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We show that every irreducible representation in the discrete automorphic spectrum of

GLn(A) admits a nonvanishing mixed (Whittaker-symplectic) period integral. The analog

local problem is a study of models first considered by Klyachko over a finite field. Locally,

we show that for a p-adic field F every irreducible, unitary representation of GLn(F) has

a Klyachko model.

1 Introduction

Fundamental to the theory of automorphic forms on GLn is the fact that a cuspidal au-

tomorphic representation admits a global Whittaker functional. Other period integrals

were considered for certain representations in the residual spectrum. The study of global

symplectic period integrals for GLn was initiated by Jacquet and Rallis in [8]. They were
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further studied in [14]. In [13], the first named author characterized all irreducible rep-

resentations in the discrete automorphic spectrum that admit a symplectic period. The

main global result of the present work provides a nonzero period integral for any irre-

ducible representation in the discrete spectrum. Namely, following [4], we consider a

certain finite list of Whittaker-symplectic period integrals and show that every discrete

spectrum representation of GLn admits one of them.

The mixed period integrals are factorizable (see Corollary 2.5) and our global

results have local analogs. The local results of this work continue the study of symplectic

models considered in [5, 15]. In [9], Klyachko introduced certain mixed (Whittaker-

symplectic) models in the context of GLn over a finite field. Our main local result extends

the work of Heumos and Rallis. We show that every irreducible, unitary representation

of GLn over a p-adic field has a Klyachko model. This was previously obtained in [5] for

n ≤ 4. See also [12].

To describe our results more precisely, we set the necessary notation. Let F be

either a number field or a p-adic field. In the global case, denote by A = AF the ring of

adèles of F. Let Gr = GLr be regarded as an algebraic group defined over F and let Ur

denote the group of upper triangular unipotent matrices in Gr.

Fix n and let G = Gn. For any decomposition n = r + 2k we consider a subgroup

of Gn defined by

Hr,2k =

{(
u X

0 h

)
∈ G : u ∈ Ur, X ∈ Mr×2k and h ∈ Sp(2k)

}
.

Here

Sp(2k) =

{
g ∈ G2k :

tg

(
wk

−wk

)
g =

(
wk

−wk

)}

and wk ∈ Gk is the permutation matrix whose (i, j)th entry is δk+1−i, j. Let ψ be a nontrivial

character of F in the local case (resp. of F\A in the global case). We associate to ψ the

character ψr of Ur(F) (resp. of Ur(F)\Ur(A)) defined by

ψr(u) = ψ(u1,2 + · · · + ur−1,r).
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By abuse of notation we will also denote by ψr the character of Hr,2k(F) (resp. of

Hr,2k(F)\Hr,2k(A)) defined by

ψr

(
u X

0 h

)
= ψr(u).

We now describe our main results, first in the global case and then in the local case.

1.1 The Global case

Let F be a number field with adèle ring A. We denote by ZG the center of G. Fix once and

for all a unitary character ξ of ZG(F)\ZG(A) and denote by L2(ZG(A)G(F)\G(A), ξ) the space

of functions φ on G(F)\G(A) such that φ(zg) = ξ(z)φ(g) for all z ∈ ZG(A), g ∈ G(A) and

∫
ZG(A)G(F)\G(A)

|φ(g)|2 dg < ∞.

We have an orthogonal decomposition

L2(ZG(A)G(F)\G(A), ξ) = L2
disc(G, ξ) ⊕ L2

cont(G, ξ)

of the automorphic spectrum into a discrete part and a continuous part. The discrete

part decomposes further as a direct sum of irreducible representations, each appearing

with multiplicity one. We say that π is a discrete spectrum automorphic representation

of G(A) with central character ξ if it embeds into L2
disc(G, ξ) and we refer to this embed-

ding as the automorphic realization of π. In [11], Mœglin and Waldspurger show that the

irreducible components of L2
disc(G, ξ) are precisely the representations L(σ, t) parameter-

ized by pairs (σ, t) where n = rt and σ is a cuspidal automorphic representation of Gr(A)

with central character appropriately related to ξ (see the first paragraph of Section 2 for

notation and the precise statement).

Let H be an algebraic subgroup of G and let χ be a character of H(F)\H(A). For an

automorphic form φ, whenever the integral converges, we define

lχH(φ) =

∫
H(F)\H(A)

φ(h)χ(h)dh.

When χ is the trivial character, we will also write lH for lχH .
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DEFINITION 1.1. We say that an automorphic representation π is (H,χ)-distinguished if

there is an automorphic form φ in the space of π such that lχH(φ) �= 0. When χ is the trivial

character, we will simply say that π is H-distinguished.

Our main global result is expressed in terms of the classification of the discrete spectrum

as follows.

THEOREM 1.2. Let π be an irreducible, discrete spectrum automorphic representation of

G(A) (of central character ξ). Then, there exists an integer k, 0 ≤ k ≤
[

n
2

]
such that π is

(Hn−2k,2k,ψn−2k)-distinguished. More precisely, if π = L(σ, t) and

κ(π) = r

[
t
2

]
(1.1)

then π is (Hn−2κ(π),2κ(π),ψn−2κ(π))-distinguished. �

Discrete spectrum automorphic representations are realized as multi-residues

of Eisenstein series. Our proof of Theorem 2.2 (that also implies Theorem 1.2) relies

on formula (2.6) that expresses the mixed period lψn−2k
Hn−2k,2k

of the multi-residue of an

Eisenstein series in terms of Whittaker and purely symplectic periods of respective rank

n − 2k and 2k.

