Activities This Week
AGNT
Tensor categories in positive characteristic
Dec 19, 15:10—16:25, 2018, -101
Speaker
Kevin Coulembier (University of Sydney)
Abstract
Tensor categories are abelian k-linear monoidal categories modeled on the representation categories of affine (super)group schemes over k. Deligne gave very succinct intrinsic criteria for a tensor category to be equivalent to such a representation category, over fields k of characteristic zero. These descriptions are known to fail badly in prime characteristics. In this talk, I will present analogues in prime characteristic of these intrinsic criteria. Time permitting, I will comment on the link with a recent conjecture of V. Ostrik which aims to extend Deligne’s work in a different direction.
BGU Probability and Ergodic Theory (PET) seminar
A Natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab’s function
Dec 20, 11:00—12:00, 2018, -101
Speaker
Ross Pinsky (Technion)
Abstract
Let $\{p_j\}_{j=1}^\infty$ denote the set of prime numbers in increasing order, let $\Omega_N\subset \mathbb{N}$ denote the set of positive integers with no prime factor larger than $p_N$ and let $P_N$ denote the probability measure on $\Omega_N$ which gives to each $n\in\Omega_N$ a probability proportional to $\frac{1}{n}$. This measure is in fact the distribution of the random integer $I_N\in\Omega_N$ defined by $I_N=\prod_{j=1}^Np_j^{X_{p_j}}$, where $\{X_{p_j}\}_{j=1}^\infty$ are independent random variables and $X_{p_j}$ is distributed as Geom$(1-\frac{1}{p_j})$. We show that $\frac{\log n}{\log N}$ under $P_N$ converges weakly to the Dickman distribution. As a corollary, we recover a classical result from classical multiplicative number theory—Mertens’ formula, which states that $\sum_{n\in\Omega_N}\frac{1}{n}\sim e^\gamma\log N$ as $N\to\infty$.
Let $D_{\text{nat}}(A)$ denote the natural density of $A\subset\mathbb{N}$, if it exists, and let $D_{\text{log-indep}}(A)=\lim_{N\to\infty}P_N(A\cap\Omega_N)$ denote the density of $A$ arising from $\{P_N\}_{N=1}^\infty$, if it exists. We show that the two densities coincide on a natural algebra of subsets of $\mathbb{N}$. We also show that they do not agree on the sets of $n^\frac{1}{s}$- smooth numbers $\{n\in\mathbb{N}: p^+(n)\le n^\frac{1}{s}\}$, $s>1$, where $p^+(n)$ is the largest prime divisor of $n$. This last consideration concerns distributions involving the Dickman function. We also consider the sets of $n^\frac{1}{s}$- rough numbers ${n\in\mathbb{N}:p^-(n)\ge n^{\frac{1}{s}}}$, $s>1$, where $p^-(n)$ is the smallest prime divisor of $n$. We show that the probabilities of these sets, under the uniform distribution on $[N]={1,\ldots, N}$ and under the $P_N$-distribution on $\Omega_N$, have the same asymptotic decay profile as functions of $s$, although their rates are necessarily different. This profile involves the Buchstab function. We also prove a new representation for the Buchstab function.
Lie Superalgebra Day
Dec 25, 2018, room -101
Official Website (containing the full program) and Poster
Combinatorics Seminar
Piercing Edges with Subsets in Geometric Hypergraphs
Dec 25, 10:45—11:45, 2018, -101
Speaker
Bruno Jartoux (BGU)
Colloquium
Borel-Weil-Bott theorem for algebraic supergroups and weak BGG reciprocity
Dec 25, 14:30—15:30, 2018, Math -101
Speaker
Vera Serganova (University of California, Berkeley)
Abstract
We will review some results about superanalogue of Borel-Weil-Bott theorem, explain the role of Weyl groupoid and prove a weak version of BGG reciprocity. Then we illustrate how BGG reciprocity can be used for computing the Cartan matrix of the category of finite dimensional representations of the nontivial central extension of the periplectic supergroup P(4).
אשנב\צוהר למתמטיקה
הזמנה לתורת ההצגות עדכון: ההרצאה נדחתה
Dec 25, 18:15—19:45, 2018, אולם 101-
Speaker
אינה אנטובה
Abstract
בהרצאה נדבר על הצגות של חבורות (ולא רק חבורות). תורת ההצגות היא המשך טבעי למושג “פעולה של חבורה על קבוצה”, והוא בא לבטא את הקשר בין חבורות לבין סימטריות של אובייקטים שונים.