Prof. Arkady Leiderman

Fundamentals of Analysis for EE

Homework 4

Question 1. Let \boldsymbol{X} be any non-empty set and \mathcal{F} be an σ-algebra of its subsets.
Prove that a function $\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{X} \rightarrow \mathbb{R}$ is measurable if and only if $\boldsymbol{f}^{-1}(-\infty, \boldsymbol{q}) \in \mathcal{F}$ for every rational number $\boldsymbol{q} \in \boldsymbol{Q}$.

Question 2. Let \boldsymbol{X} be any non-empty set and \mathcal{F} be an $\sigma-$ algebra of its subsets.
Assume that 2 functions $\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{X} \rightarrow \mathbb{R}$ and $\boldsymbol{g}(\boldsymbol{x}): \boldsymbol{X} \rightarrow \mathbb{R}$ are measurable.
Let $\boldsymbol{\varphi}(\boldsymbol{x}): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function of two real variables.
Prove that the function $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{\varphi}(\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})): \boldsymbol{X} \rightarrow \mathbb{R}$ is measurable.
Question 3. Let $\boldsymbol{f}(\boldsymbol{x}): \mathbb{R} \rightarrow \mathbb{R}$ be a monotone real function. Prove that $\boldsymbol{f}(\boldsymbol{x})$ is a Borel measurable function, i.e. $\boldsymbol{f}^{-1}(\boldsymbol{U})$ is a Borel set for every Borel set $\boldsymbol{U} \subseteq \mathbb{R}$.

Question 4. Let \boldsymbol{X} be any non-empty set and \mathcal{F} be an $\sigma-$ algebra of its subsets.
Assume that $\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{x}): \boldsymbol{X} \rightarrow \mathbb{R}$ is a measurable function for every natural \boldsymbol{n}.
Denote by \boldsymbol{A} the set of those $\boldsymbol{x} \in X$ such that there exists a finite limit $\lim _{n \rightarrow \infty} f_{n}(x)$.
Prove that \boldsymbol{A} is a measurable set, i.e. $\boldsymbol{A} \in \mathcal{F}$.
Question 5. Let $\boldsymbol{f}(\boldsymbol{x}):[\boldsymbol{a}, \boldsymbol{b}] \rightarrow \mathbb{R}$ be a Lebesgue measurable function. Assume that
$\int_{[a, c]} f(x) d \mu=\mathbf{0}$ for every $\boldsymbol{c} \in[a, b]$. Prove that $f(x) \sim \mathbf{0}$, i.e.
if $\boldsymbol{A}=\{\boldsymbol{x} \in X: f(x) \neq 0\}$, then $\boldsymbol{\mu}(\boldsymbol{A})=\mathbf{0}$.
Question 6. Let $\boldsymbol{E} \subset \mathbb{R}$ be a Lebesgue measurable set and $\boldsymbol{\mu}(\boldsymbol{E})<\infty$. Assume that $\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{E} \rightarrow \mathbb{R}$ is a measurable function. Prove that there exists a measurable function $\varphi(x): E \rightarrow \mathbb{R}$ such that $\varphi(x)>0$ for each $x \in E$ and $\int_{E} \varphi(x) f(x) d \mu<\infty$.
Question 7. Let $f_{n}(\boldsymbol{x}):[a, b] \rightarrow \mathbb{R}$ be a Lebesgue measurable function for every natural n. Assume that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ almost for all $x \in[a, b]$.
(a) Prove that $\lim _{n \rightarrow \infty} \int_{[a, b]} \cos \left(f_{n}(x)\right) d \boldsymbol{\mu}=\int_{[a, b]} \cos (f(x)) d \boldsymbol{\mu}$.
(b) Does it hold necessarily that $\lim _{n \rightarrow \infty} \int_{[a, b]} f_{n}(x) d \mu=\int_{[a, b]} f(x) d \mu$?

Question 8. Let $\boldsymbol{C} \subset[\mathbf{0 , 1}]$ denote the standard ternary Cantor set.
Define the following function $f(\boldsymbol{x}):[\mathbf{0}, \mathbf{1}] \rightarrow \mathbb{R}:$ if $\boldsymbol{x} \in \boldsymbol{C}$, then $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$; and for every $\boldsymbol{x} \notin C$, if x belongs to a removed interval of the length $\frac{\mathbf{1}}{3^{n}}$, then $f(x)=\frac{\mathbf{1}}{\mathbf{2}^{n}}$. (For instance, $\left.f\right|_{\left(\frac{1}{3}, \frac{2}{3}\right)}=\frac{1}{2},\left.f\right|_{\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right)}=\frac{1}{4}$).
(a) Find the value of $\int_{[0,1]} f(x) d \boldsymbol{\mu}$ in the sense of Lebesgue.
(b) Is $f(x)$ a Riemann integrable function? If yes what is $\int_{0}^{1} f(x) d x$?

Question 9. Let $\boldsymbol{\mu}$ denote the Lebesgue measure in the real line \mathbb{R} and $\mathbf{1 \leq p}<\infty$ is a number. Let $\boldsymbol{E} \subset \mathbb{R}$ be a Lebesgue measurable set with $\mathbf{0}<\boldsymbol{\mu}(\boldsymbol{E})<\infty$. Denote by $\boldsymbol{L}_{\boldsymbol{p}}(\boldsymbol{E})$ the linear space of measurable functions $\boldsymbol{f}(\boldsymbol{x}): \boldsymbol{E} \rightarrow \mathbb{R}$ such that $\int_{\boldsymbol{E}}|\boldsymbol{f}(\boldsymbol{x})|^{p} \boldsymbol{d} \boldsymbol{\mu}<\infty$. (Recall that we identify two functions $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ if $\boldsymbol{E}(\boldsymbol{f} \neq \boldsymbol{g})$ is a null-set).
Prove that $L_{p}(\boldsymbol{E})$ is a normed space with the norm $\|f\|_{p}=\left[\int_{E}|f(\boldsymbol{x})|^{p} d \boldsymbol{\mu}\right]^{\frac{1}{p}}$.
Question 10. Let $\boldsymbol{E} \subset \mathbb{R}$ be a Lebesgue measurable set with $\mathbf{0}<\boldsymbol{\mu}(\boldsymbol{E})<\infty$.
(a) Prove that if $\boldsymbol{f}(\boldsymbol{x}) \in \boldsymbol{L}_{\mathbf{2}}(\boldsymbol{E})$, then also $\boldsymbol{f}(\boldsymbol{x}) \in \boldsymbol{L}_{\mathbf{1}}(\boldsymbol{E})$.
(b) Is it true that if $[\boldsymbol{f}(\boldsymbol{x})]^{2}$ is a bounded Lebesgue integrable function, then always $\boldsymbol{f}(\boldsymbol{x})$ is also a Lebesgue integrable function?

