Given a commutative ring A, a finite sequence a =
(a1, . . . , an) in A, an A-module M and an element m ∈M , the cohomology class[

m
a

]
∈ Hn

(
HomA

(
K(A;a),M

))
,

called a generalized fraction, is the class represented by the cocycle

(t1 · · · tn 7→ m) ∈ HomA

(
K(A;a)−n,M

)
.

In the next three lemmas we have a fixed finite sequence a = (a1, . . . , an) in A,
and a fixed A-module M . We let a ⊆ A be the ideal generated by the sequence a,
and Ā := A/a. For an element b ∈ A we denote its image in Ā by b̄; in other words,
b̄ = symb0

a(b).
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Lemma 15.4.18. The A-modules
Hi
(
HomA

(
K(A;a),M

)
are annihilated by the ideal a, and so they have an induced Ā-module structure.

Lemma 15.4.19. Every element of the Ā-module
Hn
(
HomA

(
K(A;a),M

)
can be written as a generalized fraction [ma ] for some m ∈M .

Lemma 15.4.20. Given elements bi ∈ A and mi ∈M , there is equality[
b1 ·m1 + b2 ·m2

a

]
= b̄1 ·

[
m1
a

]
+ b̄1 ·

[
m2
a

]
.

Exercise 15.4.21. Prove lemmas 15.4.18 and 15.4.20. (Hint: for the first lemma,
use the fact that K(A;a) is a DG ring.)

Theorem 15.4.22. Let A be a noetherian commutative ring, let a ⊆ A be an ideal,
with quotient ring Ā := A/a, and let P be a flat A-module. Assume the ideal a is
generated by a Koszul regular sequence a = (a1, . . . , an). Then the following hold.

(1) For any i 6= n we have
ExtiA(Ā, P ) = Hi

(
HomA

(
K(A;a), P

))
= 0.

(2) There is canonical isomorphism of Ā-modules

ΦP,a : Hn
(
HomA

(
K(A;a), P

)) '−→ ExtnA(Ā, P ).
(3) Suppose b = (b1, . . . , bn) is another Koszul regular sequence in A that gen-

erates the ideal a. Let g = [gi,j ] be an n× n matrix with entries in A such
that

bi =
∑
j

gi,j · aj .

Then the element det(g) ∈ Ā is invertible, and

ΦP,a
([p
a

])
= det(g) ·ΦP,b

([p
b

])
∈ ExtnA(Ā, P )

for any p ∈ P .

Proof. This is proved in a somewhat sketchy way in [RD, Sections III.7 and III.9].
Here is a more detailed proof.
(1) Since P is a flat A-module, according to Theorem 14.2.20 there is a canonical
isomorphism
(15.4.23) RHomA(Ā, P ) ∼= RHomA(Ā, A)⊗A P
in D(A). So we may assume that P = A. Now the fact that a is Koszul regular
means that the Koszul complex K(A;a) is a free resolution of Ā as an A-module.
This gives a canonical isomorphism
(15.4.24) RHomA(Ā, A) ∼= HomA

(
K(A;a), A

)
in D(A).

The Koszul complex K(A;a) has a symmetry: there is an isomorphism
HomA

(
K(A;a), A

) ∼= K(A;a)[−n]
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in Cstr(A). For n = 1 this can be seen immediately; and for n > 1 it comes from
the fact that the Koszul complex is the tensor product of the complexes K(A; ai).
Therefore we get an isomorphism

(15.4.25) RHomA(Ā, A) ∼= K(A;a)[−n].

The Koszul regularity of the sequence a says that the only nozero cohomology here
is in degree n.

(2) We already noticed that the Koszul complex K(A;a) is a free resolution of Ā
as an A-module. This gives a canonical isomorphism

(15.4.26) HomA

(
K(A;a), P

) '−→ RHomA(Ā, P )

in D(A). See Theorem 12.6.1. In degree n cohomology we get the desired canonical
isomorphism of A-modules

ΦP,a : Hn
(
HomA

(
K(A;a), P

)) '−→ ExtnA(Ā, P ).

But these modules are annihilated by the ideal a, so this is a Ā-module isomorphism.

(3) Since K(A;a) and K(A; b) are both K-projective resolutions of Ā, there is a
homotopy equivalence

ψ : K(A; b)→ K(A;a)
in Cstr(A) that commutes up to homotopy with the quasi-isomorphisms ot Ā; and
moreover ψ is unique up to homotopy. The general theory says that

ΦP,a = ΦP,b ◦Hn
(
HomA(ψ, idP )

)
.

We are going to produce a special homotopy equivalence ψ using the DG ring
structure of the Koszul complexes. Let us write K(A;a) = A[s] and K(A;a) = A[t],
the free strongly commutative graded rings on the sequences of degree −1 variables
where s = (s1, . . . , sn) and t = (t1, . . . , tn). The differentials are d(si) = ai and
d(ti) = bi. Let ψ : A[t] → A[s] be the unique graded A-ring homomorphism such
that

ψ(ti) =
∑
j

gi,j · sj .

This is easily seen to respect the differentials, so it is a DG ring homomorphism.
And it also respects the augmentations to Ā. So it is a homotopy equivalence of
K-projective resolutions of Ā.

In degree −n we have

ψ(t1 · · · tn) =
n∏
i=1

(∑
j

gi,j · sj
)
,

where the product is from left to right. Since sj · sk = −sk · sj and s2
j = 0, we get

ψ(t1 · · · tn) = det(g) · s1 · · · sn ∈ K(A;a)−n.

Let us look at a generalized fraction[
p
a

]
∈ Hn

(
HomA

(
K(A;a), P

))
,

represented by an A-linear homomorphism

γ : K(A;a)−n → P, γ(s1 · · · sn) = p.
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Then
Hn
(
HomA(ψ, idP )

)([p
a

])
∈ Hn

(
HomA

(
K(A; b), P

))
,

is represented by
HomA(ψ, idP )(γ) = γ ◦ ψ : K(A; b)−n → P.

And we know that
(γ ◦ ψ)(t1 · · · tn) = det(g) · p.

By Lemma 15.4.18 we have[
det(g) · p

b

]
= det(g) ·

[
p

b

]
.

Finally, to see that det(g) is invertible in Ā, let us take P = A, and let’s assume
that Ā 6= 0. From formula (15.4.25) we see that ExtnA(Ā, A) is a free Ā-module
of rank 1. Since the the generalized fractions [ 1

a ] and [ 1
b ] generate this Ā-module,

they must be bases of it. And we know that

(15.4.27)
[

1
a

]
= det(g) ·

[
1
b

]
.

�

Remark 15.4.28. Generalized fractions were used (without this name) in [RD].
They had appeared in some subsequent texts (e.g. [Li4], [Li3], [Hub]) as part of the
residue symbol.

Definition 15.4.29. Let B be a nonzero ring and P a projective B-module of rank
n.

(1) The exterior power
∧n
B(P ) is denoted by det(P ).

(2) Given a sequence p = (p1, . . . , pn) of elements of P , we let
det(p) := p1 ∧ · · · ∧ pn ∈ det(P ).

The B-module det(P ) is projective of rank 1. If the sequence p = (p1, . . . , pn) is
a basis of P , then the element det(p) is a basis of the module det(P ).

Example 15.4.30. Suppose P = B⊕n, the standard free B-module of rank n,
viewed as a column module. The module P has a canonical basis, namely the
standard basis e = (e1, . . . , en). Hence the module det(P ) has a canonical basis
det(e), and so there is a canonical isomorphism det(P ) ∼= B.

Now a sequence p = (p1, . . . , pk) in P can be viewed as an n × n matrix with
entries in B. Under the canonical isomorphism det(P ) ∼= B, the element det(p) ∈ B
is just the usual determinant of the matrix p.

Definition 15.4.31. Let A be a noetherian commutative ring, and let a ⊆ A be
an ideal, with quotient ring Ā := A/a. Assume that a/a2 is a projective Ā-module
of rank n. The relative dualizing module of Ā/A is the rank 1 projective Ā-module

∆Ā/A := HomĀ

(
det(a/a2), Ā

)
.

Remark 15.4.32. In [RD, Section III.1] the relative dualizing module ∆Ā/A is
denoted by ωĀ/A, and has no name. In subsequent texts (e.g. [Har], [Eis] and
[BrSh]) this module is called the canonical module.
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Recall that in Definition 15.3.7 we had the rigid dual module of A relative to
K, denoted by K(A). This referred to a base field K and an artinian local ring
A ∈ Ringc/eftK.

A rule of thumb to distinguish between these two notions is as follows. The
relative dualizing module ∆Ā/A, and its siblings ∆B/A that will show up in Sub-
section 15.6, are projective modules of rank 1. On the other had, K(A) is always
an indecomposable injective module over the artinian local ring A.

Definition 15.4.33. In the situation of Definition 15.4.31, suppose a =
(a1, . . . , an) is a sequence of elements of a, such that the sequence

symb1
a(a) :=

(
symb1

a(a1), . . . , symb1
a(an)

)
is a basis of the Ā-module a/a2. We let δa ∈ ∆Ā/A be the the Ā-linear isomorphism

δa : det(a/a2) '−→ Ā

satisfying
δa

(
det(symb1

a(a))
)

= 1.

Of course the element δa is a basis of the rank 1 free Ā-module ∆Ā/A.

Lemma 15.4.34. Assume the ideal a is generated by a Koszul regular sequence
a of length n. Then the Ā-module a/a2 is free of rank n, with basis the sequence
symb1

a(a).

Proof. This is because a is a quasi-regular sequence (Theorem 15.4.13), and the
degree 1 component of the polynomial ring Ā[t] is free with basis the sequence
t. �

Lemma 15.4.35. Suppose the sequences a = (a1, . . . , an) and b = (b1, . . . , bn) are
both Koszul regular sequences that generate the ideal a. Let g be the matrix defined
in Theorem 15.4.22(3). Then there is equality

δa = det(g) · δb.

Exercise 15.4.36. Prove Lemma 15.4.35. (Hint: imitate the proof of Theorem
15.4.22(3).)

The next theorem is [RD, Proposition III.7.2], where it is called the fundamental
local isomorphism.

Theorem 15.4.37. Let A be a noetherian commutative ring, let a ⊆ A be an ideal,
with quotient ring Ā := A/a, and let P be a flat A-module. Assume the ideal a
is generated by some Koszul regular sequence of length n. Then there is a unique
isomorphism of Ā-modules

ΨP : ExtnA(Ā, P ) '−→ ∆Ā/A ⊗A P,

that satisfies the following condition.
(†) Let a be a Koszul regular sequence of length n that generates the ideal a.

Then
(ΨP ◦ ΦP,a)

([
p
a

])
= δa ⊗ p

for any element p ∈ P .
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Proof. The uniqueness is clear. For existence, we can assume (as argued in the
proof of Theorem 15.4.22(1)) that P = A.

Let a = (a1, . . . , an) be a Koszul regular sequence that generates the ideal a. As
shown in the proof of Theorem 15.4.22(3), the Ā-module ExtnA(Ā, A) is free of rank
1, and the cohomology class ΦA,a([ 1

a ]) is a basis of it. We also know that ∆Ā/A is a
Ā-module of rank 1, and the element δa is a basis of it. In order to fulfill condition
(†) we have no choice but to define ΨA to be the isomorphism that sends ΦA,a([ 1

a ])
to δa.

It remains to verify that if b = (b1, . . . , bn) is another Koszul regular sequence
in A that generates the ideal a, then

(ΨA ◦ ΦA,b)
([1
b

])
= δb.

This is true because, according to Theorem 15.4.22(3), there is equality

ΦA,a
([1
a

])
= det(g) ·ΦA,b

([a
b

])
∈ ExtnA(Ā, A),

where g is the transformation matrix. And by Lemma 15.4.35 we know that

δa = det(g) · δb ∈ ∆Ā/A.

�

According to Theorem 14.2.20, if L is a finitely generated A-module, M is any
A-module, and S ⊆ A is a multiplicatively closed set, then there is a canonical
isomorphism

(15.4.38) RHomA(L,M)⊗A AS
'−→ RHomAS (LS ,MS)

in D(AS).
Let us denote by Supp(L) the support of L, which is the set

Supp(L) := {p ∈ Spec(A) | Lp 6= 0}.

This is a closed subset of Spec(A), because L is finitely generated.

Proposition 15.4.39. Let A be a noetherian commutative ring, let a ⊆ A be an
ideal, with quotient ring Ā := A/a, and let L be a finitely generated A-module, and
let M be any A-module. Suppose that s ∈ A is an element such that

Supp(L) ⊆ Spec(As) ⊆ Spec(A).

Then for any i the canonical homomorphism

ExtiA(L,M)→ ExtiA(L,M)⊗A As ∼= ExtiAs(Ls,Ms)

is bijective.

We will apply this proposition later with L = Ā, in the notation of Theorem
15.4.22.

Proof. It is enough to check that for any p ∈ Spec(A) the induced homomorphism

(15.4.40) φp : ExtiA(L,M)p → ExtiAs(Ls,Ms)p
is bijective.
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There are two cases to consider. First assume that p ∈ Spec(As), namely that
s /∈ p. Then Ap = (As)p, and φp becomes, by virtue of formula (15.4.38), the
identity automorphism of ExtiAp

(Lp,Mp).
The other case is when p /∈ Spec(As). Then p /∈ Supp(L), and then both modules

in formula (15.4.40) are zero. �

15.5. Interlude: Essentially Smooth Homomorphisms.

comment: this should be made a subsec of a new sec “Complements on
Commutative Algebra”, that should be just before sec “Dualizing Complexes...”

In this subsection we discuss essentially smooth homomorphisms between noe-
therian rings. There does not seem to be detailed literature on this topic, so we give
definitions, results and proofs. Our proofs are mostly reductions to the smooth case,
which was treated in great detail by Grothendieck in [EGA 0IV] and [EGA IV]. For
a more accessible treatment of some of these results, see the papers [Ye2, Subsec-
tions 1.4-1.5] and [Ye17, Section 1], and the books [Mats] and [MajRo]. The online
reference [SP] has almost everything in it too.

First some facts on commutative rings. The next two definitions are due to
Grothendieck in [EGA 0IV, Section 19].

At first we consider arbitrary commutative rings, i.e. we work inside the category
Ringc, with no finiteness conditions. An ideal c in a ring C is called a square zero
ideal, or nilpotent of order 1, if c2 = 0.

Definition 15.5.1. Let u : A→ B be a homomorphism of commutative rings.
(1) We say that u is formally smooth, and that B is a formally smooth A-ring, if

for any commutative A-ring C, any square zero ideal c ⊆ C with canonical
surjection p : C → C/c, and any A-ring homomorphism w : B → C/c,
there is an A-ring homomorphism w̃ : B → C such that p ◦ w̃ = w. Such a
homomorphism w̃ is called a lift of w.

(2) If the lift w̃ above exists and is unique, then then u is called formally étale,
and B is called a formally étale A-ring.

The rather complicated condition in the definition is best shown in a diagram.
The solid commutative diagram below is given, and we are asking for the existence
or uniqueness of the dashed arrow.

A

u

��

v // C

p

����

B

w̃

>>

w
// C/c

Proposition 15.5.2. Let u : A→ B and v : B → C be homomorphisms in Ringc.
(1) If u and v are formally smooth homomorphisms, then so is v ◦ u.
(2) If u and v are formally étale homomorphisms, then so is v ◦ u.
(3) If u is formally étale and v ◦u is formally smooth, then v is formal smooth.
(4) If u is a localization, then it is formally étale.
(5) If B := A[t1, . . . , tn], the polynomial ring in n variables, then it is formally

smooth.
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Exercise 15.5.3. Prove Proposition 15.5.2. (There are full proofs in the references
[Mats, Sections 25-26] and [EGA 0IV, Section 19].)

From here on in this subsection we assume the next setup.

Setup 15.5.4. All rings are noetherian commutative, and all homomorphisms are
essentially finite type (EFT).

comment: Find good notation for the category of noetherian commutative
rings and EFT homomorphisms. A possible, but not the best, solution is
Ringc/eftK, where K is some fixed noetherian commutative base ring.

See Remark 15.5.45 regarding the Definition 15.5.1 within the context of Setup
15.5.4.

The next definition is also from [EGA 0IV]. Note that a finite type homomor-
phism between noetherian rings is automatically of finite presentation.

Definition 15.5.5. Let u : A→ B be a homomorphism between noetherian com-
mutative rings.

(1) We say that u is a smooth homomorphism, and that B is a smooth A-ring,
if u is finite type and formally smooth.

(2) We say that u is an étale homomorphism, and that B is an étale A-ring, if
u is finite type and formally étale.

The following definition is much less common in the literature; the earliest men-
tion of it we could find is in [Swa] from 1998. See also [YeZh3, Definition 3.1] from
2008 and [Nay] from 2009.

Definition 15.5.6. Let u : A→ B be a homomorphism between noetherian com-
mutative rings.

(1) We say that u is an essentially smooth homomorphism, and that B is an
essentially smooth A-ring, if u is essentially finite type and formally smooth.

(2) We say that u is an essentially étale homomorphism, and that B is an
essentially étale A-ring, if u is essentially finite type and formally étale.

Some typical examples are given below, in Examples 15.5.22 and 15.5.23.
Before going on we need to recall a bit of affine algebraic geometry. The refer-

ences we recommend are [Har] and [EGA I]. The next standard concept seems to
be missing a good name; the notation is from [EGA I, Section 4.1.9].

Definition 15.5.7. Given a scheme X and a global section s ∈ Γ(X,OX), the
principal open set defined by s is the open subset

Xs := {x ∈ X | s(x) 6= 0} ⊆ X.

In case X is affine, say X = Spec(A), then the open subscheme Xs is affine too:
there is a canonical isomorphism of schemes
(15.5.8) Xs

∼= Spec(As),
where As = A[s−1] is the localized ring. In this case the notation in [Har] for Xs is
D(s); but this notation leaves X implicit.

The reason for the name “principal” is that in the affine situation the closed set
X − Xs is the zero locus of the principal ideal generated by the element s. It is
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known that the principal affine open sets form a basis of the topology of X; indeed,
every open set U ⊆ X is a union of principal affine open sets (and this can be made
a finite union, since A is noetherian).

Theorem 15.5.9. Let u : A→ B be an essentially smooth homomorphism between
noetherian commutative rings, and let q ⊆ B be a prime ideal.

Then there is an element s ∈ B−q, with localization homomorphism v : B → Bs,
such that the composed ring homomorphism

us := v ◦ u : A→ Bs

factors as us = w ◦ usm, where usm : A → Bsm is a smooth homomorphism, and
w : Bsm → Bs is a localization.

Here is the commutative diagram in Ringc illustrating the theorem:

(15.5.10) A
u //

usm

��

us

!!

B

v

��   

Bsm w // Bs // Bq

The two unnamed arrows going to Bq are the localizations. To emphasize: B is
only assumed to be essentially finite type over A, but Bsm is finite type. The rings
Bs and Bq are both EFT over A.

Proof. This is taken from the proof of [YeZh3, Proposition 3.2], with some im-
provement. The idea is to reduce the statement on EFT homomorphisms to FT
homomorphisms, and then to use results found in [EGA IV] – that are actually
quite hard to prove.

