Department of Mathematics, BGU

Operator Algebras and Operator Theory

On Monday, March ,4 2024

At 14:00 – 15:00

In 201

Jeet Sampat (Technion)

will talk about

Biholomorphisms between subvarieties of noncommutative operator balls

Abstract: Given a *d*-dimensional $d < \infty$ (operator space \mathcal{E} with basis $\{Q_1, \dots, Q_d\}$, consider the corresponding noncommutative (nc) operator ball $\mathbb{D}_Q := \{X \in \mathbb{M}^d : \|\sum_j Q_j \otimes X_j\| < 1\}$. In this talk, we discuss the problem of extending certain biholomorphic maps between subvarieties \mathfrak{V}_1 and \mathfrak{V}_2 of nc operator balls $\mathbb{D}_{Q^{(1)}}$ and $\mathbb{D}_{Q^{(2)}}$.

For trivial reasons, such an extension cannot exist in general, and we discuss several examples to showcase the obstructions. When the operator spaces $\mathcal{E}^{(1)}$ and $\mathcal{E}^{(2)}$ are both injective, and the subvarieties \mathfrak{V}_1 and \mathfrak{V}_2 are both homogeneous, we show that a biholomorphism between \mathfrak{V}_1 and \mathfrak{V}_2 can be extended to a biholomorphism between $\mathbb{D}_{Q^{(1)}}$ and $\mathbb{D}_{Q^{(2)}}$. Moreover, we show that fi such an extension exists then there exists a linear isomorphism between $\mathbb{D}_{Q^{(1)}}$ and $\mathbb{D}_{Q^{(2)}}$ that sends \mathfrak{V}_1 to \mathfrak{V}_2 .