Department of Mathematics, BGU

BGU Probability and Ergodic Theory (PET) seminar

On Thursday, December, 20 2018

At 11:00 - 12:00

In 101-

Ross Pinsky (Technion)

will talk about

A Natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab's function

Abstract: Let $\{p_j\}_{j=1}^\infty$ denote the set of prime numbers in increasing order, let $\Omega_N\subset\mathbb{N}$ denote the set of positive integers with no prime factor larger than p_N and let P_N denote the probability measure on Ω_N which gives to each $n\in\Omega_N$ a probability proportional to $\frac{1}{n}$. This measure is in fact the distribution of the random integer $I_N\in\Omega_N$ defined by $I_N=\prod_{j=1}^N p_j^{X_{p_j}}$, where $\{X_{p_j}\}_{j=1}^\infty$ are independent random variables and X_{p_j} is distributed as $\mathrm{Geom}(1-\frac{1}{p_j})$. We show that $\frac{\log n}{\log N}$ under P_N converges weakly to the $\mathrm{Dickman\ distribution}$. As a corollary, we recover a classical result from classical multiplicative number theory—Mertens' formula, which states that $\sum_{n\in\Omega_N}\frac{1}{n}\sim e^\gamma\log N$ as $N\to\infty$.

Let $D_{\text{log-indep}}(A)$ denote the natural density of $A \subset \mathbb{N}$, fi it exists, and let $D_{\text{log-indep}}(A) = \lim_{N \to \infty} P_N(A \cap \Omega_N)$ denote the density of A arising from $P_N = 1$, fi it exists. We show that the two densities coincide on a natural algebra of subsets of n where n where n is the largest prime divisor of n where n is the largest prime divisor of n has a consideration concerns distributions involving the n mumbers n not sets of n has a consideration concerns distributions involving the n mumbers n not sets of n has a consideration concerns distributions involving the n numbers n not sets of n has a consideration concerns distributions involving the n numbers n not sets of n has a consideration concerns distributions involving the n numbers n not sets of n no