We shall use geometric language, as done in [EGA IV]. Write X := Spec(A),
Y := Spec(B) and f := Spec(u); so that u = f∗. Writing y := q ∈ Y , we have
Bq = OY,y.

Choose a finitely generated A-subring Bft ⊆ B such that B is a localization of
Bft; say B = Bft[S−1] for some multiplicatively closed set S ⊆ Bft. Let Y ft :=
Spec(Bft). The canonical morphism g : Y → Y ft is a topological embedding:

Y ∼= {y ∈ Y ft | s(y) 6= 0 for all s ∈ S}.

Warning: Y is not an open subscheme of Y ft, unless S is finitely generated as a
multiplicative monoid. Here is the diagram of the affine scheme maps:

X Y ftf ft
oo Yoo

g
oo

f

��

The local ring at y = q is

OY ft,y
∼= Bft

q
∼= Bq

∼= OY,y,

and these are unique isomorphisms of B-rings. Let x := f(y) ∈ X; so x = p where
p := u−1(q) ⊆ A. By Proposition 15.5.2 the local ring OY ft,y is formally smooth
over the local ring OX,x ∼= Ap. According to [EGA IV, Théorème 17.5.1] there is
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Figure 9. A pictorial illustration of the proof of Theorem 15.5.9.

an open neighborhood V of y in Y ft which is a smooth scheme over X. Choose an
element s ∈ Bft such that the principal affine open set

Y sm := (Y ft)s ⊆ Y ft

satisfies y ∈ Y sm ⊆ V . Then Y sm is a smooth affine scheme over A. Let Bsm :=
Bft[s−1], so that Y sm = Spec(Bsm), and A → Bsm is a smooth ring homomor-
phism. In these statements we are using the results relating smoothness of rings
and schemes from [EGA IV, Section 17].

Finally, there are A-ring isomorphisms

Bs = B[s−1] ∼= Bft[S−1][s−1] ∼= Bsm[S−1],

showing that Bsm → Bs is a localization. �

Here are a few words of explanation, in case the proof above was difficult to
follow. The commutative diagram of affine schemes that was produced in the proof
is this:

(15.5.11) X Y ft
f ft

oo Yoo
g

oo

f

��

Y sm
OO

OO

fsm

``

Ys

OO

OO

oooo Yyoooo

__

__

Here Ys := Spec(Bs) as in Definition 15.5.7, and Yy := Spec(Bq). In this diagram
the arrows “�” are EFT topological embeddings of affine schemes, and the vertical
ones are open embeddings. The square is cartesian:

Ys = Y ×Y ft Y sm

as schemes, and Ys = Y ∩ Y sm as topological spaces. Figure 9 shows the geometric
picture.
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We now review some facts on derivations and differentials. Let u : A → B be
homomorphism in Ringc (for this no finiteness is required). The universal derivation
of B/A is the A-linear homomorphism

(15.5.12) dB/A : B → Ω1
B/A.

The B-module Ω1
B/A is called the module of degree 1 Kähler differentials. See [Mats,

Section 25], [Eis, section 16] or [Har, Section II.10].
For any homomorphisms A u−→ B

v−→ C in Ringc there is a canonical exact
sequence of C-modules

(15.5.13) C ⊗B Ω1
B/A

φ−→ Ω1
C/A

ψ−→ Ω1
C/B → 0.

It is called the first fundamental exact sequence in [Mats, Theorem 25.1], and the
relative cotangent sequence in [Eis, Proposition 16.2]. Here are the formulas for the
homomorphisms:

φ
(
c⊗ dB/A(b)

)
:= dC/A

(
c ·u(b)

)
∈ Ω1

C/A

and
ψ
(
dC/A(c)

)
:= dC/B(c) ∈ Ω1

C/B ,

for elements b ∈ B and c ∈ C.

Theorem 15.5.14. Let u : A → B be an essentially smooth homomorphism be-
tween noetherian commutative rings. Then:

(1) The ring B is flat over A.
(2) The module of differentials Ω1

B/A is a finitely generated projective B-module.
(3) The ring B is essentially étale over A if and only if Ω1

B/A = 0.
(4) Let v : B → C be another essentially smooth homomorphism between noe-

therian rings. Then the canonical sequence of C-modules

0→ C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0

is split-exact.

Proof. This is [YeZh3, Proposition 3.2], and we basically repeat the proof from
loc. cit, with some improvement. The idea is to use the results from [EGA 0IV]
on formal smoothness, those from [EGA IV] on smoothness, and Theorem 15.5.9
above.

(1) It suffices to prove that for any prime ideal q ⊆ B, the local ring Bq is flat over
the local ring Ap, where p := u−1(q) ⊆ A. This is true by Theorem 15.5.9 above,
together with [EGA IV, Théorème 17.5.1].

(2) Since B is EFT over A, it follows that B ⊗A B is a noetherian ring, and hence
Ω1
B/A is a finitely generated B-module. To show that Ω1

B/A is projective, it is
enough to prove that for any prime ideal q ⊆ B the localization Bq ⊗B Ω1

B/A is a
free Bq-module. Now

Bq ⊗B Ω1
B/A
∼= Ω1

Bq/A
∼= Ω1

Bq/Ap

as Bq-modules, for p as above. See [EGA 0IV, Section 20.5]. From [EGA 0IV,
Corollaire 20.4.11], with the discrete topologies on these local rings, we conclude
that Ω1

Bq/Ap
is a free module over Bq.
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(3) This too can be checked on local rings, and we know that Ap → Bq is formally
smooth. So we can use [EGA 0IV, Proposition 20.7.4], with the discrete topologies
on the local rings.

(4) The canonical sequence exists always – see (15.5.13) above. Exactness can be
checked on local rings. Now see [EGA 0IV, Théorème 20.5.7] and the subsequent
text. �

Definition 15.5.15. Let u : A → B be an essentially smooth homomorphism
between noetherian commutative rings. If the projective B-module Ω1

B/A has con-
stant rank n, then we say that u is an essentially smooth homomorphism of relative
dimension n, and that B is an essentially smooth A-ring of relative dimension n.

The connected component decomposition of B was defined in Definition 13.2.52.

Corollary 15.5.16. Let u : A→ B be an essentially smooth ring homomorphism,
and let B =

∏r
i=1Bi be the connected component decomposition of B. Then for

each i there is a natural number ni such that A → Bi is an essentially smooth
homomorphism of relative dimension ni.

Exercise 15.5.17. Prove Corollary 15.5.16. (Hint: for this and the next two
exercises, use Theorem 15.5.14.)

Corollary 15.5.18. Let u : A → B and v : B → C be essentially smooth ring
homomorphisms, of relative dimensions m and n respectively. Then v ◦ u : A→ C
is an essentially smooth homomorphism of relative dimension m+ n.

Exercise 15.5.19. Prove Corollary 15.5.18.

Corollary 15.5.20. If A u−→ B
v−→ C are ring homomorphisms, such that u is

essentially smooth and v is essentially étale, then the canonical homomorphism of
C-modules

C ⊗B Ω1
B/A → Ω1

C/A

is bijective.

Exercise 15.5.21. Prove Corollary 15.5.20.

Example 15.5.22. Let A be any nonzero ring. According to Proposition 15.5.2
we know that the next assertions are true.

(1) The polynomial ring B := A[t1, . . . , tn] in n variables is smooth of relative
dimension n over A.

(2) If B is a localization of A, then it is essentially étale over A.

Example 15.5.23. Let u : K → L be a finitely generated field extension, i.e. an
EFT ring homomorphism between fields.

(1) Assume L finite over K. The extension K → L is separable (in the classical
sense of Galois theory) if and only if it is étale. See [Mats, Theorem 26.7
and Theorem 26.8].

(2) Assume the characteristic is 0. Then L is essentially smooth over K, and
the relative dimension (in the sense of Definition 15.5.15) equals the tran-
scendence degree. See [Mats, Theorem 26.9].
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Remark 15.5.24. Actually, Corollary 15.5.20 above is true even without the as-
sumption that u is formally smooth (but it must be EFT). The proof is more
delicate. It can be found in [EGA 0IV]. Another source is [Ye18, Lemma 2.6],
where the notation is P1

B/A = C1,d(B) for K = A and an EFT A-ring B with the
discrete topology. In the terminology of [Ye18], an A-linear derivation ∂ : B → M
is a normalized poly-differential operator of order d ≤ 1 in p = 1 arguments.

Remark 15.5.25. The formally étale property is a sophisticated variant of the
Hensel Lemma; see [Mats, Theorem 5.8]. Among other things, it is used to prove
the Cohen Structure Theorem for complete local rings.

For a concise discussion, and a similar result for semi-topological rings, see [Ye17,
Sections 1-2].

Recall that the expression “B/A” is an abbreviation for “B relative to A”. Thus
“over B/A” means “over B relative to A”.

Definition 15.5.26. Consider a commutative ring homomorphism u : A→ B.
(1) Let PB/A := B ⊗A B. This is the ring of principal parts of B/A.
(2) Let

IB/A := Ker
(
mult : PB/A → B

)
⊆ PB/A.

We call it the diagonal ideal of B/A.
(3) For an element b ∈ B we write

d̃B/A(b) := b⊗ 1− 1⊗ b ∈ IB/A.

The notation PB/A comes from [EGA IV, Subsection 16.7]. In previous sections
we had used the notation PB/A = Ben, but the second expression leaves out the
ring A. Writing X := Spec(A), Y := Spec(B) and f := Spec(u), we have a map of
schemes f : Y → X. The image of the diagonal embedding

(15.5.27) diag : Y → Y ×X Y = Spec(PB/A)

is the closed subscheme defined by the diagonal ideal IB/A. Hence the name. There
are A-ring homomorphisms

em1, em2 : B → PB/A,

namely em1(b) := b⊗1 and em2(b) := 1⊗b. These correspond to the two projection
maps of schemes

pr1,pr2 : Y ×X Y → Y.

The diagram of X-scheme maps

Y
diag

//

id
##

Y ×X Y

pri

��

Y

is commutative.
Of course there is equality of A-module homomorphisms

d̃B/A = em1− em2 : B → PB/A.
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Proposition 15.5.28. There is a canonical isomorphism of B-modules

IB/A / I
2
B/A

'−→ Ω1
B/A.

It sends the congruence class of the element d̃B/A(b) ∈ IB/A to the differential form
dB/A(b) ∈ Ω1

B/A.

Exercise 15.5.29. Prove Proposition 15.5.28. (Hint: use the universal property
of PB/A = B ⊗A B. A proof can be found in [Mats, Section 25] and [Lod, Section
2.6].)

Given a sequence b = (b1, . . . , bn) of elements of B, there are sequences of ele-
ments
(15.5.30) d̃(b) :=

(
d̃(b1), . . . , d̃(bn)

)
and
(15.5.31) d(b) :=

(
d(b1), . . . ,d(bn)

)
in IB/A and Ω1

B/A respectively.
We now study essentially étale homomorphisms, following [YeZh3].

Definition 15.5.32. Given an an essentially étale homomorphism u : A → B
between noetherian commutative rings, we view

Icmp
B/A := HomPB/A(B,PB/A) ⊆ PB/A

as an ideal of PB/A, i.e. the annihilator in the ring PB/A of the ideal IB/A. Define
the ring

Bcmp := PB/A / Icmp
B/A

and the affine schemes X := Spec(A), Y := Spec(B) and
Y cmp := Spec(Bcmp).

Thus inside
Y ×X Y = Spec(PB/A)

we have the closed subschemes diag(Y ), that’s isomorphic to Y , and Y cmp.

Remark 15.5.33. The superscript “cmp” stands for “complement”; it refers to
the complement in Y ×X Y of the diagonal diag(Y ), as the next theorem shows.
See Example 15.5.38 below for a Galois theory interpretation.

comment: move the material on idempotents, below, to a new subsection
“Recalling affine schemes” of the new section “Complements on Comm Alg”

Recall that a ring A decomposes into two factors
A = A1 ×A2

if and only if the affine schemes X := Spec(A) and Xk := Spec(Ak) satisfy
X = X1 tX2

(a disjoint union). See [EGA I, Proposition 4.1.11] and [Eis, Exercise 2.25]. In this
case the ideals Ik := Ker(A→ Ak) satisfy

A = I2 ⊕ I1,
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and Ik ∼= A2−k as A-modules. Furthermore, there are unique idempotent elements
ek ∈ A such that e1 · e2 = 0, e1 + e2 = 1, and ek generates the ideal Ik. There are
unique ring isomorphisms

Ak ∼= A/Ik ∼= A[e−1
2−k].

Thus Ak is both a quotient ring of A and a localization of it. These facts will be
used in the proof of the next theorem.

Theorem 15.5.34. Let u : A→ B be an essentially étale homomorphism between
noetherian commutative rings. Then, in the notation of Definition 15.5.32, the
following assertions hold.

(1) The closed subschemes diag(Y ) and Y cmp satisfy
diag(Y ) ∩ Y cmp = ∅ and diag(Y ) ∪ Y cmp = Y ×X Y.

Thus there is a partition
Y ×X Y = diag(Y ) t Y cmp,

and diag(Y ) and Y cmp are both open and closed affine subschemes.
(2) Corresponding to the partition in item (1), there is a canonical A-ring iso-

morphism
PB/A ∼= B ×Bcmp.

(3) Corresponding to the ring isomorphism in item (2), there is a direct sum
decomposition

PB/A ∼= Icmp
B/A ⊕ IB/A

of ideals, and these ideals are generated by the idempotent elements ecmp ∈
Icmp
B/A and e ∈ IB/A.

Proof. The proof is copied from the proof of [YeZh3, Proposition 3.15], with some
improvements. It is done in four steps.
Step 1. Here we assume that u : A → B is étale. Therefore the map of schemes
f : Y → X is étale and separated. According to [EGA IV, Corollaire 17.9.3] the
morphism diag is a closed an open immersion. This means that diag(Y ) is an open
and closed affine subscheme of Y ×X Y . Letting Y ′ be the complement of diag(Y ),
which is some other closed and open affine subscheme, we obtain a partition
(15.5.35) Y ×X Y = diag(Y ) t Y ′.
Say B′ := Γ(Y ′,OY ′). Then the ring PB/A decomposes into a product of rings

(15.5.36) PB/A ∼= B ×B′

and a direct sum of ideals
(15.5.37) PB/A ∼= I ′ ⊕ IB/A.

There are idempotents e, e′ ∈ PB/A satisfying e · e′ = 0, e+ e′ = 1, e generates the
diagonal ideal IB/A, and e′ generates the other ideal I ′.

Due to the orthogonal idempotent structure, we see that annihilator in PB/A of
the ideal IB/A is precisely the ideal I ′. We conclude (see Definition 15.5.32) that
I ′ = Icmp

B/A. So we write ecmp := e′. Therefore B′ = Bcmp and Y ′ = Y cmp.
We see that in the étale case the theorem holds. And in particular diag(Y ) is

open in Y ×X Y . This step is depicted in Figure 10.
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Figure 10. A geometric depiction of step 1 in the proof of Theo-
rem 15.5.34. Here Y → X is étale.

Step 2. Now we assume that B is a localization of some étale A-ring Bft. Then,
letting Y ft := Spec(Bft), we have

diag(Y ) ∼= diag(Y ft)×Y ft Y

as Y -schemes. By step 1 we know that diag(Y ft)� Y ft is an open embedding; and
hence diag(Y )� Y is also an open embedding.
Step 3. According to Theorem 15.5.9 there is an affine open covering Y =

⋃
i Yi,

where each Yi is a localization of a scheme Y ft
i that is smooth over X. By shrinking

the schemes Y ft
i if needed – removing connected components that do not meet Yi

– we can assume that each Y ft
i is étale over X.

The subset diag(Y ) ⊆ Y ×X Y is covered by the affine “squares”:

diag(Y ) ⊆
⋃
i

(Yi ×X Yi),

and each
Yi ×X Yi ⊆ Y ×X Y

is open. By step 2 each
diag(Yi) = (Yi ×X Yi) ∩ diag(Y )

is open in Yi ×X Yi. We conclude that diag(Y ) is open (and closed) in Y ×X Y .
This is depicted in Figure 11.

We now play the same game as in step 1 (idempotents etc.) to deduce the
assertions of the theorem. �

Here is an example demonstrating the previous theorem in a very familiar situ-
ation.

Example 15.5.38. Take A := R and B := C. The inclusion u : R → C is étale.
Here
(15.5.39) PC/R = C⊗R C
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Figure 11. A geometric depiction of step 3 in the proof of The-
orem 15.5.34. Here Y → X is essentially étale, and there is a
covering Y =

⋃
i Vi by affine open sets, each of them a localization

of an étale X-scheme.

is not a field, but rather a product of two copies of C :
(15.5.40) PC/R = C × Ccmp.

If we view PC/R as a C-ring through the first tensor factor, then the Galois action
on the second tensor factor in (15.5.39) is by C-ring auotmorphisms. In the decom-
position (15.5.40) the Galois action permutes the factors (i.e. it permutes the two
points in Spec(PC/R)).

The idempotent element e ∈ PB/A that generates the ideal IB/A is
e = (1⊗ 1 + i⊗ i)/2.

The complementary idempotent element ecmp ∈ PB/A that generates the ideal Icmp

is
ecmp = (1⊗ 1− i⊗ i)/2.

Note that action of the Galois group permutes the two idempotents, as it should.

Here is a new definition.

Definition 15.5.41. Let u : A→ B be an EFT homomorphism between noether-
ian commutative rings. A sequence b = (b1, . . . , bn) of elements of B is called an
essentially étale coordinate system for u, and an essentially étale coordinate system
for B/A, if the ring homomorphism A[t1, . . . , tn] → B from the polynomial ring,
that sends ti 7→ bi, is essentially étale.

Theorem 15.5.42. Let u : A → B be a homomorphism between noetherian com-
mutative rings, and let f : Y → X be the corresponding map of affine schemes.
Assume that b = (b1, . . . , bn) is an essentially étale coordinate system for B/A.
Then the following hold.
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(1) The ring B is essentially smooth over A of relative dimension n.
(2) The sequence d̃(b) of elements of the ring PB/A is a Koszul regular sequence.
(3) The sequence d̃(b) generates the ideal IB/A near the diagonal in

Spec(PB/A) = Y ×X Y.

Namely, there is an element s ∈ PB/A such that

diag(Y ) ⊆ (Y ×X Y )s = Spec
(
(PB/A)s

)
,

and the sequence d̃(b) generates the ideal (IB/A)s of the ring (PB/A)s.
(4) The sequence d(b) in the B-module Ω1

B/A is a basis of it.

Proof. (1) The polynomial ring A[t] := A[t1, . . . , tn] is smooth of relative dimension
n over A. By definition the ring B is essentially étale over A[t]. Now we apply
Corollary 15.5.18 and Theorem 15.5.14(3).
(2) The ring PA[t]/A is a polynomial ring in 2 ·n variables over A. An easy cal-
culation shows that the sequence d̃(t) is Koszul regular. (In this special case the
sequence t also generates the diagonal ideal IA[t]/A ⊆ PA[t]/A.)

The Koszul complexes satisfy
K
(
PB/A; d̃(b)

) ∼= PB/A ⊗PA[t]/A K
(
PA[t]/A; d̃(t)

)
.

