Prof. Arkady Leiderman

Fundamentals of Analysis for EE Homework 4

Question 1. Let *X* be any non-empty set and \mathcal{F} be an σ – algebra of its subsets.

Prove that a function $f(x): X \to \mathbb{R}$ is measurable if and only if $f^{-1}(-\infty, q) \in \mathcal{F}$ for every rational number $q \in Q$.

<u>Question 2</u>. Let X be any non-empty set and \mathcal{F} be an σ -algebra of its subsets.

Assume that 2 functions $f(x): X \to \mathbb{R}$ and $g(x): X \to \mathbb{R}$ are measurable. Let $\varphi(x): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a continuous function of two real variables. Prove that the function $h(x) = \varphi(f(x), g(x)): X \to \mathbb{R}$ is measurable.

<u>Question 3</u>. Let $f(x) \colon \mathbb{R} \to \mathbb{R}$ be a monotone real function. Prove that f(x) is a Borel measurable function, i.e. $f^{-1}(U)$ is a Borel set for every Borel set $U \subseteq \mathbb{R}$.

<u>Question 4</u>. Let *X* be any non-empty set and \mathcal{F} be an σ -algebra of its subsets.

Assume that $f_n(x): X \to \mathbb{R}$ is a measurable function for every natural n. Denote by A the set of those $x \in X$ such that there exists a finite limit $\lim_{n \to \infty} f_n(x)$. Prove that A is a measurable set, i.e. $A \in \mathcal{F}$.

Question 5. Let $f(x):[a,b] \to \mathbb{R}$ be a Lebesgue measurable function. Assume that $\int_{[a,c]} f(x) d\mu = 0 \text{ for every } c \in [a,b]. \text{ Prove that } f(x) \sim 0 \text{, i.e.}$ if $A = \{x \in X : f(x) \neq 0\}$, then $\mu(A) = 0$.

<u>Question 6</u>. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set and $\mu(E) < \infty$. Assume that $f(x): E \to \mathbb{R}$ is a measurable function. Prove that there exists a measurable function $\varphi(x): E \to \mathbb{R}$ such that $\varphi(x) > 0$ for each $x \in E$ and $\int_{-\infty}^{\infty} \varphi(x) f(x) d\mu < \infty$.

<u>Question 7</u>. Let $f_n(x):[a,b] \to \mathbb{R}$ be a Lebesgue measurable function for every natural *n*. Assume that $\lim_{n \to \infty} f_n(x) = f(x)$ almost for all $x \in [a,b]$.

(a) Prove that $\lim_{n \to \infty} \int_{[a,b]} \cos(f_n(x)) d\mu = \int_{[a,b]} \cos(f(x)) d\mu.$ (b) Does it hold necessarily that $\lim_{n \to \infty} \int_{[a,b]} f_n(x) d\mu = \int_{[a,b]} f(x) d\mu?$ **<u>Question 8</u>**. Let $C \subset [0,1]$ denote the standard ternary Cantor set.

Define the following function $f(x):[0,1] \to \mathbb{R}$: if $x \in C$, then f(x) = x; and for every $x \notin C$, if x belongs to a removed interval of the length $\frac{1}{3^n}$, then $f(x) = \frac{1}{2^n}$.

(For instance, $f|_{\left(\frac{1}{3},\frac{2}{3}\right)} = \frac{1}{2}$, $f|_{\left(\frac{1}{9},\frac{2}{9}\right) \cup \left(\frac{7}{9},\frac{8}{9}\right)} = \frac{1}{4}$). (a) Find the value of $\int_{[0,1]} f(x) d\mu$ in the sense of Lebesgue.

(b) Is f(x) a Riemann integrable function? If yes what is $\int_{0}^{1} f(x) dx$?

<u>Question 9</u>. Let μ denote the Lebesgue measure in the real line \mathbb{R} and $1 \le p < \infty$ is a number. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $0 < \mu(E) < \infty$. Denote by $L_p(E)$ the linear space of measurable functions $f(x): E \to \mathbb{R}$ such that $\int_{E} |f(x)|^p d\mu < \infty$.

(Recall that we identify two functions f(x) and g(x) if $E(f \neq g)$ is a null-set).

Prove that $L_p(E)$ is a normed space with the norm $||f||_p = \left[\int_E |f(x)|^p d\mu\right]^{\frac{1}{p}}$.

<u>Question 10</u>. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $0 < \mu(E) < \infty$.

(a) Prove that if $f(x) \in L_2(E)$, then also $f(x) \in L_1(E)$.

(b) Is it true that if $[f(x)]^2$ is a bounded Lebesgue integrable function, then always f(x) is also a Lebesgue integrable function?