Fundamentals of Analysis for EE

Homework 3

<u>Question 1</u>. Let X be any non-empty set and $\{\mathcal{B}_{\alpha}: \alpha \in A\}$ is a family of σ -algebras

of subsets of X. Prove that the intersection $\bigcap \{ \mathcal{B}_{\alpha} : \alpha \in A \}$ is also a σ -algebra.

<u>**Question 2**</u>. Denote by $\mathcal{B}(\mathbb{R})$ the σ -algebra of Borel sets of the real line \mathbb{R} .

If \mathcal{K} is any family of subsets of \mathbb{R} , then $\sigma(\mathcal{K})$ denotes the minimal (with respect to inclusion)

 σ – algebra, which contains \mathcal{K} . Prove that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{K}_1) = \sigma(\mathcal{K}_2) = \sigma(\mathcal{K}_3)$, where

 \mathcal{K}_1 - collection of all open intervals (a, b) in \mathbb{R} ;

 \mathcal{K}_2 - collection of all closed intervals [a,b] in \mathbb{R} ;

 \mathcal{K}_{3} - collection of all half-open half-closed intervals [a,b) in \mathbb{R} .

<u>Question 3</u>. Let X be any set with the cardinality bigger than \aleph_0 . Define a family \mathcal{F} of subsets of $X : \mathcal{F} = \{A \subset X : |A| \le \aleph_0 \text{ or } |X \setminus A| \le \aleph_0\}$ and

define $\mu(A) = \begin{cases} 1 & \text{if } |X \setminus A| \leq \aleph_0 \\ 0 & \text{if } |A| \leq \aleph_0 \end{cases}$. Prove that (X, \mathcal{F}, μ) is a measure space.

<u>**Question 4**</u>. Give an example of a set $X \neq \emptyset$ such that μ defined by the following rule: for any subset $A \subseteq X$, $\mu(A) = \begin{cases} \infty & \text{if } |A| \ge \aleph_0 \\ 0 & \text{if } |A| < \aleph_0 \end{cases}$, is not a measure.

<u>Question 5</u>. Let X be any non-empty set. Fix a point $p \in X$. Define μ on the σ -algebra of all subsets $\mathcal{P}(X)$ by the following rule: if $p \in A$ then $\mu(A) = 1$; if $p \notin A$ then $\mu(A) = 0$.

Prove that $(X, \mathcal{P}(X), \mu)$ is a measure space. (Such μ is called an atomic measure).

<u>**Question 6**</u>. Let (X, \mathcal{B}, μ) be any measure space. Assume that $A_i \in \mathcal{B}$ for every i = 1, 2, 3, ...

(a) Prove that if $A_1 \subseteq A_2 \subseteq A_3 \subseteq ... \subseteq A_n \subseteq ...$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$.

(b) Prove that if $A_1 \supseteq A_2 \supseteq A_3 \supseteq ... \supseteq A_n \supseteq ...$, and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$. Does the claim (b) hold without an assumption that $\mu(A_1) < \infty$? **Question 7**. Let μ denotes the Lebesgue measure in the real line \mathbb{R} .

(a) Give an example of a set $A \subset \mathbb{R}$ such that A is not bounded and $\mu(A) = 1$;

(b) Give an example of a compact set $A \subset \mathbb{R}$ such that $|A| = 2^{\kappa_0}$ and $\mu(A) = 0$;

(c) Give an example of a compact set $A \subset \mathbb{R}$ such that $|A| = 2^{\kappa_0}$, the set A does not contain any interval but $\mu(A) > 0$.

<u>Question 8</u>. Let μ denotes the Lebesgue measure in the real line \mathbb{R} .

Prove that the following properties are equivalent

(a) $A \subset \mathbb{R}$ is a Lebesgue measurable set;

(b) For every $\varepsilon > 0$ there exists an open set $A \subset U$ such that $\mu(U \setminus A) < \varepsilon$;

(c) For every $\varepsilon > 0$ there exists a closed set $F \subset A$ such that $\mu(A \setminus F) < \varepsilon$.

Question 9. Let μ denotes the Lebesgue measure in the real line \mathbb{R} . Remind that a set A is called G_{δ} if $A = \bigcap \{U_n : n \in \mathbb{N}\}$, where each set U_n is open, and a set A is called F_{σ} if $A = \bigcup \{F_n : n \in \mathbb{N}\}$, where each set F_n is closed. Prove that the following properties are equivalent (a) $A \subset \mathbb{R}$ is a Lebesgue measurable set; (b) $A = G \setminus M$, where a set G is G_{δ} and $\mu(M) = 0$; (c) $A = F \cup M$, where a set F is F_{σ} and $\mu(M) = 0$.

<u>Question 10</u>. Let μ denotes the Lebesgue measure in the real line \mathbb{R} and $A \subset \mathbb{R}$ is a Lebesgue measurable set. Denote by $A + x = \{a + x : a \in A\} \subset \mathbb{R}$. Prove that the set A + x is also Lebesgue measurable and $\mu(A) = \mu(A + x)$ for every $x \in \mathbb{R}$, which means that the Lebesgue measure in the real line \mathbb{R} is translation-invariant.