By Theorem 15.5.14(1) we know that A[t]→ B is flat; and therefore also PA[t]/A →
PB/A is flat. It follows that

Hi
(
K
(
PB/A; d̃(b)

))
= 0

for i < 0, so indeed d̃(b) is a Koszul regular sequence.
(3) We use the standard notation An

X := Spec(A[t]). There are closed embeddings
of affine schemes

diag(Y ) ⊆ Y ×An
X
Y ⊆ Y ×X Y.

Let ecmp ∈ PB/A[t] be the idempotent that generates the complementary ideal
Icmp
B/A[t]; see Theorem 15.5.34(3). Take any element s ∈ PB/A that lifts ecmp under
the ring surjection PB/A � PB/A[t]. Now there is a canonical PB/A-ring isomor-
phism

H0(K(PB/A; d̃(b)
)) ∼= B ⊗A[t] B = PB/A[t].

Therefore, by inverting s in PB/A, we get

H0(K((PB/A)s; d̃(b)
)) ∼= (PB/A[t])ecmp ∼= B.

This says that the sequence d̃(b) generates the ideal
(IB/A)s = Ker

(
(PB/A)s → B

)
.

(4) We know that the sequence d(t) is a basis of the A[t]-module Ω1
A[t]/A. Now use

Corollary 15.5.20. �

The last theorem in this subsection says that an essentially smooth homomor-
phism admits essentially étale coordinate systems, locally.

Theorem 15.5.43. Let u : A → B be an essentially smooth homomorphism be-
tween noetherian commutative rings, of relative dimension n. Given any prime
ideal q ⊆ B, there is an element s′ ∈ B − q, such that the essentially smooth
homomorphism A→ Bs′ admits an essentially étale coordinate system.
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Here is the diagram in Ringc illustrating the theorem:

A
u //

�� !!

B

��   

A[t] w // Bs′ // Bq

The unnamed arrows going out of B and Bs′ are the localizations, and w is essen-
tially étale.

Proof. Theorem 15.5.9 says that there exists a commutative diagram (15.5.11),
in which f sm : Y sm → X is a smooth map of schemes. According to [EGA IV,
Corollaire 17.11.4] there is an open neighborhood W of y ∈ Y sm that admits an
étale map to An

X = Spec(A[t]). We can take W to be a principal affine open set
in Y ft, namely W = (Y ft)s′ = (Y sm)s′ for a suitable element s′ ∈ Bft. We get the
bigger commutative diagram of schemes

(15.5.44) X Y ft
f ft

oo Yoo
g

oo

f

��

Y sm
OO

OO

fsm

aa

Ys

OO

OO

oooo Yyoooo

``

``

~~

~~

An
X

OO

W

OO

OO

etaleoo Ys′
OO

OO

oooo

aa

aa

h

[[

The ring homomorphism h∗ : A[t]→ Bs′ is the essentially étale coordinate system
we want. �

Remark 15.5.45. Many of the results about formal smoothness (in [EGA 0IV,
Sections 19-22], [EGA IV, Sections 16-18], and other texts) are proved using the
following universal square zero extension: the ring C in Definition 15.5.1 is

C = P1
B/A := (B ⊗A B)/I2

B/A.

The ideal c ⊆ C is
c := IB/A/I

2
B/A = Ω1

B/A.

Here C/c = B, and w is the identity. There are two canonical A-ring lifts B → C,
namely b 7→ b ⊗ 1 and b 7→ 1 ⊗ b; the difference between them is the differential
d̃B/A. Other lifting problems are analyzed using this universal one. Notice that if
u : A→ B is an EFT homomorphism between noetherian rings, then P1

B/A is also
noetherian and EFT over A.

For this reason we think it might be enough to check formal smoothness (Defi-
nition 15.5.1) of an EFT ring homomorphism u : A→ B between noetherian rings
within the category Ringc/eftA of EFT A-rings. But we did not think about this
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matter too deeply.
comment: try to find a ref for this or prove it

15.6. Some Rigidity Calculations. In this subsection we make explicit the rigid-
ifying isomorphisms in two important cases: A→ B is essentially smooth of relative
dimension n, and A→ C is finite flat.

We then concentrate on the special case B = A[t] and C = A[t]/(tl+1). Theorem
15.6.38 gives an explicit formula for the residue isomorphism

HomA(C,A) ∼= Ext1
B(C,Ω1

B/A)
arising from the rigid traces. Later in the book – in Section 17 – this residue
calculation will be used to prove the Residue Theorem on P1

A for an artinian local
ring A.

Throughout this subsection we assume the following setup.

Setup 15.6.1. A is a nonzero noetherian commutative ring, and B,C are flat EFT
A-rings. We write Ben := B ⊗A B and Cen := C ⊗A C.

Note that in subsection 15.5 the notation used was PB/A instead of Ben.
Recall that there is a short exact sequence of Ben-modules

0→ IB/A → Ben mult−−−→ B → 0,
and there is a canonical isomorphism of B-modules
(15.6.2) IB/A / I

2
B/A
∼= Ω1

B/A.

If A → B is essentially smooth of relative dimension n, then locally ideal IB/A
is generated by a Koszul regular sequence. More precisely, by Theorem 15.5.43,
each prime q ∈ Spec(B) has a principal open neighborhood Spec(Bs′) such that
A → Bs′ admits an essentially étale coordinate system b. And then, by Theorem
15.5.42, there is an element s ∈ Ben, such that these inclusions hold in Spec(Ben) :
(15.6.3) diag

(
Spec(Bs′)

)
⊆ Spec

(
(Ben)s

)
⊆ Spec

(
(Bs′)en),

the sequence d̃(b) in the ring (Ben)s is Koszul regular, and it generates the ideal
(IB/A)s.

All this tells us that the B-module IB/A / I2
B/A is projective of rank n, so the

relative dualizing module
(15.6.4) ∆B/Ben = HomB

(
det(IB/A / I2

B/A), B
)

exists (see Definition 15.4.31).
If b is an essentially étale coordinate system for B/A, then the element δd̃(b)) ∈

∆B/Ben is a basis of this rank 1 free B-module (see Definition 15.4.33). Given a
flat Ben-module P , and an element p ∈ P , the generalized fraction

(15.6.5)
[
p

d̃(b)

]
∈ Hn

(
HomBen

(
K(Ben; d̃(b)), P

))
was introduced in Definition 15.4.17 and in formula (15.5.31).

Lemma 15.6.6. Assume A → B is an essentially smooth ring homomorphism of
relative dimension n, and b = (b1, . . . , bn) is an essentially étale coordinate system
for B/A. Let P be any flat Ben-module. Then:
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(1) For any i 6= n we have
ExtiBen(B,P ) = 0.

(2) There are canonical isomorphisms of B-modules

ΦP,d̃(b) : Hn
(
HomBen

(
K(Ben; d̃(b)), P

)) '−→ ExtnBen(B,P )
and

ΨP : ExtnBen(B,P ) '−→ ∆B/Ben ⊗Ben P.

They satisfy

(ΨP ◦ ΦP,d̃(b))
([ p

d̃(b)

])
= δd̃(b) ⊗ p

for any p ∈ P .

Proof. By Proposition 15.4.39 the modules ExtiBen(B,P ) can be calculated in the
vicinity of the diagonal in Spec(Ben), namely by replacing Ben with its localization
(Ben)s = Ben[s−1] at a suitable element s ∈ Ben, as explained above (see formula
(15.6.3) with s′ = 1).

For item (1) we can now use Theorem 15.4.22(1). And item (2) follows from
Theorem 15.4.37. �

Remark 15.6.7. For an element s ∈ Ben as in the proof above, i.e. such that
diag

(
Spec(B)

)
⊆ Spec

(
(Ben)s

)
,

we have
(Ben)s ⊗Ben B = B.

This is most evident in Example 15.5.38, in which B is a field.

Definition 15.6.8. Let A→ B be an essentially smooth homomorphism of relative
dimension n between noetherian commutative rings. The relative dualizing module
of B/A is the free B-module of rank 1

∆B/A := ΩnB/A = det(Ω1
B/A).

See Remark 15.4.32 regarding this notation, and the notation in earlier texts.
We know from Theorem 15.5.42 that if b = (b1, . . . , bn) is an essentially étale

coordinate system for B/A, then the sequence d(b) is a basis of the rank n free
B-module Ω1

B/A. Therefore the element det(d(b)) is a basis of the rank 1 free
B-module ∆B/A, and the element

det(d(b))⊗ det(d(b)) ∈ ∆B/A ⊗A ∆B/A

is a basis of this free Ben-module of rank 1.
As noted above, the element δd̃(b) ∈ ∆B/Ben is a basis of this B-module of rank 1.

From formulas (15.6.2) and (15.6.4) we deduce that there’s a canonical isomorphism
of B-modules
(15.6.9) ∆B/A

∼= HomB(∆B/Ben , B).
Under this isomorphism the basis d(b) of ∆B/A is dual to the basis δd̃(b) of ∆B/Ben .

According to Lemma 15.6.6 there is a canonical isomorphism of B-modules

(15.6.10) Ψ : ExtnBen
(
B,∆B/A ⊗A ∆B/A

) '−→ ∆B/Ben ⊗Ben (∆B/A ⊗A ∆B/A).
Note that the modules above are free B-modules of rank 1.
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Definition 15.6.11. Let A → B be an essentially smooth homomorphism of
relative dimension n between noetherian commutative rings. Assume that b =
(b1, . . . , bn) is an essentially étale coordinate system for B/A. Let

ρ′B/A;b : ΩnB/A → ExtnBen
(
B,ΩnB/A ⊗A ΩnB/A

)
be the unique B-linear homomorphism such that

(Ψ ◦ ρ′B/A;b)
(
det(d(b))

)
= δd̃(b) ⊗

(
det(d(b))⊗ det(d(b))

)
,

where Ψ is the isomorphism from equation (15.6.10).

Lemma 15.6.12. In the situation of Lemma 15.6.11, suppose that c = (c1, . . . , cn)
is another essentially étale coordinate system for B/A. Then there is equality

ρ′B/A;c = ρ′B/A;b.

Exercise 15.6.13. Prove Lemma 15.6.12. (Hint: study the proof of Theorem
15.4.37.)

Theorem 15.6.14 ([YeZh3]). Let A→ B be an essentially smooth ring homomor-
phism of relative dimension n between noetherian commutative rings. There is a
unique B-module isomorphism

ρ′B/A : ∆B/A → ExtnBen
(
B,∆B/A ⊗A ∆B/A

)
that satisfies the condition below.
(loc) Let s ∈ B be an element such that the ring homomorphism A→ Bs admits

an essentially étale coordinate system b. The the Bs-module isomorphism
(ρ′B/A)s : ∆Bs/A → Extn(Bs)en

(
Bs,∆Bs/A ⊗A ∆Bs/A

)
,

obtained by localizing ρ′B/A at s, equals the homomorphism ρ′Bs/A;b from
Definition 15.6.11.

Proof. It will be convenient to use affine schemes in the proof. Let us write
Y := Spec(B). We can cover Y by finitely many principal affine open sets Ysi =
Spec(Bsi), such that each homomorphism A → Bsi admits an essentially étale
coordinate system bi.

Let’s write P := ∆B/A and

Q := ExtnBen
(
B,∆B/A ⊗A ∆B/A

)
.

We are looking for a particular isomorphism of B-modules ρ′B/A : P '−→ Q. Consider
the coherent sheaves P and Q on Y that correspond to the modules P and Q
respectively. For any index i there is an isomorphism

ρ′Bsi/A;bi : Γ(Ysi ,P) = Psi
'−→ Qsi = Γ(Ysi ,Q).

The double intersections are
Ysi ∩ Ysi = Ysi·sj = Spec(Bsi·sj ).

The ring homomorphism A → Bsi·sj admits two essentially étale coordinate sys-
tems: bi and bj . But by Lemma 15.6.12 the isomorphisms

ρ′Bsi·sj /A;bi , ρ
′
Bsi·sj /A;bj : Γ(Ysi ∩ Ysj ,P) '−→ Γ(Ysi ∩ Ysj ,Q)

are equal. Therefore we can glue the local isomorphisms to a global one.
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By construction, the isomorphism ρ′B/A is the unique isomorphism that satisfies
condition (†). �

Corollary 15.6.15 ([YeZh3]). Let A → B be an essentially smooth ring homo-
morphism of relative dimension n. The complex ∆B/A[n] ∈ D(B) has a unique
rigidifying isomorphism

ρB/A : ∆B/A[n] '−→ SqB/A
(
∆B/A[n]

)
in D(B), such that the induced isomorphism in cohomology

H−n(ρB/A) : ∆B/A
'−→ H−n

(
SqB/A

(
∆B/A[n]

))∼= ExtnBen
(
B,∆B/A ⊗A ∆B/A

)
coincides with the isomorphism ρ′B/A from Theorem 15.6.14.

Proof. According to Lemma 15.6.6, the only nonvanishing cohomology of the com-
plex SqB/A

(
∆B/A[n]

)
is in degree −n. The truncation argument tells us that an

isomorphism
∆B/A[n] '−→ SqB/A

(
∆B/A[n]

)
in D(B) is the same as an isomorphism

∆B/A
'−→ H−n

(
SqB/A

(
∆B/A[n]

))
in M(B). �

Definition 15.6.16. Let A→ B be an essentially smooth ring homomorphism of
relative dimension n between noetherian commutative rings. The rigid complex(

∆B/A[n], ρB/A
)
∈ D(B)rig/A

from Corollary 15.6.15 is called the rigid relative dualizing complex of B/A.

Remark 15.6.17. Unless the ring A is Gorenstein (in which case A is a dualizing
complex over itself), the complex ∆B/A[n] is not a dualizing complex over B. What
is true is the for any p ∈ Spec(A) the complex

k(p)⊗L
A ∆B/A[n] ∈ D

(
k(p)⊗A B

)
is dualizing, and it has an induced rigidifying isomorphism relative to k(p).

Now we move our attention to another scenario.

Definition 15.6.18. Let A→ C be a finite flat ring homomorphism. The relative
dualizing module of C/A is the C-module

∆C/A := HomA(C,A).

Because our rings are noetherian, C is projective as an A-module, and thus ∆C/A

is also a projective A-module. This implies that
(15.6.19) ∆C/A

∼= RHomA(C,A)
in D(C). Thus, in the terminology used in Example 14.2.16, we have
(15.6.20) ∆C/A = CIndC/A(A) = RCIndC/A(A) ∈ D(C),
and there is a nondegenerate trace morphism
(15.6.21) TrC/A : ∆C/A → A

in M(A). The formula for the trace is this:
TrC/A(φ) = φ(1) ∈ A
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for φ ∈ ∆C/A.
Recall that the module A, viewed as an object of D(A), has the tautological

rigidifying isomorphism

ρA/A : A '−→ SqA/A(A) = A.

Theorem 15.6.22. Let A→ C be a finite flat homomorphism between noetherian
commutative rings. There is a unique rigidifying isomorphism

ρC/A : ∆C/A
'−→ SqC/A(∆C/A)

in D(C), for which the canonical nondegenerate trace

TrC/A : ∆C/A → A

becomes a nondegenerate rigid trace

TrC/A : (∆C/A, ρC/A)→ (A, ρA/A).

Proof. This is a special case of Theorem 14.6.11, with B = A, M = A and N =
∆C/A. �

Definition 15.6.23. Let A→ C be a finite flat homomorphism between noetherian
commutative rings. The rigid complex(

∆C/A, ρC/A
)
∈ D(C)rig/A

from Theorem 15.6.22 is called the rigid relative dualizing complex of C/A.

Remark 15.6.17 applies here too.

Remark 15.6.24. A priori it is not clear that

SqC/A(∆C/A) = RHomCen
(
C,∆C/A ⊗A ∆C/A

)
should have nonzero cohomology only in degree 0. This is because C is not a
projective Cen-module, and ∆C/A ⊗A ∆C/A is not an injective Cen-module. We
only know that the higher cohomologies vanish by Theorem 14.6.11.

If the ring homomorphism A→ B is finite and étale, then there are two distinct
ways to understand the rigid relative dualizing complex (∆B/A, ρB/A) : either as
in Definition 15.6.16 or as in Definition 15.6.23. Theorem 15.6.29 below shows that
there is no conflict between these definitions.

Recall that when A → B is finite and flat, there is an A-linear trace homomor-
phism

(15.6.25) trB/A : B → A

that is defined as follows. First consider any finite flat A-module P and any en-
domorphism φ ∈ EndA(P ). Locally on Spec(A) the module P is free, so φ can be
written as a matrix, and this matrix has a trace. Since the trace does not depend
on a choice of basis, it can be glued on Spec(A), giving an element tr(φ) ∈ A.

Now we take P := B. Each element b ∈ B acts on the A-module B by mul-
tiplication, so it gives rise to an endomorphism φb ∈ EndA(B). Then we define
trB/A(b) := tr(φb) ∈ A.

Exercise 15.6.26. Suppose B = A[t]/(tl+1) for some l ∈ N. Then A→ B is finite
flat. Show that trB/A(ti) = 0 for all i > 0, and trB/A(1B) = (l + 1) · 1A.
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Let us go back to the assumption that A → B is finite étale. Unlike Exercise
15.6.26, in this case the trace homomorphism trB/A : B → A is nondegenerate. See
[EGA IV, Proposition 18.2.3]. (When A → B is a finite separable field extension,
we know this from basic Glaois theory.) Therefore we get a canonical B-module
isomorphism
(15.6.27) HomA(B,A) ∼= B.

Looking at things from another angle, since A→ B is smooth of relative dimension
0, we have Ω1

B/A = 0, and thus

(15.6.28) det(Ω1
B/A) =

∧0

B
(Ω1

B/A) = B.

Theorem 15.6.29. Assume A → B is a finite étale homomorphism between noe-
therian commutative rings. Then the canonical isomorphism

HomA(B,A) ∼= det(Ω1
B/A)

from formulas (15.6.27) and (15.6.28) is rigid, when these objects of D(B) are
given the rigidifying isomorphisms from Theorem 15.6.22 and Corollary 15.6.15
respectively.
Proof. ???

comment: do proof
�

To finish this subsection we are going to combine the smooth scenario, for n = 1,
with the finite flat scenario. Namely we assume this:
Setup 15.6.30. We are given a nonzero noetherian commutative ring A. We
then define B := A[t], the polynomial ring in one variable; and for any l ∈ N we
define Cl := A[t]/(tl+1). The resulting ring homomorphisms are ul : B → Cl and
vl+1 : Cl+1 → Cl.

The ring B is smooth over A of relative dimension 1, and the ring Cl is a free A-
module of rank l+1, with basis the sequence (1, t, . . . , tl). We get this commutative
diagram of rings:

(15.6.31) A // //
99 &&

B
ul // // Cl

In this special case the relative dualizing module ∆Cl/A is a free Cl-module of
rank 1. As a basis of ∆Cl/A we choose the functional δl satisfying

(15.6.32) δl(ti) =
{

1 if i = l

0 if 0 ≤ i ≤ l − 1.
As the number l varies, we obtain these commutative diagrams of rings:

(15.6.33) A // // B
ul+1

// //

ul
�� ��

Cl+1

vl+1

����

Cl
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Lemma 15.6.34. In the situation of Setup 15.6.30, for any l ∈ N the nondegenerate
rigid trace morphism

Trvl+1/A :
(
∆Cl/A, ρCl/A

)
→
(
∆Cl+1/A, ρCl+1/A

)
in D(Cl+1) over vl+1 relative to A satisfies

Trvl+1/A(δl) = t · δl+1.

