Activities This Week
Algebraic Geometry and Number Theory
A variant of Harish-Chandra functors for profinite groups
Nov 23, 15:10—16:30, 2016, Math -101
Speaker
Uri Onn (BGU)
Geometry and Group Theory
C*-simple groups and URS (continuation)
Nov 27, 14:30—15:30, 2016, -101
Speaker
Yair Glasner (BGU)
Logic, Set Theory and Topology
Around the Small Index Property on quasiminimal classes
Nov 29, 12:30—13:45, 2016, Math -101
Speaker
Andrés Villaveces (Universidad Nacional, Bogotá)
Abstract
In the study of the connection between automorphism groups of models and the models themselves (or their theories, or their bi-interpretability class), the Small Index Property (SIP) has played a central role. The work of Hodges, Lascar, Shelah and Rubin among others has established in many cases when a model of a first order theory T has the Small Index Property.
With Ghadernezhad, we have studied this property for more general homogeneous classes. We have isolated properties of closure notions that allow to prove the SIP for some non-elementary cases, including Zilber’s pseudo-exponentiation and other examples.
I will present a panorama of these results, including our more recent generalizations of the Lascar-Shelah proof of SIP for uncountable structures. This last part is joint work with Zaniar Ghadernezhad.
Colloquium
Random Matrices, Graphs on Surfaces and Mapping Class Group
Nov 29, 14:30—15:30, 2016, Math -101
Speaker
Doron Puder (Tel Aviv University)
Abstract
This is joint work with Michael Magee. Since the 1970’s, Physicists and Mathematicians who study random matrices in the standard models of GUE or GOE, are aware of intriguing connections between integrals of such random matrices and the enumeration of graphs on surfaces. We establish a new aspect of this theory: for random matrices sampled from the group U(n) of Unitary matrices. The group structure of these matrices allows us to go further and find surprising algebraic quantities hidden in the values of these integrals. The talk will be aimed at graduate students, and all notions will be explained.
Operator Algebras
Strict comparison and crossed products by amenable groups (continued)
Nov 29, 16:00—17:00, 2016, Math -101
Speaker
Joav Orovitz (BGU)
Abstract
In this talk I will describe joint work with Chris Phillips and Qingyun Wang. The weak tracial Rokhlin property for actions of discrete amenable groups on simple unital C-algebras is defined by Qingyun Wang [https://arxiv.org/abs/1410.8170]. We show that the class of simple separable unital exact C-algebras with strict comparison and almost divisible Cuntz semigroup is closed under taking crossed products by such actions. We use this to show that the class of simple separable unital nuclear $\mathcal{Z}$-stable C*-algebras is also preserved.
Examples include the non-commutative Bernoulli shift of any discrete amenable group $\Gamma$ on $\bigotimes_{\Gamma} \mathcal{Z} \cong \mathcal{Z}$ and others.
אשנב למתמטיקה
איך נראים קרובי המשפחה של החציון?
Nov 29, 18:30—20:00, 2016, אולם 101-
Speaker
שחר סמורודינסקי
Abstract
כולנו מכירים (ואם לא ,אז רוב הסיכויים שאנחנו יכולים להגדיר לבד) את המושג חציון של קבוצה סופית של מספרים ממשיים. האם יש הכללה מעניינת של מושג החציון במרחבים אויקלידיים ממימד גבוה יותר מאחד?
כולנו יכולים וודאי להראות שאם באוסף סופי כלשהו של אינטרוולים כל שניים בעלי חיתוך לא ריק אז לכל האוסף חיתוך לא ריק. הנה הכללה של העובדה הזו (המשפט הקלאסי של HELLY מתחילת המאה ה-20):
אם אוסף סופי $F$ של קבוצות קמורות במימד $d$ מקיים שכל ${d+1}$ קבוצות ממנו בעלות חיתוך לא ריק אז לכל האוסף חיתוך לא ריק.
מה הקשר בין המשפט הנ”ל למושג החציון וקרובי משפחתו? על כל זאת ועוד בהרצאה.