Proof. The trace has a very simple formula in this case:

Trvl+1/A : HomA(Cl, A)→ HomA(Cl+1, A)

is
Trvl+1/A = HomA(vl+1, idA).

Since vl+1(ti) = ti for all i ≤ l, and vl+1(tl+1) = 0, we have

Trvl+1/A(δl)(ti) = (δl ◦ vl+1)(ti) = δl(ti) =


0 if i = l + 1
1 if i = l

0 if 0 ≤ i ≤ l − 1.

These are also the values of t · δl+1 on this basis of Cl+1. �

The next exercise is not needed for our proofs, but it should help understanding
the structure of the objects that we work with.

Exercise 15.6.35. Fix l ≥ 0. Consider the composed embedding

SqCl/A(∆Cl/A) = HomCen
l

(
Cl,∆Cl/A ⊗A ∆Cl/A

)
⊆ ∆Cl/A ⊗A ∆Cl/A.

Show that under this embedding there is equality

ρCl/A(δl) =
l∑

j=0
(tj · δl)⊗ (tl−j · δl).

(Hint: there are ai,j ∈ A such that

ρCl/A(δl) =
∑
i,j

ai,j · (tj · δl)⊗ (tl−j · δl).

Use the fact that d̃(t) · ρCl/A(δl) = 0 and ρCl/A(δl)(1 ⊗ 1) = 1 to compute the
coefficients ai,j .)

Lemma 15.6.36. Let Pl ∈ M(Cl) and Q ∈ M(B) be finitely generated projective
modules.

(1) There is a canonical bijection between morphisms

θl : Pl → Ext1
B(Cl, Q)

in M(Cl) and trace morphisms

θ′l : Pl → Q[1]

over ul in D(B). The morphism θl is an isomorphism if and only if the
corresponding morphism θ′l is nondegenerate.
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(2) Suppose we are given a finitely generated projective module Pl+1 ∈M(Cl+1),
a morphism φ : Pl → Pl+1 in M(Cl+1) and morphisns θ′l : Pl → Q[1] and
θ′l+1 : Pl+1 → Q[1] in D(B). Then the first diagram below is commutative
if and only if the second diagram is commutative.

Pl
θ′l //

φ

��

Q[1]

id

��

Pl+1
θ′l+1

// Q[1]

Pl
θl //

φ

��

Ext1
B(Cl, Q)

Ext1
B(vl+1,id)

��

Pl+1
θl+1

// Ext1
B(Cl+1, Q)

Proof. (1) By derived backward adjunction (Proposition 14.2.16) we have a bijec-
tion

dbadjul,P,Q : HomD(B)(P,Q[1]) '−→ HomD(Cl)
(
P,RHomB(Cl, Q[1])

)
,

that sends nondegenerate trace morphisms to isomorphisms. But by Theorem
15.4.22(1) we know that

RHomB(Cl, Q[1]) ∼= Ext1
B(Cl, Q)

in D(Cl).

(2) The derived backward adjunction argument can be applied to ul = vl+1 ◦
ul+1. �

Lemma 15.6.37. The homomorphism

Ext1
B(vl+1, id) : Ext1

B(Cl,∆B/A)→ Ext1
B(Cl+1,∆C/A)

satisfies

Ext1
B(vl+1, id)

([d(t)
tl+1

])
=
[
t ·d(t)
tl+2

]
.

Proof. Let s be the variable of degree −1 appearing in the Koszul complexes
of Cl and Cl+1. Namely K(B; tl+1) = B[s], with differential d(s) = tl+1, and
K(B; tl+2) = B[s], with differential d(s) = tl+2. The B-ring homomorphism
vl+1 : Cl+1 → Cl lifts to a DG B-ring homomorphism

ṽl+1 : K(B; tl+2)→ K(B; tl+1)

on the Koszul complexes that is defined by ṽl+1(s) := t · s. Now continue like in
the proof of Theorem 15.4.22(3). �

Theorem 15.6.38 (Residue Isomorphism in Dimension 1). In the situation of
Setup 15.6.30, for any l ∈ N, the nondegenerate rigid trace morphism

Trul/A :
(
∆Cl/A, ρCl/A

)
→
(
∆B/A[1], ρB/A

)
in D(B) over ul relative to A corresponds, under the canonical bijection from
Lemma 15.6.36, to the Cl-linear isomorphism

∆Cl/A → Ext1
B(Cl,∆B/A), δl 7→ e ·

[
d(t)
tl+1

]
.

Here e ∈ {1,−1} is some universal constant, independent of A and l.
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Before proving the theorem we need some more auxilliary results. Here the
number l is fixed, and we write C := Cl to simplify matters.

Suppose w : A → A′ is a homomorphism to another nonzero noetherian com-
mutative ring, such that A′ has finite flat dimension over A, but without any other
finiteness condition on w. Define

B′ := A′ ⊗A B = A′[t]
and

C ′ := A′ ⊗A C = A′[t]/(tl+1).
So there is a commutative diagram of rings

A // //
%%

w

��

B

��

u // // C

��

A′ // //
::

B′
u′ // // C ′

Let M,N ∈ M(C) be finitely generated projective modules, and define M ′ :=
A′ ⊗AM and N ′ := A′ ⊗A N in M(C ′). There are canonical isomorphisms

(15.6.39)

SqC′/A′(M ′) = RHomC′⊗A′C′(C
′,M ′ ⊗A′ M ′)

∼=♦ RHomC⊗AC(C,M ′ ⊗A′ M ′)
∼= RHomC⊗AC(C, (M ⊗AM)⊗A A′)
∼=♥ RHomC⊗AC(C,M ⊗AM)⊗L

A A
′

∼= A′ ⊗L
A SqC/A(M)

in D(C ′). The isomorphism ∼=♦ is Hom-tensor adjunction for the ring homomor-
phism

C ⊗A C → C ′ ⊗A′ C ′,
noting that

(C ′ ⊗A′ C ′)⊗C⊗AC C ∼= C ′.

The isomorphism ∼=♥ is by Theorem 14.2.20, and this is the reason we need A′ to
have finite flat dimension over A.

There are isomorphisms like (15.6.39) for N . If φ : M → N is a homomorphism
in M(C), then we get and induced homomorphism φ′ : M ′ → N ′ in M(C ′), and
there is a commutative diagram

(15.6.40) A′ ⊗L
A SqC/A(M)

idA′ ⊗
L SqC/A(φ)

//

∼=

��

A′ ⊗L
A SqC/A(N)

∼=

��

SqC′/A′(M ′)
SqC′/A′ (φ

′)
// SqC′/A′(N ′)

in which the vertical isomorphisms are from (15.6.39).

Lemma 15.6.41. In the situation described above, suppose that we are given rigid-
ifying isomorphisms ρ : M '−→ SqC/A(M) and σ : N '−→ SqC/A(N) in D(C).
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(1) There is a unique rigidifying isomorphism ρ′ : M ′ '−→ SqC′/A′(M ′) in D(C ′)
such that the diagram

A′ ⊗L
AM

idA′ ⊗
Lρ
//

∼=

��

A′ ⊗L
A SqC/A(M)

∼=

��

M ′
ρ′

// SqC′/A′(M ′)

in D(C ′) is commutative. The same for N .
(2) If

φ : (M,ρ)→ (N, σ)
is a morphism in D(C)rig/A, then

φ′ : (M ′, ρ′)→ (N ′, σ′)

is a morphism in D(C ′)rig/A′ .

Proof. (1) Define ρ′ to be the unique isomorphism that makes this diagram com-
mutative.

(2) We build a cubic diagram in which the back face is the diagram in item (1), and
the front face is the same diagram but with N instead of M . The four horizontal
arrows going from back to front are those gotten from φ. The four vertical squares
are commutative. The top square commutes because φ is rigid. Therefore the
bottom square commutes, and this says that φ′ is rigid. �

Proof of Theorem 15.6.38. The proof is by a base change argument. It will be
convenient to use slightly different notation in the proof: we take A := Z, and
A′ will denote an arbitrary noetherian commutative ring. Since A is regular, the
unique ring homomorphism w : A → A′ has finite flat dimension. In several steps
we will prove that the statement of the theorem is true for A′ → B′

u′l−→ C ′l .

Step 1. Recall that A = Z, so B = Z[t] and Cl = Z[t]/(tl+1). Let us denote by

(15.6.42) θl : ∆Cl/A → Ext1
B(Cl,∆B/A)

the isomorphism in M(Cl) that corresponds, by Lemma 15.6.36(1), to Trul/A. The
elements δl ∈ ∆Cl/A and [

d(t)
tl+1

]
∈ Ext1

B(Cl,∆B/A)

are bases of these rank 1 free Cl-modules. The isomorphism θl sends δl to an
element

(15.6.43) θl(δl) = c ·

[
d(t)
tl+1

]
∈ Ext1

B(Cl,∆B/A),

where

(15.6.44) c =
l∑
i=0

ai · ti ∈ Cl
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with coefficients ai ∈ A. Since θl(δl) must be a basis of Ext1
B(Cl,∆B/A), the element

c ∈ Cl has to be invertible, and hence the coefficient el := a0 ∈ A = Z must be
invertible, so it is either 1 or −1.

Step 2. In this step we prove that the coefficients ai from formula (15.6.43) are zero
for all i ≥ 1. We do this using base change w : A → A′ with A′ := Q. Since there
is a canonical isomorphism

Ext1
B′(C ′l ,∆B′/A′) ∼= Ext1

B(Cl,∆B/A)⊗A A′,

and since the assertions of Lemma 15.6.41 are invariant under the base change
w : A → A′ (this is pretty easy to verify!), it follows that formulas (15.6.43) and
(15.6.44) hold also over A′, with coefficients a′i = w(ai). But now the rings B′ and
C ′l have infinitely many A-ring automorphisms xµ : B′ → B′ and yµ : C ′l → C ′l that
leave the diagram

A′ // //

��

��

B′
ul // //

xµ ∼=

��

C ′l

yµ ∼=

��

B′
ul // // C ′l

commutative; namely t 7→ µ · t for µ ∈ Q×. The localization and trace functoriality
of rigid morphisms tell us how uµ and vµ act on ∆Cl/A and Ext1

B(Cl,∆B/A). Indeed,

qyµ(δl) = µ−l · δl

and

qxµ
(
ai · ti ·

[
d(t)
tl+1

])
= µ−l+i · ai · ti ·

[
d(t)
tl+1

]
.

Now according to Theorem 15.1.15 there is equality

θl ◦ qyµ = qxµ ◦ θl.

Hence we get
(µ−l − µ−l+i) · ai = 0

for all i and µ. We conclude that ai = 0 for all i > 0.

Step 3. Now A′ is an arbitrary noetherian ring. By steps 1-2 and Lemma 15.6.41(2)
we know that

θl : ∆C′
l
/A′ → Ext1

B′(C ′l ,∆B′/A′)

satisfies

(15.6.45) θl(δl) = el ·

[
d(t)
tl+1

]
where el = ±1.

Step 4. In this last step we prove that there is a unique sign e ∈ {±1} such that
el = e for all l ∈ N. This is done by proving that el = el+1. We work over A = Z.
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Take any l. The functoriality of the rigid trace morphisms (see Corollary 15.1.11),
with Lemma 15.6.36(2), imply that the diagram

(15.6.46) ∆Cl/A
θl //

Trvl+1/A

��

Ext1
B(Cl,∆B/A)

ψl+1

��

∆Cl+1/A

θl+1
// Ext1

B(Cl+1,∆B/A)

in M(Cl+1), with ψl+1 := Ext1
B(vl+1, id), is commutative. According to Lemma

15.6.37 we have

ψl+1

([d(t)
tl+1

])
=
[
t ·d(t)
tl+2

]
.

Therefore, using equality (15.6.45), we have

(ψl+1 ◦ θl)(δl) = ψl+1

(
el ·

[
d(t)
tl+1

])
= el ·

[
t ·d(t)
tl+2

]
= el · t ·

[
d(t)
tl+2

]
.

On the other hand

(θl+1 ◦ ψl+1)(δl) = θl+1

([t ·d(t)
tl+2

])
= t · θl+1

([d(t)
tl+2

])
= el+1 · t ·

[
d(t)
tl+2

]
.

Due to the commutativity of diagram (15.6.46) we have
(ψl+1 ◦ θl)(δl) = (θl+1 ◦ ψl+1)(δl).

Because the element

t ·

[
d(t)
tl+2

]
∈ Ext1

B(Cl+1,∆B/A)

is part of a basis of this free A-module, it follows that el = el+1. �

Remark 15.6.47. It would be very satisfying to know the precise value of the sign
e. However the calculation required for that was too difficult for us. Input from
the readers is encouraged!

15.7. Example: Residues on the Affine Line. In this subsection we work out
in detail the rigid residue complex on the affine line over an algebraically closed
field K, and the ind-rigid trace. This example illustrates the general theory, and
also serves to explain the name “residue complex”. Later in the book, in Subsection
17.5, we will return to this setting, but there K will be replaced by an artinian local
ring A, and we will prove the Residue Theorem for the projective line P1

A. Since
the discussion in Subsection 17.5 will be succint, here we allow ourselves to be more
verbose now.

As mentioned above, here we take an algebraically closed field K (e.g. K = C),
and we let A := K and B := K[t]. Note that for the base field K the rigid residue
complex is KK/K = K.

Any maximal ideal of B is m = (t − λ) for some λ ∈ K. So after the linear
automorphism t 7→ t− λ of B we can assume that m = (t), i.e. it is the origin. For
this reason we will do most of the calculations for m = (t).

The rigid dualizing complex of B/K is ∆B/K[1], where ∆B/K = Ω1
K[t]/K, the

module of 1-forms over B. It comes equipped with the rigidifying isomorphism
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ρB/K from Corollary 15.6.15. The rigid residue complex KB/K is a minimal injec-
tive resolution of ∆B/K[1], and here we can make it very explicit, using algebraic
residues.

In degree −1 we take
(15.7.1) K−1

B/K := L⊗B Ω1
B/K = Ω1

L/K,

where L := K(t) is the field of fractions of B. Each element β ∈ Ω1
L/K is a 1-form

with rational coefficients: β = f(t) ·d(t) for some f(t) ∈ K(t).
In degree 0 the module K0

B/K has to be a direct sum of torsion injective modules,
indexed by the maximal ideals m ⊆ B = K[t]. By Matlis theory (see Subsection
13.3), the module of m-adically continuous functionals

Homcont
K (B̂m,K) = lim

l→
HomK(B/ml+1,K)

is an m-torsion indecomposable injective B-module, and this is the choice we make.
So
(15.7.2) K0

B/K =
⊕

m⊆B max
Homcont

K (B̂m,K).

At each maximal ideal m ⊆ B there is the residue functional
(15.7.3) resm : Ω1

L/K → K.

Let us explain what this is at the origin, i.e. for m = (t). The complete local ring
at m is = K[[t]], and the completion of L at m is the field of Laurent series

L̂m = L⊗B B̂m = K((t)).
Take any rational 1-form

β = f(t) ·d(t) ∈ Ω1
L/K.

Expand f(t) into a Laurent series:

f(t) =
∞∑
j=j0

aj · tj

with coefficients aj ∈ K. Then
resm(β) := a−1 ∈ K.

The residue functional gives rise to a B-linear homomorphism

(15.7.4) ∂m : Ω1
L/K → Homcont

K (B̂m,K), ∂m(β)(b) := resm(b ·β).

It is quite easy to check that ∂m(β) = 0 if and only if β has no poles at m, namely
β ∈ Bm ⊗B Ω1

B/K ⊆ Ω1
L/K.

This is done using the fact that

Bm = B̂m ∩ L ⊆ L̂m.

Since
B =

⋂
m

Bm ⊆ L,

it follows that there is an exact sequence of B-modules

0→ Ω1
B/K → Ω1

L/K

∑
m
∂m

−−−−−−→
⊕

m
Homcont

K (B̂m,K)→ 0.
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Thus the rigid residue complex of B/K is

(15.7.5) KB/K =
(
K−1
B/K

∂−→ K0
B/K

)
=
(

Ω1
L/K

∑
m
∂m

−−−−−−→
⊕

m
Homcont

K (B̂m,K)
)
,

with the rigidifying isomorphism ρB/K from Corollary 15.6.15.
Next we want to figure out the ind-rigid trace homomorphism

(15.7.6) Trw/K : KB/K → K,
where w : K → B is the ring homomorphism. In degree −1 this is of course the
zero homomorphism. And in degree 0 we can study each maximal ideal m ⊆ B
separately, namely we can concentrate on the local contribution
(15.7.7) Trw/K,m : Γm(K0

B/K) = Homcont
K (B̂m,K)→ K.

The first guess is that perhaps

(15.7.8) Trw/K,m(φ) ?= φ(1)
for any φ ∈ Γm(K0

B/K). But this naive formula does not take into account Definition
15.3.20, that involves the rigid structures.

Let’s see what Definition 15.3.20 says for the maximal ideal m = (t). For any l ≥
0 we write Cl := B/(ti+1). There is a commutative diagram of ring homomorphisms

(15.7.9) A //
w //

99

wl

&&

B
ul // // Cl

Since ul is a finite homomorphism, the rigid trace homomorphism
Trul/K : ∆Cl/K = K(Cl/K) = KCl/K → Γm(K0

B/K)
exists. The homomorphism wl : K→ Cl is also finite, so the rigid trace homomor-
phism
(15.7.10) Trwl/K : ∆Cl/K = HomK(Cl,K)→ K
exists too. Here the naive formula is the correct one:
(15.7.11) Trwl/K(ψ) = ψ(1);
see Definition 15.6.23. Now Definition 15.3.20 says that given φ ∈ Γm(K0

B/K) we
have to find l large enough such that φ = Trul/K(ψ) for some ψ ∈ ∆Cl/K, and then

Trw/K,m(φ) := Trwl/K(ψ) = ψ(1) ∈ K.
The upshot is that we must compare the two nondegenerate homomorphisms
(15.7.12) Homcont

K (ul, id), Trul/K : ∆Cl/K → Γm(K0
B/K).

Since δl is a basis of the Cl-module ∆Cl/K, it suffices to see what happens to it.
We shall perform this comparison through the cohomology module

N := Ext0
B(Cl,∆B/A[1]).

The module N can be calculated in two ways: the injective resolution afforded by
the residue complex
(15.7.13) N = H0(HomB(Cl,KB/A)

)
,

and the projective resolution afforded by the Koszul complex
(15.7.14) N = H0(HomB(K(B; tl+1),∆B/A[1])

)
.
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The two resolutions can be combined in the following intermediate object:

(15.7.15) N = H0(HomB(K(B; tl+1),KB/A)
)
.

This object admits canonical isomorphisms from (15.7.13) and (15.7.14).
Let’s introduce the abbreviation

Φ := Homcont
K (ul, id).

This is the naive trace associated to ul. Its action on δl is this: Φ(δl) = δ′l, where
δl ∈ Γm(K0

B/K) is the continuous functional K[[t]] → K with formula δ′l(tl) = 1
and δ′l(ti) = 0 for i 6= l. Then in cohomology, using the resolution (15.7.13), the
homomorphism

H0(Φ) : ∆Cl/K → N ⊆ Γm(K0
B/K)

does

(15.7.16) H0(Φ)(δl) = δ′l ∈ N.

On the other hand, by Theorem 15.6.38, we know that

(15.7.17) H0(Trul/K)(δl) = e ·
[
d(t)
tl+1

]
∈ N,

where e ∈ {±1} is a universal constant.
We claim that the cohomology classes of δ′l and

[
d(t)
tl+1

]
in N , when viewed in the

intermediate object (15.7.15), are equal. The reason is that difference between δ′l
and

[
d(t)
tl+1

]
is the coboundary of the element(

1 7→ t−l−1 ·d(t)
)
∈ HomB

(
K(B; tl+1),KB/A

)−1
.

The conclusion is that the naive formula (15.7.8) for the trace is correct only up
to a sign. The comparison of (15.7.16) and (15.7.17) shows that the true formula is

(15.7.18) Trw/K,m(φ) = e ·φ(1),

where e ∈ {±1} is the universal constant from Theorem 15.6.38.
The conclusion above is valid for all maximal ideals m ⊆ B. We arrive at the

following description of the ind-rigid trace homomorphism in degree 0. It is

(15.7.19) Trw/K
(∑

m
φm

)
= e ·

∑
m
φm(1) ∈ K.

Therefore, for any rational 1-form β ∈ Ω1
L/K = K−1

B/K we get

(15.7.20) Trw/K(∂(β)) = e ·
∑

m
resm(β) ∈ K.

Let us examine the particular 1-form β := t−1 ·d(t). It has resm(β) = 0 for all
m 6= (t), and resm(β) = 1 for m = (t). We see that

(15.7.21) Trw/K(∂(β)) = e ·
∑

m
resm(β) = e 6= 0.

Thus the ind-rigid trace homomorphism Trw/K does not commute with the differ-
entials in this case.

Let us try to contemplate what would happen if we were to replace the affine
line A1

K with the projective line P1
K. Let x∞ ∈ P1

K be the point at infinity. The
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rational change of coordinates t 7→ t−1 shows that the residue at x∞ of the form
β = t−1 ·d(t) is resx∞(β) = −1. Then, instead of (15.7.21), we now have

TrP1
K/K/K(∂(β)) = e ·

∑
x∈P1(K)

resx(β) = 0.

This good behavior turns out to hold for any β ∈ Ω1
L/K. And moreover the base

K can be replaced by any artinian local ring A. This will be done in Section 17.

Remark 15.7.22. In [Ye2] it is shown how the example above generalizes to any
ring B that is integral of finite type over a perfect field K. If n = dim(B), then
the residue complex (rigidity did not exist at the time [Ye1] was written) KB/K
is concentrated in degrees −n, . . . , 0. The high dimensional residues generalizing
(15.7.3) involve the high dimensional completions introduced by Beilinson [Bei].
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Fourth Part

16. Derived Categories in Geometry

In this section we deal with geometry in a wide sense: the geometric object of
interest is a ringed space (X,A), possibly noncommutative. The category ModA of
left A-modules is an abelian category, but it has a lot more structure. We are going
to study the derived category D(A) = D(ModA), and various related triangulated
functors. Our main source is the groundbreaking paper by Spaltenstein [Spa].

In Section 17 we shall specialize to noetherian algebraic schemes.

16.1. Recalling Facts on Ringed Spaces. As always in this book, we prefer to
specify a base ring; so let K be a fixed nonzero commutative ring. (The universal
choice is K = Z.) All rings are assumed to be K-central by default, and all linear
operations are assumed to be K-linear.

Here is a quick review of sheaf theory. More details can be found in [Har, Sections
II.1-2] and [KaSc1, Sections 2.1-2.3].

Let X be a topological space (of any sort). Recall that a presheaf of K-modules
M on X is just a functor

M : Open(X)op → ModK,
where Open(X) is the topology of X made into a category: the objects are the
open sets, and the morphisms V → U are the inclusions V ⊆ U . In other words, a
presheafM assigns to each open set U a K-moduleM(U) = Γ(U,M); and to each
inclusion V ⊆ U there is a homomorphism

RestV/U : Γ(U,M)→ Γ(V,M),
called restriction. The restriction homomorphisms satisfy

RestW/U = RestW/V ◦RestV/U
for triple intersections.

A sheaf of K-modules on X is a presheafM that satisfies the following descent
condition: for any open set U ⊆ X, and any open covering U =

⋃
i∈I Vi of U , the

sequence

(16.1.1) 0→ Γ(U,M) α−→
∏
i∈I

Γ(Vi,M) β−→
∏
j,k∈I

Γ(Vj ∩ Vk,M)

in ModK is exact. Here α is the product of the restrictions along the inclusions
Vi → U ; and β is the product of the differences between the restrictions along the
inclusions Vj ∩ Vk → Vj and Vj ∩ Vk → Vk.

There is a functor, called sheafification, that sends a presheafM to its associated
sheafM+.

The constant sheaf with values in K is denoted by KX . Recall that Γ(U,KX)
consists of the continuous functions f : U → K, where K has the discrete topology.
A sheaf of K-modules on X is also called a KX-module. We denote by ModKX the

This material will be published by Cambridge University Press asDerived Categories by Amnon
Yekutieli. This prepublication version is free to view and download for personal use only. Not for
redistribution, resale or use in derivative works. c©Amnon Yekutieli, 2017.
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category of sheaves of KX -modules. The morphisms φ : M→ N in this category
are collections of K-module homomorphism

(16.1.2) Γ(U, φ) : Γ(U,M)→ Γ(U,N ),

indexed by the open sets U ⊆ X, that respect the restriction homomorphisms.
A sheaf of central KX-rings, or a central KX-ring, is a KX -module A, such that

for each open set U ⊆ X the K-module Γ(U,A) is endowed with a multiplication
and a unit element, making into a central K-ring; and for each inclusion V ⊆ U the
restriction homomorphism

RestV/U : Γ(U,A)→ Γ(V,A)

is a K-ring homomorphism.
Let A be a central KX -ring. By a sheaf of left A-modules, or just an A-module,

we mean a KX -moduleM, together with a left Γ(U,A)-module structure on each
K-module Γ(U,M). For any inclusion of open sets V ⊆ U the restriction homo-
morphism

RestV/U : Γ(U,M)→ Γ(V,M)
has to be a Γ(U,A)-module homomorphism. The A-modules form a category
ModA, with morphisms like (16.1.2). We write

(16.1.3) HomA(M,N ) := HomModA(M,N ),

the K-module of A-module homomorphisms φ :M→N .
Given a point x ∈ X and a sheafM, the stalk ofM at x is

Mx := lim
U→

Γ(U,M),

where U ranges over the open neighborhoods of x. IfM is an A-module, thenMx

is a module over the ring Ax.
The category ModA has an obvious K-linear structure. It also has obvious finite

direct sums. Given a homomorphism φ :M→N in ModA, its kernel is the sheaf

U 7→ Ker
(
Γ(U, φ) : Γ(U,M)→ Γ(U,N )

)
.

However, the cokernel of φ is more complicated: it is the sheaf associated to the
presheaf

U 7→ Coker
(
Γ(U, φ) : Γ(U,M)→ Γ(U,N )

)
.

It turns out that ModA is an abelian category (Definition 2.3.8). The exactness of
sequences can be checked at stalks – a sequence

(16.1.4) 0→ L φ−→M ψ−→ N → 0

in ModA is exact if and only if at every point x ∈ X the induced sequence

0→ Lx
φx−−→Mx

ψx−−→ Nx → 0

of Ax-modules is exact.
A ringed space over K is a pair (X,A) consisting of a topological space X, and a

KX -ring A. In case A is commutative, we call (X,A) a commutative ringed space.
A commutative ringed space (X,OX) is said to be a locally ringed space if the stalks
OX,x at all points are local rings.
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Example 16.1.5. Here K = R. Let X be a real differentiable manifold (of type
C∞). The sheaf of differentiable functions OX of X is defined as follows: for
any open set U ⊆ X, the ring Γ(U,OX) consists of the differentiable functions
f : U → R. The pair (X,OX) is a locally ringed space over R.

If p : E → X is a rank n vector bundle, then the sheaf E of differentiable sections
of E is a locally free OX -module of rank n.

There are several operations on sheaves on a ringed space (X,A). First of them
is the restriction operation. Given a sheaf M ∈ ModA and an open set U ⊆ X,
the restriction ofM to U is the sheafM|U such that

Γ(V,M|U ) := Γ(V,M)
for any V ⊆ U . Next is the sheaf Hom operation. GivenM,N ∈ ModA, there is
a sheaf

HomA(M,N ) ∈ ModKX .
Its module of sections on any open set U ⊆ X is defined this way:

Γ
(
U,HomA(M,N )

)
:= HomA|U (M|U ,N|U ).

If A is commutative, then
HomA(M,N ) ∈ ModA.

For this reason, this operation is sometimes called “internal Hom”.
As always in this book, right A-modules are treated a modules over the opposite

sheaf of rings Aop. Given M ∈ ModAop and N ∈ ModA, their tensor product
M⊗A N ∈ ModKX is, by definition, the sheaf associated to the presheaf

U 7→ Γ(U,M)⊗Γ(U,A) Γ(U,N ).
On stalks we have

(M⊗A N )x =Mx ⊗Ax Nx.
In case A is commutative, so that Aop = A, the tensor product is also internal:
M⊗A N ∈ ModA.

The usual associativity and adjunction relations among the Hom and tensor
operations hold in the sheaf setting.

Suppose f : X → Y is a map of topological spaces (i.e. a continuous function).
IfM is a KX -module, then f∗(M) is the KY -module defined by

Γ
(
V, f∗(M)

)
:= Γ

(
f−1(V ),M

)
for any open set V ⊆ Y . Given a KY -module N , there is a KX -module f−1(N ),
that is defined to be the sheaf associated to the presheaf

U 7→ lim−→
f(U)⊆V

Γ(V,N ).

In this way we get K-linear functors
f∗ : ModKX → ModKY

and
f−1 : ModKY → ModKX .

They are adjoints:
HomMod KY

(
N , f∗(M)

) ∼= HomModKX
(
f−1(N ),M

)
.

The functor f−1 turns out to be exact; whereas f∗ is only left exact.
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Now consider two ringed spaces (X,A) and (Y,B) over K. A map of ringed
spaces

(16.1.6) (f, f∗) : (X,A)→ (Y,B)

consistes of a map of spaces f : X → Y , together with a homomorphism of KY -rings

(16.1.7) f∗ : B → f∗(A).

Example 16.1.8. Continuing with Example 16.1.5, suppose X and Y are real
differentiable manifolds, and f : X → Y is a differentiable map. Given any open
set V ⊆ Y there is an R-ring homomorphism

f∗ : Γ(V,OY )→ Γ
(
f−1(V ),OX

)
= Γ

(
V, f∗(OX)

)
, f∗(g) = g ◦ f.

As we change the open set V , this becomes a homomorphism of sheaves of RY -rings

f∗ : OY → f∗(OX).

In this way we obtain a morphism of R-ringed spaces

(f, f∗) : Γ(X,OX)→ (Y,OY ).

In fact, this is a map of locally ringed spaces; namely for any x ∈ X, with
image y := f(x), the ring homomorphism on stalks f∗ : OY,y → OX,x is a local
homomorphism. It can be shown that by this process, the category of differentiable
manifolds embeds fully faithfully into the category of locally ringed spaces over R.

A map of ringed spaces (16.1.6) induces another operation on sheaves. By ad-
junction, the KY -ring homomorphism f∗ from (16.1.7) gives a KX -ring homomor-
phism f∗ : f−1(B)→ A. Thus, if N ∈ ModB, then we can define a new sheaf

f∗(N ) := A⊗f−1(B) f
−1(N ) ∈ ModA.

There are now K-linear functors

f∗ : ModA → ModB

and
f∗ : ModB → ModA.

They are an adjoint pair:

HomModB
(
N , f∗(M)

) ∼= HomModA
(
f∗(N ),M

)
.

The functor f∗ is left exact, and the functor f∗ is right exact.
The category ModA admits infinite products and coproducts. They are quite

explicit. Given a collection {Mi}i∈I ofA-modules, indexed by a set I, their product
is the sheafM =

∏
i∈I Mi whose module of sections on each open set U is

(16.1.9) Γ(U,M) :=
∏
i∈I

Γ(U,Mi).

The coproduct, or direct sum, is the sheaf associated to the presheaf

(16.1.10) U 7→
⊕
i∈I

Γ(U,Mi).

If X is a noetherian topological space (e.g. a noetherian scheme), or if I is finite,
then the presheaf (16.1.10) is already a sheaf.
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Since ModA has direct sums, it also has direct limits. Because passing to stalks
is also a direct limit, for any direct system of sheaves {Mi}i∈I and any point x ∈ X
we have a canonical isomorphism(

lim
i→
Mi

)
x
∼= lim

i→
(Mi)x.

This has an important consequence: direct limits in ModA are exact.
There is another operation on sheaves that we will need. Suppose U ⊆ X is an

open set, with inclusion g : U → X. We can view g as a map of ringed spaces:
(g, g∗) : (U,A|U )→ (X,A).

For this morphism the functor g∗ is exact, since g∗(M) = g−1(M) =M|U for any
M ∈ ModA. Now take any N ∈ ModA|U . We define the A-module g!(N ) as
follows: for any open set V ⊆ X we let

Γ
(
V, g!(N )

)
:=
{

Γ(V,N ) if V ⊆ U,
0 otherwise.

This is the extension by zero functor
g! : ModA|U → ModA.

It is an exact functor, and it satisfies the adjunction formula
HomModA|U (N ,M|U ) ∼= HomModA

(
g!(N ),M

)
.

For an open set U ⊆ X with inclusion map g : U → X, let us write
(16.1.11) AU⊆X := g!(A|U ) ∈ ModA.
The adjunction formula above implies that for anyM∈ ModA there is an isomor-
phism

(16.1.12) HomA(AU⊆X ,M) '−→ Γ(U,M), φ 7→ φ(1U ),
where 1U is the unit element of the ring Γ(U,A). In this way the sheaf AU⊆X is
“sort of free”. This explains our next definition.

Definition 16.1.13. An A-module P is called pseudo-free if

P ∼=
⊕
i∈I
AUi⊆X

for some collection of open sets {Ui}i∈I .

It is clear that a pseudo-free A-module P is flat. Moreover, at any point x ∈ X
the stalk Px is a free Ax-module, with basis indexed by the set {i ∈ I | x ∈ Ui}, in
the notation used above.

Proposition 16.1.14. AnyM∈ ModA admits an epimorphism φ : P →M from
some pseudo-free A-module P.

Proof. Take a point x ∈ X and an elementm ∈Mx. There is an open neighborhood
Um of x, with a section m′ ∈ Γ(Um,M), such that m′ 7→ m under the canonical
homomorphism Γ(Um,M)→Mx. By formula (16.1.12) there is a homomorphism
of A-modules φm : AUm⊆X →M such that φm(1Um) = m′. Now let

P :=
⊕
m

AUm⊆X and φ :=
⊕
m

φm.

�
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Exercise 16.1.15. This exercise is supposed to tell us more on the “projectivity”
of pseudo-free sheaves. Let P =

⊕
i∈I AUi⊆X be a pseudo-free A-module. A sur-

jective refinement of the collection of open sets {Ui}i∈I is, by definition, a collection
of open sets {Vj}j∈J , with a function ρ : J → I, such that for every index i ∈ I
there is equality Ui =

⋃
j∈ρ−1(i) Vj .

(1) Let {Vj}j∈J be a surjective refinement of {Ui}i∈I , and define Q :=⊕
j∈J AVj⊆X . Show that ρ : J → I induces an epimorphism ρ : Q → P in

ModA. We call ρ : Q → P a surjective refinement of P.
(2) Suppose we are given the following solid diagram

Q
ρ
//

β

��

P

α

��

M
φ
// // N

in ModA, where P is pseudo-free and φ is an epimorphism. Prove that
there is a surjective refinement ρ : Q → P and a homomorphism β that
make the whole diagram commutative.

(3) Prove that the surjective refinement above is really necessary; or, in other
words, that pseudo-free sheaves are not projective objects in the abelian
category ModA. (Hint: Example 2.5.8.)

Remark 16.1.16. The discussion in this section extends without much change to
the more general geometric scenario of a ringed site (X,A).

An important example is the small étale site Xet of a scheme X. Here instead of
open sets U ⊆ X, one considers étale maps U → X. Intersections are replaced by
fiber products, and there is a notion of a covering, so it is possible to define what
is a sheaf on Xet.

In this book we shall only consider ringed spaces.

16.2. The Category of Complexes C(A). Let us fix a ringed space (X,A) over
K. We already encountered the abelian category M(A) := ModA of sheaves of A-
modules on X. As for any K-linear abelian category, here too we have the K-linear
DG category C(A) of complexes in M(A). From the DG category C(A) we obtain
the strict category Cstr(A), the homotopy category K(A) and the derived category
D(A). As in previous instances, we use the notation

(16.2.1) HomA(M,N ) = HomC(A)(M,N ) ∈ C(K)

for anyM,N ∈ C(A); and thus

(16.2.2) HomCstr(A)(M,N ) = Z0(HomA(M,N )
)
.

The complicated abelian category structure of M(A) forces the cohomology func-
tors

Hi : Cstr(A)→M(A)

to be just as complicated. Let us emphasize that given a complexM = {Mi}i∈Z ∈
C(A), its i-th cohomology Hi(M) is the sheaf associated to the presheaf

U 7→ Hi
(
Γ(U,M)

)
.

328



Derived Categories | Amnon Yekutieli 24 June 2017 | part4_170624d2.tex

By definition, a complex M ∈ C(A) is acyclic if the A-modules Hi(M) are zero
for all i. Also by definition, a homomorphism φ : M → N in C(A) is a quasi-
isomorphism if the homomorphisms

Hi(φ) : Hi(M)→ Hi(N )

in M(A) are isomorphisms for all i.
Given a complex M = {Mi}i∈Z ∈ C(A), we apply the operations Γ(U,−) and

(−)x degreewise, namely

Γ(U,M) =
{

Γ(U,Mi)
}
i∈Z ∈ C(K)

and
Mx = {Mi

x}i∈Z ∈ C(Ax).
Let us stress once more: a complexM∈ C(A) is acyclic, or exact, if and only if

for each point x ∈ X, the complex of Ax-modulesMx is acyclic. But it could very
well be (see next exercise) thatM is an acyclic complex, yet the Γ(U,A)-modules
Hi
(
Γ(U,M)

)
are nonzero for some U and i.

Exercise 16.2.3. Find an example of a ringed space (X,A), and an acyclic com-
plex of A-modules M, such that Hi

(
Γ(X,M)

)
6= 0 for some i. (Hint: algebraic

geometry.)

We shall require several kinds of resolutions in C(A):
• Semi-pseudo-free resolutions.
• K-flat resolutions.
• K-injective resolutions.
• K-flasque resolutions.
• Semi-injective resolutions.

Our discussion is mostly based on [Spa].
In algebraic geometry there are several more options for resolutions, most notably

when the sheaves in question are quasi-coherent. Some of these resolutions will be
encountered in subsequent sections of the book.

16.3. Semi-Pseudo-Free and K-flat Resolutions in C(A). We already know,
by Proposition 16.1.14, that M(A) has enough pseudo-free modules.

For a graded object M ∈ G(A) = G(M(A)), its supremum is sup(M) ∈ Z ∪
{±∞}; see (13.1.1).

Theorem 16.3.1. Any complexM∈ C(A) with bounded above cohomology admits
a quasi-isomorphism ρ : P → M in Cstr(A), where P is a complex of pseudo-free
A-modules such that sup(P) = sup(H(M)).

Proof. This is an adaptation of the proofs of Theorem 10.2.7 and Corollary 10.2.18.
Whenever these proofs talk about a projective object P , here we replace it by a
pseudo-free sheaf P.
comment: Thm 10.2.7 & Cor 10.2.18 have to be improved as follows: instead
of talking about projective objects in the ab cat M, they should talk about a full
subcat P ⊆ M such that each object M ∈ M admits an epimorphism P � M
from an object P ∈ P. Cf. [RD, Lem I.4.6(1)], reversed.

�
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Definition 16.3.2. A complex P ∈ C(A) is called K-flat if for any acyclic complex
N ∈ C(Aop), the complex N ⊗A P ∈ C(KX) is acyclic.

Proposition 16.3.3. The K-flat complexes are a full triangulated subcategory of
K(A).

Proof. It is clear that a translation of a K-flat complex, and a finite direct sum of
K-flat complexes, are K-flat. As for distinguished triangles: it is enough to check
for cones of standard triangles. So suppose

P → Q → R→ P[1]

is a standard triangle in Cstr(A), and the complexes P and Q are K-flat. Let N
be an acyclic complex of Aop-modules. We must show that the complex of KX -
modules N ⊗A R is acyclic. For that, is suffices to show that at each point x ∈ X
the complex

(N ⊗A R)x ∼= Nx ⊗Ax Rx
is acyclic. But we have a standard triangle

Px → Qx → Rx → Px[1]

in Cstr(Ax), and this implies that Rx is K-flat by ???
comment: where did we prove that K-flat complexes in K(A) are a full trian-
gulated subcat?
On the other hand, the complex Nx is acyclic. So we are done. �

Recall our convention that quasi-isomorphisms, filtrations, limits etc. of com-
plexes are always in the strict category; here it is Cstr(A). Filtrations are always
ascending.

Definition 16.3.4. Let P be an object of C(A).
(1) A semi-pseudo-free filtration on P is a filtration F = {Fj(P)}j≥−1 such

that:
• F−1(P) = 0.
• Each grFj (P) is a complex of pseudo-free A-modules with zero differ-
ential.

• P = limj→ Fj(P).
(2) The complex P is called a semi-pseudo-free complex if it admits some semi-

pseudo-free filtration.

Proposition 16.3.5. Let P be a semi-pseudo-free complex in C(A). Then P is
K-flat.

Proof. As in the proof of Proposition 16.3.3, it suffices to prove that for every point
x ∈ X the stalk Px is K-flat. Now passing to stalks, being a direct limit, commutes
with grFj (−) and limj→ Fj(−). We know that the stalk of a pseudo-free A-module
is a free Ax-module; and hence Px is in fact a semi-free complex of Ax-modules.
So it is K-flat. �

Theorem 16.3.6. Any complex M ∈ C(A) admits a quasi-isomorphism ρ : P →
M from a semi-pseudo-free complex P.
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Proof. Step 1. This is [Spa, Lemma 3.3].
comment: please check this step of the proof – it is copied from [Spa], but I
might have introduced some mistakes in translation.
Recall that for any i ≥ 0 we have the smart truncation smt≤i(M), which is a
subcomplex ofM, andM =

⋃
i≥0 smt≤i(M). See formula (7.3.6).

In this step we construct a direct system {Pi}i≥0 of complexes of pseudo-free
A-modules, such that Pi is concentrated in degrees ≤ i, together with a direct
system of quasi-isomorphisms φi : Pi → smt≤i(M). This is done inductively. For
i = 0 we choose any pseudo-free resolution φ0 : P0 → smt≤0(M) as in Theorem
16.3.1.

Now suppose that i ≥ 1, and we already found complexes P0, . . . ,Pi−1 and
quasi-isomorphisms φ0, . . . , φi−1 as required. Define N := smt≤i(M). Let ψ :
Pi−1 → N be the composition of φi−1 : Pi−1 → smt≤i−1(M) and the inclusion
smt≤i−1(M) → N . Consider Cone(ψ), the standard cone on the homomorphism
ψ. There is an isomorphism of graded objects (i.e. in the category G0(A))

Cone(ψ) ∼= N ⊕Pi−1[1],
so this complex is concentrated in degrees ≤ i. By Theorem 16.3.1 we can find a
pseudo-free resolution θ : Q → Cone(ψ)[−1] such that Q is concentrated in degrees
≤ i+ 1.

By definition of the cone, the homomorphism θ in Cstr(A) induces a homomor-
phism θ′ : Q → Pi−1 in Cstr(A) and a homomorphism θ′′ : Q → N [−1] in G0(A).
Define the degree 0 homomorphism

χ : Cone(−θ′) = Pi−1 ⊕Q[1]→ N
by the formula χ := ψ ⊕ θ′′[1]. A calculation shows that χ is in Cstr(A), and
furthermore Cone(χ) ∼= Cone(θ)[1]. This implies that χ is a quasi-isomorphism.
We now define Pi := Cone(−θ′) and φi := χ.
(2) Let {Pi}i≥0 be the direct system of complexes from step 1. Define

P := lim
i→
Pi ∈ C(A).

Because in each degree the direct limit is in fact a direct sum, we see that P is a
complex of pseudo-free A-modules. Let ρ : P →M be ρ := limi→ φi. Since

Hj(φi) : Hj(Pi)→ Hj(M)
is an isomorphism for all i ≥ j, and since

lim
i→

Hj(Pi)→ Hj(P)

is also an isomorphism, it follows that ρ is a quasi-isomorphism.
(3) In this step we construct a semi-pseudo-free filtration F =

{
Fj(P)

}
j≥−1 on

P. For any i ≥ 0 we introduce the filtration
{
Fj(Pi)

}
j≥−1 on the complex Pi by

letting
Fj(P0) := stt≥−j(P0)

and
Fj(Pi) := stt≥−j+i(Pi) + Fj(Pi−1).

Here stt≥−(−) is the stupid truncation from formula (13.1.17). Then we define
Fj(P) := lim

i→
Fj(Pi).
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It is easy to verify that this is a semi-pseudo-free filtration. �

Corollary 16.3.7. C(A) has enough K-flat complexes.

Proof. Combine Theorem 16.3.6 and Proposition 16.3.5. �

Lemma 16.3.8. Suppose φ1 : P1 → Q1 and φ2 : P2 → Q2 are quasi-isomorphisms
in C(Aop) and C(A) respectively, and either of the conditions below holds:

(i) P1 and Q1 are both K-flat.
(ii) P2 and Q2 are both K-flat.

Then the homomorphism
φ1 ⊗ φ2 : P1 ⊗A P2 → Q1 ⊗A Q2

in C(KX) is a quasi-isomorphism.

Proof. To prove that φ1⊗φ2 is a quasi-isomorphism, it is enough to check at stalks.
Namely, it is enough to prove that for every point x ∈ X the homomorphism

φ1,x ⊗ φ2,x : P1,x ⊗Ax P2,x → Q1,x ⊗Aa Q2,x

in C(K) is a quasi-isomorphism, where P1,x is the stalk of P1 at x, etc. We know
that φ1,x : P1,x → Q1,x is a quasi-isomorphism in C(Aop

x ), and likewise for φ2,x. If
P1 is K-flat over Aop then P1,x is K-flat over Aop

x , and likewise for the three other
complexes. Thus we can use Lemma 12.8.2 to deduce that indeed φ1,x ⊗ φ2,x is a
quasi-isomorphism. �

Theorem 16.3.9. Let (X,A) be a ringed space over K. The bifunctor
(−⊗A −) : M(Aop)×M(A)→M(KX)

has a left derived bifunctor
(−⊗L

A −) : D(Aop)×D(A)→ D(KX).
If eitherM∈ D(Aop) or N ∈ D(A) is K-flat, then the canonical morphism

ηM,N :M⊗L
A N →M⊗A N

in D(KX) is an isomorphism.

Proof. We know that both K(Aop) and K(A) have enough K-flat objects, and that
these form full triangulated subcategories. Lemma 16.3.8 says that K-flat complexes
have the expected acyclicity properties. So, like the proof of Theorem 12.8.1, we can
use the very general existence result for left derived bifunctors: Theorem 12.7.4. �

Here is the commutative variant of the previous theorem. The proof is identical.

Theorem 16.3.10. Let (X,A) be a commutative ringed space over K. The bifunc-
tor

(−⊗A −) : M(A)×M(A)→M(A)
has a left derived bifunctor

(−⊗L
A −) : D(A)×D(A)→ D(A).

If eitherM∈ D(A) or N ∈ D(A) is K-flat, then the canonical morphism

ηM,N :M⊗L
A N →M⊗A N

in D(A) is an isomorphism.
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Lemma 16.3.11. Let
(f, f∗) : Γ(X,A)→ (Y,B)

be a map of ringed spaces over K, and let Q ∈ C(B).
(1) If Q is K-flat, then f∗(Q) ∈ C(A) is K-flat.
(2) If Q ∈ C(B) is acyclic and K-flat, then f∗(Q) ∈ C(A) is acyclic.

Proof. (1) Let M be an acyclic complex in C(Aop). We need to prove that the
complexM⊗A f∗(Q) is acyclic. For that it is enough to prove that for every point
x ∈ X the complex (M⊗A f∗(Q))x is acyclic.

Now there is an isomorphism
(16.3.12) f∗(Q)x ∼= Ax ⊗By Qy
in C(Ax), where y := f(x) ∈ Y . Therefore we have

(M⊗A f∗(Q))x ∼=Mx ⊗Ax f∗(Q)x ∼=Mx ⊗By Qy.
Since Qy is a K-flat complex of Bx-modules, and Mx is an acyclic complex of
Ax-modules, it follows thatMx ⊗By Qy is an acyclic complex of K-modules.
(2) It is enough to prove that for every point x ∈ X the complex f∗(Q)x of Ax-
modules is acyclic. This is immediate from equation (16.3.12), since now Qy is a
K-flat acyclic complex of By-modules. �

Theorem 16.3.13. Let
(f, f∗) : Γ(X,A)→ (Y,B)

be a map of ringed spaces over K. Then the functor
f∗ : M(B)→M(A)

has a left derived functor
Lf∗ : D(B)→ D(A).

If N ∈ D(B) is K-flat, then the canonical morphism
ηN : Lf∗(N )→ f∗(N )

in D(A) is an isomorphism.

Proof. We know that K(B) has enough K-flat objects, that these form a full tri-
angulated subcategory, and that if Q is an acyclic K-flat complex in K(B), then
f∗(Q) is acyclic. Thus we can apply Theorem 8.4.3. �

Theorem 16.3.14. Let

Γ(X,A) (f,f∗)−−−−→ (Y,B) (g,g∗)−−−−→ (Z, C)
be maps of ringed spaces over K. Then the canonical morphism

L(g ◦ f)∗ → Lf∗ ◦ Lg∗

of triangulated functors D(C)→ D(A) is an isomorphism.

Proof. By Lemma 16.3.11, if R ∈ C(C) is K-flat, then g∗(R) ∈ C(B) is K-flat. We
thus get isomorphisms

L(g ◦ f)∗(R) ∼= (g ◦ f)∗(R) ∼= f∗(g∗(R)) ∼= Lf∗(g∗(R)) ∼= Lf∗(Lg∗(R))
in D(A), that are compatible with the morphisms from (g ◦ f)∗(R). �
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16.4. K-injective and K-flasque Resolutions in C(A). As before, (X,A) is a
ringed space over K (not necessarily commutative).

Definition 16.4.1. A complex I ∈ C(A) is called K-injective if it is a K-injective
object in the DG category C(A). Namely, if for any acyclic complex N ∈ C(A),
the complex of K-modules HomA(N , I) is acyclic.

Definition 16.4.2. A complex I ∈ C(KX) is called K-flasque if for any acyclic
bounded above complex of pseudo-free KX -modules P, the complex of K-modules
HomKX (P, I) is acyclic.

Lemma 16.4.3. If I ∈ C(A) is a K-injective complex, then it is K-flasque.

Proof. Let P be an acyclic bounded above complex of pseudo-free KX -modules.
Then A⊗KX P is an acyclic complex of A-modules, and

HomKX (P, I) ∼= HomA(A⊗K P, I)

is an acyclic complex of K-modules. �

Theorem 16.4.4. Any complexM∈ C(A) with bounded below cohomology admits
a quasi-isomorphism ρ : M → I in Cstr(A), where I is a complex of injective
A-modules such that inf(I) = inf(H(M)).

Proof. We know by Proposition 2.6.20 that M(A) has enough injectives. Now we
can apply Corollary 10.4.25. �

This means that C+(A) ahs enough K-injectives. But actually much more is
true:

Theorem 16.4.5. Let (X,A) be any ringed space. Then the category C(A) has
enough K-injectives.

This is [Spa, Theorem 4.5]. The proof uses transfinite induction, and it is quite
difficult. There is an even more difficult proof, that goes like this: first one observes
that M(A) is a Grothendieck abelian category. Then there is a general result
that for any Grothendieck abelian category M, the category C(M) has enough K-
injectives. See [KaSc2, Theorem 14.3.1].

Below we shall give a full proof of a weaker theorem (there will be a restriction
on the space X), but the proof will be more or less explicit.

First a definition from [KaSc1].

Definition 16.4.6. The topological space X has flasque dimension at most n, for
some natural number n, if for any open set U ⊆ X, any KU -module M, and any
i > n, the K-module Hi(U,M) is zero.

Here are two important types of spaces with finite flasque dimensions.

Proposition 16.4.7. If X is a noetherian topological space of dimension ≤ n, then
X has flasque dimension at most n.

Proof. This is an immediate consequence of the Grothendieck Vanishing Theorem,
see [Har, Theorem III.2.7]. �

This includes every essentially finite type scheme X over a finite dimensional
noetherian base ring K.
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Proposition 16.4.8. If X is a closed subspace of a finite dimensional topological
manifold, then X has finite flasque dimension.
Proof. This is a consequence of [KaSc1, Exercise II.9 and Proposition 3.2.2]. We
leave the details to the reader. �

Theorem 16.4.9. If the topological space X has finite flasque dimension, then any
complexM∈ C(A) admits a semi-injective resolution ρ :M→ I.
Proof. This is similar to the proof of Theorem 16.3.6, reversed; but the difficulty,
and the extra condition, is because inverse limits are not exact.
Step 1. Here we use the smart truncations smt≥−p(M), p ≥ 0. Recall that

M = lim
←p

smt≥−p(M).

In this step we construct an inverse system {Ip}p≥0 of complexes of injective A-
modules, such that Ip is concentrated in degrees ≥ −p, together with an inverse
system of quasi-isomorphisms

φp : smt≥−p(M)→ Ip.
This is done inductively, the reverse of step 1 in the proof of Theorem 16.3.6.
Step 2. This is the hard step. We define

I := lim
←p
Ip ∈ C(A).

There is a homomorphism
φ := lim

←p
φp :M→ I.

Proving that φ is a quasi-isomorphism uses are version of the ML argument, and
the finite flasque dimension of X. See [Spa, Proposition 3.13] ...
comment: finish

Step 3. In the last step we produce a semi-injective cofiltration of I. This is just
the reverse of what was done in step 3 of the proof of Theorem 16.3.6. �

Lemma 16.4.10. Let I ∈ C(A) be a K-injective complex, and let M ∈ C(A) be
any complex. Then:

(1) The complex HomA(M, I) ∈ C(KX) is K-flasque.
(2) If M is an acyclic complex, then the complex HomA(M, I) ∈ C(KX) is

acyclic.
(3) If I is an acyclic complex, then the complex HomA(M, I) ∈ C(KX) is

acyclic.
Proof. (1) Let P ∈ C(KX) be an acyclic bounded above complex of pseudo-free
KX -modules. Since P is K-flat, the complexM⊗KX P is acyclic by Lemma 16.3.8.
Then we have

HomKX (P,HomA(M, I)) ∼= HomA(M⊗KX P, I),
and this is acyclic.
(2) Take any open set U ⊆ X with inclusion g. Then g!(N|U ) is an acyclic complex
in C(A), and by adjunction

Γ(U,HomA(N , I)) ∼= HomA|U (N|U , I|U ) ∼= HomA(g!(N|U ), I)
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is an acyclic complex of K-modules. Therefore HomA(N , I) is an acyclic complex
in C(K).

(3) the usual ????
comment: finish

�

Lemma 16.4.11. If I is a K-flasque complex in C(KX), then for any open set
U ⊆ X the complex of K-modules Γ(U, I) is acyclic.

Proof.
comment: this is [Spa, Prop 5.16]

�

Lemma 16.4.12. The K-flasque complexes are a full triangulated subcategory of
K(A).

Proof. - - the usual ??
comment: finish

�

Lemma 16.4.13. Suppose φ : I → J is a quasi-isomorphism in C(A), and the
complex J is K-injective. The following conditions are equivalent:

(i) I is a K-flasque.
(ii) For every open set U ⊆ X the homomorphism

Γ(U, φ) : Γ(U, I)→ Γ(U,J )

is a quasi-isomorphism.

Proof.
comment: this is [Spa, Cor 5.17]

�

Theorem 16.4.14. Let

(f, f∗) : Γ(X,A)→ (Y,B)

be a map of ringed spaces over K. The right derived functor

Rf∗ : D(A)→ D(B)

exists. IfM∈ D(A) is a K-flasque complex, then the canonical morphism

ηM : f∗(M)→ Rf∗(M)

in D(B) is an isomorphism.

Proof. ??? �

When we take Y to be the one point space, with B := K, we obtain the important
special case:
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Corollary 16.4.15. Let (X,A) be a ringed space over K. The right derived functor
RΓ(X,−) : D(A)→ D(K)

exists. IfM∈ D(A) is a K-flasque complex, then the canonical morphism
ηM : Γ(X,M)→ RΓ(X,M)

in D(K) is an isomorphism.
Theorem 16.4.16. Let (X,A) be a ringed space over K. The right derived bifunc-
tor

RHomA(−,−) : D(Aop)×D(A)→ D(KX)
exists. IfM∈ D(A) is arbitrary, and N ∈ D(A) is K-injective, then the canonical
morphism

ηM,N : HomA(M,N )→ RHomA(M,N )
in D(KX) is an isomorphism.
Proof. ??? �

As usual we have the commutative version:
Theorem 16.4.17. Let (X,A) be a commutative ringed space over K. The right
derived bifunctor

RHomA(−,−) : D(Aop)×D(A)→ D(A)
exists. IfM∈ D(A) is arbitrary, and N ∈ D(A) is K-injective, then the canonical
morphism

ηM,N : HomA(M,N )→ RHomA(M,N )
in D(A) is an isomorphism.

The proof is identical.
Theorem 16.4.18. Let (X,A) be a ringed space over K. The canonical morphism

RHomA(−,−)→ RΓ
(
X,RHomA(−,−)

)
of triangulated bifunctors

D(Aop)×D(A)→ D(K)
is an isomorphism.
Proof. ??? �

Lemma 16.4.19. Let f : X → Y be a map of topological spaces, and let I be a
K-flasque complex in C(KX). Then f∗(I) ∈ C(KY ) is K-flasque.
Proof.
comment: this is [Spa, Prop 5.15(b)]

�

Theorem 16.4.20. Let

Γ(X,A) (f,f∗)−−−−→ (Y,B) (g,g∗)−−−−→ (Z, C)
be maps of ringed spaces over K. Then the canonical morphism

R(g ◦ f)∗ → Rg∗ ◦ Rf∗
of triangulated functors D(A)→ D(C) is an isomorphism.
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Proof. ??? �

Theorem 16.4.21. Let
(f, f∗) : Γ(X,A)→ (Y,B)

be a map of ringed spaces over K. For any M ∈ D(A) and N ∈ D(B) there is an
isomorphism

HomD(B)
(
N ,Rf∗(M)

) ∼= HomD(A)
(
Lf∗(N ),M

)
in M(K). It is functorial inM and N .

Proof. ??? �

Remark 16.4.22. Spaltenstein [Spa, Definition 5.11] has this list of “K-flasque”
complexes, with implications as indicated: “K-injective” ⇒ “weakly K-injective”
⇒ “K-flabby” ⇒ “K-limp”. The latter (K-limp) is what we chose to call K-flasque
in Definition 16.4.2 above. This condition is sufficient to calculate RΓ(X,−), but
apparently not strong enough to calculate RΓZ(X,−) for Z ⊆ X closed.

comment: a remark on Poincaré-Verdier Duality and perverse sheaves?
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17. Residues and Duality in Algebraic Geometry

In this section all rings are noetherian commutative, and all schemes are noe-
therian.

17.1. Some Facts on Noetherian Schemes. Recall that a scheme (X,OX) is
noetherian if it admits a finite affine open covering X =

⋃
i Ui, where each Ai :=

Γ(Ui,OX) is a noetherian ring. If X is noetherian, then for any affine open set
U the ring A := Γ(U,OX) is noetherian. If X is a noetherian scheme then it is a
quasi-compact topological space, and any subscheme of X is also noetherian.

Finite type maps f : Y → X between noetherian schemes have been thoroughly
studied, and [Har] is a great source for them (even though some of the more delicate
results can only be found in the [EGA] series or in [SP]). We shall be interested in
a more general sort of maps between noetherian schemes.

Before proceeding, we have to talk about principal open sets. In this discussion
the noetherian condition is not important. Recall that an element (a “function”)
s ∈ Γ(X,OX) defines the principal open set

(17.1.1) Xs := {x ∈ X | s(x) 6= 0} ⊆ X.

If X is affine then Xs is also affine, and we then call Xs a principal affine open
set of X. Explicitly, if X = Spec(A) then Xs = Spec(As), where As = A[s−1]
is the localization. We refer to the ring homomorphism A → As as a principal
localization. On an affine scheme X, the principal affine open sets form a basis of
teh topology.

Lemma 17.1.2. Let X be a scheme.
(1) Let W ⊆ V ⊆ U be affine open sets of X. If W is principal in U , then it

is principal in V .
(2) Let U ⊆ X be an affine open set, and for i = 1, . . . , n let Wi ⊆ U be a

principal affine open set. Then W := W1 ∩ · · · ∩Wn is a principal affine
open set in U .

(3) Let U, V ⊆ X be affine open sets, and let x ∈ U ∩ V . Then there is an
affine open set W ⊆ X, such that x ∈ W ⊆ U ∩ V , and W = Us = Vt for
some elements s ∈ Γ(U,OX) and t ∈ Γ(V,OX).

Proof. (1) Say W = Us for some s ∈ Γ(U,OX). Then W = Vt for t := s|V ∈
Γ(V,OX).

(2) Say Wi = Usi for si ∈ Γ(U,OX). Then W = Us1···sn .

(3) Since the principal affine open sets are a basis of the topology of U , we can
find s′ ∈ Γ(U,OX) such that x ∈ Us′ ⊆ U ∩ V . For the same reason we can find
t ∈ Γ(V,OX) such that x ∈ Vt ⊆ Us′ . The image of t in Γ(Us′ ,OX) can be written as
a · s′ −n for some a ∈ Γ(U,OX) and n ≥ 0. But then, letting s := a · s′ ∈ Γ(U,OX),
we get Vt = Us. This is the set W we want. �

Here is a technical definition that is useful for performing descent of quasi-
coherent sheaves.

Definition 17.1.3. Let {Ui}i∈I be a collection of affine open sets of a scheme X.
A biprincipal recovering of {Ui}i∈I is a collection of affine open sets {Wk}k∈K , with
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a decomposition of the indexing set

K =
∐

i0,i1∈I
K(i0, i1),

having these properties:
(i) For any pair of indices i0, i1 ∈ I there is equality

Ui0 ∩ Ui1 =
⋃

k∈K(i0,i1)

Wk.

(ii) For any index k ∈ K(i0, i1), Wk is a principal affine open subset of Ui0 and
of Ui1 .

Proposition 17.1.4. Any collection {Ui}i∈I of affine open sets of a scheme X
admits a biprincipal recovering.

Proof. For any pair of indices (i0, i1) and point x ∈ Ui0 ∩Ui1 we choose a principal
affine open set Wk as in Lemma 17.1.2(3), i.e. x ∈Wk ⊆ Ui0 ∩ Ui1 . As the point x
varies we get a collection of open sets Wk, indexed by a set K(i0, i1). Then we let
the pair (i0, i1) vary, and we take the disjoint union, to obtain K. Properties (i)
and (ii) are clear. �

Recall that a ring homomorphism A → B is called a localization if B ∼= AS =
A[S−1] for some multiplicatively closed set S ⊆ A.

Definition 17.1.5. Let X be a scheme, and V ⊆ U affine open sets in X. We say
that V is a localization of U if the canonical ring homomorphism

Γ(U,OX)→ Γ(V,OX)

is a localization homomorphism.

This is a transitive condition: if W ⊆ V ⊆ U , and both V ⊆ U and W ⊆ V are
localizations, then so is W ⊆ U . The prototype of a localization is this:

Example 17.1.6. Let X be a scheme, and V ⊆ U affine open sets in X. If V is a
principal affine open set in U , then it is a localization of U .

Remark 17.1.7. There is a slight difference between Definition 17.1.5 above and
the notion of localizing immersion from [Nay, 2.7].

In Definition 17.1.5, writing A := Γ(U,OX) and B := Γ(V,OX), and assuming
that X is noetherian, the ring homomorphism A→ B is always étale, and B⊗AB =
B. But sometimes A → B is not a localization – see [YeZh5, Example 5.7], where
what we call localization is called “Ore localization”.

Recall that a ring homomorphism A→ C is called essentially finite type (EFT)
if it can be factored as A→ B → C, where A→ B is finite type, and B → C is a
localization.

Definition 17.1.8. Let f : V → U be a map between noetherian affine schemes.
We say that f is strictly EFT if the ring homomorphism

f∗ : Γ(U,OU )→ Γ(V,OV )

is EFT.
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Of course the composition of strictly EFT maps between affine schemes is also
strictly EFT. Also an inclusion of affine open sets V ⊆ U that’s a localization is a
strictly EFT map.

The next definition is the same as [Nay, Definition 2.1].
Definition 17.1.9. Let f : Y → X be a map between noetherian schemes. We
say that f is essentially finite type if there is an affine open covering X =

⋃
i∈I Ui,

and for each i there is an affine open covering f−1(Ui) =
⋃
j∈J(i) Vj , such that the

map f |Vj : Vi → Ui is strictly EFT for every i ∈ I and j ∈ J(i).
In other words, f is EFT if for each point y ∈ Y there are affine open neigh-

borhoods y ∈ V ⊆ Y and f(y) ∈ U ⊆ X such that f |V : V → U is strictly
EFT.

This definition comes with a warning:
Remark 17.1.10. It is not known whether every EFT map f : V → U between
affine noetherian schemes is strictly EFT. Cf. [Nay, 2.3].
Lemma 17.1.11. Suppose f : Y → X is an EFT map between noetherian schemes,
y ∈ Y , x := f(y) ∈ X, V is an open neighborhood of y in Y and U is an open
neighborhood of x in X. Then there are affine open sets V ′ ⊆ Y and U ′ ⊆ X such
that y ∈ V ′ ⊆ V , x ∈ U ′ ⊆ U , f(V ′) ⊆ U ′, and f |V ′ : V ′ → U ′ is strictly EFT.
Proof. We are given affine coverings X =

⋃
i∈I Ui and f−1(Ui) =

⋃
j∈J(i) Vj as in

Definition 17.1.9. Choose an index i such that x ∈ Ui, and then choose an index
j ∈ J(i) such that y ∈ Vj . There is an element s ∈ A := Γ(Ui,OX) such that the
principal open set U ′ := (Ui)s = Spec(As) satisfies x ∈ (Ui)s ⊆ U . Now there is an
element f∗(s) ∈ B := Γ(Vj ,OY ). The principal open set

V † := (Vj)f∗(s) = Spec(Bf∗(s)) = Vj ∩ f−1(U ′)

contains y, and the map f |V † : V † → U ′ is strictly EFT, since the ring homomor-
phism Bf∗(s) → As is EFT.

Next, there is an element t ∈ Bf∗(s) such that the principal open set V ′ := (V †)t
satisfies y ∈ V ′ ⊆ V . Since the inclusion V ′ → V † is strictly EFT, so is the
composed map f |V ′ : V ′ → U ′. �

Proposition 17.1.12. If f : Y → X and g : Z → Y are EFT maps, then f ◦ g :
Z → X is also EFT.
Proof. This is an easy application of Lemma 17.1.11. �

We now introduce a base ring K.
Definition 17.1.13. Let K be a noetherian base ring.

(1) An affine K-scheme U = Spec(A) is called a strictly EFT affine K-scheme
if A is an EFT K-ring.

(2) A K-scheme X is called an EFT K-scheme if there is a finite open covering
X =

⋃
i Ui, where each Ui is a strictly EFT affine K-scheme.

(3) We denote by Sch /eftK the category whose objects are the EFT K-schemes,
and the morphisms are all K-scheme maps.

Note that U = Spec(A) is a strictly EFT affine K-scheme if and only if the
scheme map U → Spec(K) is strictly EFT, in the sense of Definition 17.1.8. Any
EFT K-scheme is noetherian of course.
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The next definition will simplify our discussion a bit.

Definition 17.1.14. Let X ∈ Sch /eftK. An open set U ⊆ X is called a strictly
EFT affine open set if the scheme U is a strictly EFT affine K-scheme; i.e. if the
ring Γ(U,OX) is an EFT K-ring.

The attribute “strictly EFT affine open set” does not mention the base ring K
explicitly; but that should not pose a problem.

Proposition 17.1.15. Let X be an EFT K-scheme. The strictly EFT affine open
sets of X form a basis of the topology of X.

Proof. Let X =
⋃
i Ui be an open covering like in Definition 17.1.13(2). Take any

point x ∈ X and any open neighborhood V of x. Choose an index i such that
x ∈ Ui. There is an element s ∈ A := Γ(Ui,OX) such that the principal affine open
set U := (Ui)s satisfies x ∈ U ⊆ V . Since the ring homomorphism K→ A is EFT,
so is K→ As = Γ(U,OX). This says that U is an EFT affine open set of X. �

Proposition 17.1.16. Any map f : Y → X in Sch /eftK is an EFT map, in the
sense of Definition 17.1.9.

Proof. Given y ∈ Y and x := f(y) ∈ X, we need to find affine neighborhoods y ∈ V
and x ∈ U such that f(V ) ⊆ U and f |V : V → U is strictly EFT.

Let U = Spec(A) be any affine open neighborhood of x in X. Say Y =
⋃
j Vj is

a strictly EFT affine open covering as in Definition 17.1.13(2). Choose an index j
such that y ∈ Vj . There is an element t ∈ B := Γ(Vi,OY ) such that the principal
affine open set V := (Vi)t satisfies y ∈ V ⊆ f−1(U). Since the ring homomorphism
K → B is EFT, so is K → Bt. This imples that the ring homomorphism A → Bt
is EFT. Hence f |V : V → U is strictly EFT. �

We end this subsection with a discussion of the categories of OX -modules as-
sociated to a noetherian scheme X. Recall that among the OX -modules there are
two very special kinds: the coherent sheaves and the quasi-coherent sheaves. They
form the categories CohOX and QCohOX respectively. There are inclusions

CohOX ⊆ QCohOX ⊆ ModOX ,
each category being a thick abelian subcategory of the next. The last two categories
have infinite direct sums.

We know that if M and N are coherent OX -modules, then HomOX (M,N ) is
coherent. IfM is coherent and N is quasi-coherent, then HomOX (M,N ) is quasi-
coherent. Given a map f : Y → X of noetherian schemes, the functor f∗ respects
coherence and quasi-coherence. The functor f∗ respects quasi-coherence; if f is
proper then f∗ respects coherence.

If X is an affine scheme, say X = Spec(A), then the functor
Γ(X,−) : QCohOX → ModA

is an equivalence. Also
Γ(X,−) : CohOX → Modf A

is an equivalence.
Here is an attempt at streamlined yet systematic notation for the various cat-

egories associated to a noetherian scheme X, that’s consistent with the notation
used earlier in our book.
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Notation 17.1.17. For a noetherian scheme (X,OX) we use the following nota-
tion,

• M(X) := ModOX , the abelian category of sheaves of OX -modules.
• Mqc(X) := QCohOX , the abelian category of quasi-coherent OX -modules.

It is a thick abelian subcategory of M(X).
• Mc(X) := CohOX , the abelian category of coherent OX -modules. It is a
thick abelian subcategory of Mqc(X).

• D(X) := D(ModOX), the unbounded derived category of sheaves of OX -
modules. It is a triangulated category.

• Dqc(X) is the full subcategory of D(X) on the complexes with quasi-
coherent cohomology. It is a full triangulated subcategory of D(X).

• Dc(X) is the full subcategory of D(X) on the complexes with coherent
cohomology. It is a full triangulated subcategory of Dqc(X).

• The categories D+(X), D−(X) and Db(X) are the full subcategories of
D(X) on the complexes with bounded below, bounded above and bounded
cohomology, respectively.

• For a pair of symbols ?, �, we let D?
�(X) := D?(X) ∩D�(X). This is a full

triangulated subcategory of D(X).
• Cstr(M(X)) is the strict category of complexes of OX -modules. It is an
abelian category, and it has the same objects as D(X).

• Cstr(Mqc(X)) is the strict category of complexes of quasi-coherent OX -
modules. It is a full abelian subcategory of Cstr(M(X)).

17.2. Injective Sheaves on Noetherian Schemes. In this subsection we review
results from [RD, Section II.7] on the structure of injective sheaves in M(X) =
ModOX , where (X,OX) is a noetherian scheme. Some of these results were proved
by Gabriel in [Ga], and others were proved by Grothendieck in [RD]. There also a
few new results here.

We know that M(X) has enough injectives (this is true for any ringed space). In
[RD, Section II.7] Grothendieck proved that M(X) is a locally noetherian category.
This implies that an infinite direct sum of injective objects in M(X) is injective,
and that every injective is a direct sum of indecomposable ones. Furthermore,
Grothendieck gave a classification of the indecomposable injectives in M(X), that
is similar to the Matlis classification, but with an added geometric feature. Given
a point x ∈ X, we know that the local ring OX,x has the indecomposable injective
module J(x), which is the injective hull of the residue field k(x). Geometrically,
the indecomposable injectives in M(X) are parametrized by pairs (x, x′) of points
of X, with x′ a specialization of x (i.e. x′ ∈ {x}). The corresponding injective
OX -module is the sheaf J (x, x′), which is the injective OX,x-module J(x), made
into a constant sheaf supported on the closed set {x′}. The OX -module J (x, x′) is
quasi-coherent if and only if x′ = x.

It is known that Mqc(X) is a locally noetherian category (see [Ga, Chapter VI],
or the middle of page 121 in [RD]). Grothendieck proved that Mqc(X) has enough
injectives. Better yet, he proved (this is in the proof of [RD, Theorem II.7.18]) that
for any quasi-coherent OX -moduleM, its injective hull I in M(X) is of the form
I ∼=

⊕
k∈K J (xk) for some collection of points {xk}k∈K . So I is quasi-coherent,

and it is thus injective also in Mqc(X). See Remark 17.2.2 on a caveat regarding
injectives in Mqc(X).
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If U is an affine scheme, say U = Spec(A), then the functor

Γ(U,−) : Mqc(U)→M(A)

is an equivalence of abelian categories. Therefore a module I ∈Mqc(U) is injective
in Mqc(U) if and only if I := Γ(U, I) is injective in M(A).

The next theorem summerizes, and slightly improves, the results from [RD] on
quasi-coherent injectives.

Theorem 17.2.1. Let X be a noetherian scheme and I a quasi-coherent OX-
module. The following conditions are equivalent:

(i) I is injective in M(X).
(ii) There is an isomorphism I ∼=

⊕
k∈K J (xk) in Mqc(X) for some collection

of points {xk}k∈K .
(iii) For every affine open set U = Spec(A) ⊆ X, the A-module I := Γ(U, I) is

injective.
(iv) There is an affine open covering X =

⋃
k Uk, with Uk = Spec(Ak), such

that for every k the Ak-module Ik := Γ(Uk, I) is injective.

Proof. (i) ⇒ (ii): This is the implication (i) ⇒ (ii) in [RD, Proposition II.7.17].

(ii)⇒ (iii): Applying Γ(U,−) to the given decomposition of I gives an isomorphism
I ∼=

⊕
k∈K′ J(pk), where

K ′ := {k ∈ K | xk ∈ U},

and pk is the prime ideal incarnation of the point xp ∈ U . We see that I is indeed
injective in M(A).

(iii) ⇒ (iv): This is trivial – take any affine open covering X =
⋃
k Uk.

(iv) ⇒ (i): According to [RD, Corollary II.7.14], the quasi-coherent OUk -module
I|Uk , which is isomorphic to the sheafification of Ik, is injective in M(Uk). Now we
use the implication (v) ⇒ (i) in [RD, Proposition II.7.17]. �

Remark 17.2.2. Let X be a noetherian scheme. The category Mqc(X) seems to
be more complicated than the bigger category M(X). Since Mqc(X) is a locally
noetherian category, every injective in it is a direct sum of indecomposable ones.
But – at least per [RD] – we do not know a classification of the indecomposable
injectives in Mqc(X); there could possibly be others, beside the J (x). If such inde-
composable quasi-coherent injectives in Mqc(X) do exist, they will not be injective
in M(X). Also see the example on page 135 of [RD], regarding the pathological
behavior of the category Mqc(X) of a locally noetherian scheme X that is not
noetherian.

Assume now that X = Spec(A) is an affine noetherian scheme. The global
sections functor

Γ(X,−) : Mqc(X)→M(A)
is an equivalence of abelian categories, with quasi-inverse

Shf : M(A)→Mqc(X),

be the sheafification functor. This implies that

Γ(X,−) : D(Mqc(X))→ D(A)
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is an equivalence of triangulated categories, with quasi-inverse

Shf : D(A)→ D(Mqc(X)).

With X as above, we can consider the global sections functor

(17.2.3) Γ(X,−) : M(X)→M(A).

This functor is not exact (except in trivial cases). However, since the category
K(M(X)) = K(ModOX) has enough K-injectives (see Theorem ???), the functor
(17.2.3) has a right derived functor

(17.2.4) RΓ(X,−) : D(X)→ D(A).

In the theorem below we consider the restriction of this functor to various full
triangulated subcategories of D(X).

Theorem 17.2.5. Let X = Spec(A) be a finite dimensional affine noetherian
scheme. The functor

RΓ(X,−) : Dqc(X)→ D(A)
is an equivalence of triangulated categories. It induces equivalences

RΓ(X,−) : Dc(X)→ Df(A)

and
RΓ(X,−) : D?(X)→ D?(A)

for any boundedness condition ?.

Proof. Step 1. For any M ∈ D(A) there is a morphism

ηM : M → RΓ(X,Shf(M))

in D(A). As M changes, this is a morphism

η : Id→ RΓ(X,−) ◦ Shf

of triangulated functors from D(A) to itself. The functor Shf has cohomological
dimension 0. According to Theorem
comment: a new theorem, just after Thm 16.4.9
the functor (17.2.4) has finite cohomological dimension. By the “way-out yoga”
(see [RD, Section I.7] or Theorem ????)
comment: should add the relevant “way-out thm” to subsec 13.1
it suffices to prove that ηM is an isomorphism for M ∈ M(A). But then M :=
Shf(M) ∈ Mqc(X), so M has an injective resolution M → I in M(X), with I a
complex of quasi-coherent sheaves. So the morphisms

M → Γ(X,M)→ Γ(X, I)

are an isomorphism and a quasi-isomorphism respectively. We see that ηM is an
isomorphism, as required.

Step 2. For anyM∈ Dqc(X) there is a morphism

ζM : Shf(RΓ(X,M))→M

in Dqc(X). AsM changes, this is a morphism

ζ : Shf ◦RΓ(X,−)→ Id
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of triangulated functors from Dqc(X) to itself. By the “way-out yoga” it suffices to
prove that ζM is an isomorphism for

M∈M(X) ∩Dqc(X) = Mqc(X).
This is done, like in step 1, using the quasi-coherent injective resolution M → I.
We conclude that

RΓ(X,−) : Dqc(X)→ D(A)
is an equivalence. Because this functor has finite cohomological dimension, it pre-
serves any boundedness condition ?.
Step 3. It is immediate that the functor Shf sends Df(A) into Dc(X). To see that
RΓ(X,−) sends Dc(X) into Df(A) we use another “way-out yoga” trick.
comment: should add the relevant “way-out thm” to subsec 13.1
Since RΓ(X,−) has finite cohomological dimension, it is enough to prove that
RΓ(X,M) ∈ Df(A) for any

M∈M(X) ∩Dc(X) = Mc(X).
But for suchM we know that RΓ(X,M) ∼= Γ(X,M), and this is a finitely generated
A-module. �

Remark 17.2.6. The theorem above shows that if X is a finite dimensional affine
noetherian scheme, then the canonical functor

D(Mqc(X))→ Dqc(X)
is an equivalence. Presumably this is true even for schemes that are not affine; but
it might be false for infinite dimensional noetherian schemes.
comment: look for references! Neeman?

Note that the canonical functor
D+(Mqc(X))→ D+

qc(X)
is an equivalence for any noetherian scheme. This was proved in [RD, Corollary
II.7.19].

17.3. Dualizing Complexes on Schemes.

comment: now it is just a brief summary – need to write more later

Here is one of the more important definitions in [RD].

Definition 17.3.1. Let X be a noetherian scheme. A dualizing complex over X is
a complex R ∈ D(X) with these properties:

(a) R ∈ Db
c (X).

(b) R has finite injective dimension.
(c) R has the geometric derived Morita property: the homothethy morphism

OX → RHomOX (R,R)
in D(X) is an isomorphism.

Example 17.3.2. If X = Spec(A), then R ∈ D(X) is dualizing if and only if
R := RΓ(X,R) ∈ D(A) is dualizing. This comes from the combination of Theorems
16.4.18 and 17.2.5.
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Here are two theorems from [RD].

Theorem 17.3.3. Suppose R is a dualizing complex over the noetherian scheme
X, with associated duality functor D := RHomOX (−,R). Then for any complex
M∈ Dc(X) the following hold:

(1) The complex D(M) belongs to Dc(X).
(2) The morphism

θM :M→ D(D(M))
in D(X) is an isomorphism.

The proof is by restriction to an affine open set, and then using Theorem 13.2.15.
Then, like Corollary 13.2.16, we have:

Corollary 17.3.4. Let R be a dualizing complex over X. Then the functor

RHomOX (−,R) : Dc(X)op → Dc(X)

is an equivalence, reversing boundedness conditions.

The next theorem is the geometric version of Theorem 13.2.34.

Theorem 17.3.5. Let R and R′ be dualizing complexes over the noetherian scheme
X, and assume X is connected. Then there is an invertible sheaf L and an integer
n such that

R′ ∼= R⊗OX L[n]
in D(X).

Example 17.3.6. If X is a regular scheme, then R := OX is a dualizing complex.

Example 17.3.7. Suppose Y ⊆ X is a closed subscheme. If RX is a dualizing
complex over X, then

RY := RHomOX (OY ,RX)
is a dualizing complex over Y .

Example 17.3.8. Suppose K is a regular base ring. Any quasi-projective K-scheme
X has a dualizing complex. This is true by combining the previous two examples
(since Pn

K is a regular scheme).

In [RD], existence of dualizing complexes, and the functorial control over them,
is very indirect. Grothendieck uses global duality (for projective morphisms) and
local duality as tools for controlling the dualizing complexes, and has a back and
forth bootstrap operation. For us the job is much easier, due to the strong local
properties of rigid residue complexes.

17.4. Rigid Residue Complexes on Schemes. In this subsection we keep these
assumptions:

Setup 17.4.1. The base ring K is regular noetherian. By default all rings are flat
EFT K-rings, and all schemes are flat EFT K-schemes.

Recall the standing convention in this book: a regular noetherian ring is always
of finite Krull dimension (Convention 13.2.10).
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Definition 17.4.2. Let X be a flat EFT K-scheme, let KX be a bounded complex
of quasi-coherent OX -modules, and let U ⊆ X be a strictly EFT affine open set,
with ring of functions A := Γ(U,OX). Write

KA := Γ(U,KX) ∈ D(A).

A rigidifying isomorphism for KX on U relative to K is an isomorphism

ρU : KA
'−→ SqA/K(KA)

in D(A).

Let A → B be a localization homomorphism between EFT K-rings, and let
(KA, ρA) and (KB , ρB) be the rigid residue complexes over A/K and B/K respec-
tively. In Definition 15.2.8 we have the rigid localization homomorphism

(17.4.3) qB/A : KA → KB

in Cstr(A). It is a nondegenerate localization homomorphism, namely the induced
homomorphism

B ⊗A KA → KB
in Cstr(B) is an isomorphism. The homomorphism qB/A is uniquely characterized
by this property: when taking the rigidifying isomorphisms ρA and ρB into account,
the result

(17.4.4) qB/A : (KA, ρA)→ (KB , ρB)

is the unique nondegenerate rigid localization morphism over B/A/K mentioned in
Theorem 15.1.12.

Definition 17.4.5. Let X be a flat EFT K-scheme. A rigid residue complex over
X relative to K is a pair (KX ,ρX), consisting of:

(1) A bounded complex of quasi-coherent injective OX -modules KX .
(2) A collection ρX = {ρU} of rigidifying isomorphisms for KX , in the sense of

Definition 17.4.2, indexed by the strictly EFT affine open sets U ⊆ X.
The conditions are:

(a) For each strictly EFT affine open set U ⊆ X, using the notation of Defini-
tion 17.4.2, the pair (KA, ρU ) is a rigid residue complex over A/K.

(b) Suppose V is an affine open subset of U such that V → U is a localization;
so V is also a strictly EFT affine open set of X. Let B := Γ(V,OX), let
KB := Γ(V,KX), and let ρV be the given rigidifying isomorphism. The
inclusion of open sets V ⊆ U gives rise to a homomorphism

qV/U : KA = Γ(U,KX)→ Γ(V,KX) = KB

in Cstr(A). Then, after taking into account the rigidifying isomorphisms
ρU and ρV , the result

qV/U : (KA, ρU )→ (KB , ρV )

is the unique nondegenerate rigid localization morphism over B/A/K.

Proposition 17.4.6. Let (KX ,ρX) be a rigid residue complexes over X/K. Then
KX is a dualizing complex over X.
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Proof. Since KX is a bounded complex of injectives in M(X), it has finite injective
dimension. Clearly KX ∈ Db(X). Verifying that KX ∈ Dc(X) is a local matter.
For any strictly EFT affine open set U = Spec(A) ⊆ X we have

Hp(KX |U ) ∼= Shf(Hp(KA)).
Because Hp(KA) ∈ Mf(A), it follows that Hp(KX |U ) ∈ Mc(U). Therefore KX |U ∈
Dc(U).

As for the geometric derived Morita property: we have
RHomOX (KX ,KX) ∼= HomOX (KX ,KX) = EndOX (KX)

in D(X). The homothety morphism is now just the DG ring homomorphism
(17.4.7) OX → EndOX (KX).
For any strictly EFT affine open set U = Spec(A) ⊆ X, applying Γ(U,−) to (17.4.7)
gives the DG ring homomorphism
(17.4.8) A→ EndOU (KX |U ).
Since the KpX |U are quasi-coherent OU -modules, we have

HomOU (KpX |U ,K
q
X |U ) = HomA(KpA,K

q
A).

Thus (17.4.8) becomes
A→ EndA(KA),

which is known to be a quasi-isomorphism, because KA is a residue complex. We
conclude that (17.4.7) is a quasi-isomorphism on every strictly EFT affine open set;
and hence it is a quasi-isomorphism in Cstr(M(X)). �

Definition 17.4.9. Suppose (KX ,ρX) and (K′X ,ρ′X) are rigid residue complexes
over X/K. A morphism of rigid residue complexes

φ : (KX ,ρX)→ (K′X ,ρ′X)
is a homomorphism φ : KX → K′X in Cstr(Mqc(X)), such that for every strictly EFT
affine open set U = Spec(A) ⊆ X, writing KA := Γ(U,KX) and K′A := Γ(U,K′X),
the morphism

φ : (KA, ρU )→ (K′A, ρ′U )
is in D(A)res/K.

The resulting category is denoted by C(X)res/K.

Theorem 17.4.10. Let X be a flat EFT scheme over the regular noetherian ring
K. Then there exists a rigid residue complex (KX ,ρX) over X/K, and it is unique
up to a unique isomorphism in C(X)res/K.

We will require a lemma first. According to Proposition 17.1.4, any collection
{Ui}i∈I of affine open sets of X admits a biprincipal recovering.

Lemma 17.4.11. Let X be an EFT K-scheme, with a strictly EFT affine open
covering X =

⋃
i Ui as in Definition 17.1.13(2). Let {Wk}k∈K be a biprincipal

recovering of {Ui}i∈I . Then:
(1) For any k ∈ K(i0, i1), Wk is a strictly EFT affine open set, and the inclu-

sions Wk → Ui0 and Wk → Ui1 are principal localizations.
(2) For any k ∈ K(i0, i1) and k′ ∈ K(i1, i2), the double intersection Wk ∩Wk′

is a strictly EFT affine open set, and the inclusions Wk ∩Wk′ → Wk and
Wk ∩Wk′ →Wk′ are principal localizations.
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(3) For any k ∈ K(i0, i1), k′ ∈ K(i1, i2) and k′′ ∈ K(i0, i2), the triple intersec-
tion Wk ∩Wk′ ∩Wk′′ is a strictly EFT affine open set, and its inclusions
into the three double intersections are principal localizations.

Proof. (1) By property (ii) in Definition 17.1.3, Wk is a principal localization of Ui0
and Ui1 . An affine scheme that’s a localization of a strictly EFT affine K-scheme
is also strictly EFT.
(2) Since Wk and Wk′ are both principal localizations of Ui1 , Lemma 17.1.2(2) says
that Wk ∩Wk′ is also a principal localization of Ui1 . Thus Wk ∩Wk′ is a strictly
EFT affine K-scheme. By Lemma 17.1.2(1) it follows that Wk ∩Wk′ is a principal
localization of Wk and Wk′ .
(3) SinceWk∩Wk′ andWk′′ are principal localizations of Ui0 , it follows, by Lemma
17.1.2(2), that W := Wk ∩Wk′ ∩Wk′′ is also a principal localization of Ui0 . Hence
W is a strictly EFT affine K-scheme. By Lemma 17.1.2(1) it follows that W is a
principal localization ofWk∩Wk′ and ofWk∩Wk′′ . A similar argument (permuting
i0 and i1) shows that W is a principal localization of Wk′ ∩Wk′′ . �

Proof of Theorem 17.4.10. Choose a strictly EFT affine open coveringX =
⋃
i∈I Ui,

with Ui = Spec(Ai). Then choose a biprincipal recovering {Wk}k∈K of {Ui}i∈I .
According to Theorem 15.2.3, for every i there exists a rigid residue complex

(KAi , ρAi) over Ai/K. Let KUi be the sheafification of KAi on Ui; so this is a
bounded complex of quasi-coherent injective OUi-modules.

Fix a pair of indices i, j ∈ I. We have the affine open covering

Ui ∩ Uj =
⋃

k∈K(i,j)

Wk.

For any k ∈ K(i, j) let’s write Bk := Γ(Wk,OX). By Lemma 17.4.11 the ring Bk
is EFT over K, so there is a rigid residue complex (KBk , ρBk). Since Ai → Bk
is a localization homomorphism, there is a unique nondegenerate rigid localization
morphism

qBk/Ai : (KAi , ρAi)→ (KBk , ρBk).
It induces an isomorphism

(17.4.12) Γ(Wk,KUi) ∼= Bk ⊗Ai KAi
'−→ KBk

in Cstr(Bk). Likewise, there is an isomorphism

(17.4.13) Γ(Wk,KUj ) ∼= Bk ⊗Aj KAi
'−→ KBk

in Cstr(Bk). Composing (17.4.12) with the inverse of (17.4.13) we obtain the iso-
morphism

(17.4.14) φi,j;k : Γ(Wk,KUi)
'−→ Γ(Wk,KUj )

in Cstr(Bk). Since Wk is affine, this gives rise to an isomorphism

(17.4.15) φi,j;k : KUi |Wk

'−→ KUj |Wk

in Cstr(Mqc(Wk)). Let us elaborate on this a bit. The isomorphism in (17.4.15)
amounts to an isomorphism

φpi,j;k : KpUi |Wk

'−→ KpUj |Wk

in Mqc(Wk) in each degree p. And these isomorphisms commute with the differen-
tials.
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Now take a second index k′ ∈ K(i, j). We have a ring Bk′ := Γ(Wk′ ,OX), a rigid
residue complex (KBk , ρBk), and an isomorphism φi,j;k′ . On the double intersection
Wk ∩Wk′ we also have a ring

Bk,k′ := Γ(Wk ∩Wk′ ,OX)

and a rigid residue complex (KBk,k′ , ρBk,k′ ). The ring homomorphisms Bk → Bk,k′

and Bk′ → Bk,k′ are localizations. Similar considerations as above tell us that

φi,j;k|Wk∩Wk′ = φi,j;k′ |Wk∩Wk′ ,

as isomorphisms
KUi |Wk∩Wk′

'−→ KUj |Wk∩Wk′

in Cstr(Mqc(Wk ∩Wk′)).
The conclusion is that the collection of isomorphisms {φi,j;k}k∈K(i,j) be inte-

grated to an isomorphism

φi,j : KUi |Ui∩Uj
'−→ KUj |Ui∩Uj

in Cstr(Mqc(Ui ∩ Uj)).
Now we look at triples of indices i0, i1, i2 ∈ I. Repeating the considerations

above, and using Lemma 17.4.11(3), we see that

φi1,i2 |Ui0∩Ui1∩Ui2 ◦ φi0,i1 |Ui0∩Ui1∩Ui2 = φi0,i2 |Ui0∩Ui1∩Ui2 .

So the collection of isomorphisms {φi,j}i,j∈I agrees on triple intersections.
In each degree p we have an isomorphism of quasi-coherent sheaves

φpi,j : KpUi |Ui∩Uj
'−→ KpUj |Ui∩Uj

on every double intersection Ui∩Uj . Because collection of isomorphisms {φpi,j}i,j∈I
agrees on triple intersections, it follows that the collection of quasi-coherent sheaves
{KpUi}i∈I can be glued to a quasi-coherent sheaf KpX on X. Since the isomorphisms
φpi,j commute with the differentials d : KpUi → K

p+1
Ui

, we can glue the differentials,
to obtain a complex KX ∈ C(Mqc(X)).

We need to show that KX is a rigid residue complex. According to Theorem
17.2.1, each quasi-coherent sheaf KpX is injective in M(X). So KX is a bounded
complex of quasi-coherent injective OX -modules.

Since we could have chosen {Ui}i∈I to be all the strictly EFT affine open sets
of X, the complex KX would be equipped with a rigid structure ρX , satisfying
condition (b) of Definition 17.4.5. This establishes existence of a rigid residue
complex.

Because the choices (KAi , ρAi) are unique up to unique rigid isomorphisms, the
gluing process above also proves that (KX ,ρX) is unique up to a unique isomor-
phism in C(X)res/K. �

We end this subsection with two remarks.

Remark 17.4.16. The flatness assumption we made is not really necessary. As
already mentioned in ????, there is a theory of squaring and rigidity without a
flatness assumption. Working with this theory allows us to define rigid residue
complexs on any EFT K-scheme, and to prove Theorem 17.4.10. The base ring K
still has to be regular.
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However, the non-flat theory is much more complicated (it relies on noncommu-
tative DG ring resolutions – see [Ye11]), and we decided not to include it in this
book. It will appear in the upcoming papers [Ye13] and [Ye14].

Remark 17.4.17. As mentioned in ???, the localization functoriality of rigid
residue complexes extands to essentially étale homomorphisms A→ B in Sch /eftK.
This extension is pretty difficult to establish. Using the essentially étale functori-
ality we can define rigid residue complexes on Deligne-Mumford stacks of finite
type over K, and prove a version of Theorem 17.4.10 for them. These results are
expected to appear in the paper [Ye15]; for an outline, see the lecture notes [Ye12].
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17.5. The Residue Theorem [later].

17.6. Grothendieck Duality for Proper Maps [later].

comment: a remark on Applications to Birational Geometry

comment: a remark on Perverse Coherent Sheaves on Schemes
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18. Derived Categories in Noncommutative Algebra [later]

18.1. Noncommutative Dualizing Complexes [later].

comment:
* A flat over K.
* Mention derived category of bimodules to handle non-flat case.
* Mention Van den Bergh Existence Theorem for rigid dualizing complexes.

18.2. Noncommutative Tilting Complexes [later].

comment:
* talk about Perfect Complexes
* Derived Picard Group
* DPic classifies dualizing complexes

18.3. Derived Morita Theory [later].

comment: do two cases:
(1) D(A) ≈ D(B) for rings (Rickard)
(2) D(A) ≈ Dqc(X) for a scheme X f.t. separated over a field K and a compact
generator.

comment: remark: MGM Equivalence for Adic Commutative Rings
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