1.2 The local case

Let F be a p-adic field. We will consider only smooth representations of G(F). In partic-

ular, when we say that the representation π of G(F) is unitary we really mean that π is a

smooth representation that has a unitary structure.

Let H be an algebraic subgroup of G and let χ be a character of H(F).

DEFINITION 1.3. We say that a representation π of G(F) is (H,χ)-distinguished if HomH(F)

(π,χ) �= 0. If χ is the trivial character we also say that π is H-distinguished.

THEOREM 1.4. Let π be an irreducible, unitary representation of G(F). There exists an

integer k, 0 ≤ k ≤
[

n
2

]
such that π is (Hn−2k,2k,ψn−2k)-distinguished. �

As in the global case, following our main local result, Theorem 3.7, we construct a

map π �→ κ(π) that assigns (in particular) to any irreducible, unitary representation

an integer k = κ(π) for which Theorem 1.4 holds. This map is described explicitly in

Section 3 in terms of Tadic’s classification of the unitary dual of G(F) obtained in [19].

Our proof is local. It is based, however, on the hereditary property of Whittaker models
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with respect to parabolic induction [17] and on our results on purely symplectic models

in [15]. We remark that our proof in [15] uses a global argument. Thus, our entire proof

is based on the global theory of automorphic forms. It will be interesting to see a purely

local proof of Theorem 1.4.

1.3 Some background on the study of mixed periods

Theorem 1.4 can be interpreted as an existence statement of certain mixed models. For a

decomposition n = r + 2k we introduce the Klyachko model

Mr,2k = IndG(F)
Hr,2k(F)(ψr).

Note that Mn,0 is the Whittaker model while when n is even M0,n is a purely symplectic

model. By Frobenious reciprocity, for any admissible representation π of G(F) we have

HomG(F)(π,Mr,2k) = HomHr,2k(F)(π,ψr).

Thus, if π is irreducible, then it is (Hr,2k,ψr)-distinguished if and only if it can be realized

in the space Mr,2k. The Klyachko model Mr,2k is a mixed (Whittaker-symplectic) model for

G(F) and whenever π is (Hr,2k,ψr)-distinguished, we say that π admits the model Mr,2k.

The models Mr,2k were first considered by Klyachko in [9] in the case where F is a

finite field. If F = Fq is the field of q elements, the work of Klyachko suggests that

M = ⊕[ n
2 ]

k=0Mn−2k,2k

is a Gelfand model for G(Fq), i.e. it is the direct sum of all irreducible representations

of G(Fq), each appearing with multiplicity one. In other words, for any irreducible

representation π of G(Fq), we have mπ = 1 where mπ is defined by

mπ = dimC(HomG(F)(π,M)).

As already pointed out by Inglis and Saxl the proof of Klyachko contains several inac-

curacies and gaps and is therefore incomplete. In [6] a complete proof is given, using

different methods. The result has applications to the representation theory of G(Fq) and

was used, for example, in [2] and in [22]. In [21], an analog is proved for the finite unitary

group.
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The fact that mπ = 1 for an irreducible representation π consists of the following

three properties: existence (π admits some Klyachko model), disjointness (π admits at

most one Klyachko model) and uniqueness (π imbeds into a given Klyachko model with at

most multiplicity one). Klyachko models over a p-adic field were first studied by Heumos

and Rallis in [5]. They observed that, already when n = 3, there exists an irreducible,

admissible representation π of G(F) that admits no Klyachko model, i.e. such that mπ = 0.

However, when n ≤ 4, they showed that every irreducible, unitary representation π

of G(F) admits a Klyachko model, i.e. that mπ ≥ 1. In general, they also showed the

uniqueness of the purely symplectic model [5, Theorem 2.4.2], i.e. that if n is even and

π is an irreducible admissible representation of G(F), then

dimC(HomG(F)(π,M0,n)) ≤ 1. (1.2)

Another result claimed in [5, Theorem 3.1] is disjointness of Klyachko models for irre-

ducible, unitary representations. Unfortunately, the proof is based on [9, Proposition

1.3] which is false. To be more precise, the proof given in [5, §3] could have been based

on the statement in [9, §1.1], which is a weaker statement than [9, Proposition 1.3] and

which may still be true but, to our knowledge, has not yet been proved. We obtain the

disjointness and uniqueness of Klyachko models over a local field in [16] now available

on arXiv:0711.2884v1 [math.RT]. The local part of the current paper treats the existence

of Klyachko models.

In [15], we provided a family of unitary representations of G(F) that admit a

purely symplectic model. From Theorem 1.4 we get that mπ ≥ 1 for any irreducible

unitary representation π of G(F). We also promised in [15] that the current work will

characterize, in particular, all irreducible unitary representations admitting a symplec-

tic model. This was based on the unitary disjointness, which, we only later observed,

remains unproved. We will therefore only deliver our promise in our upcoming paper

when we prove disjointness of the Klyachko models. It will also be interesting to study

the analogous problem in the archimedean case, and the global mixed periods for the

continuous automorphic spectrum of G. Langlands described the continuous spectrum

in terms of discrete spectrum datum. Using this description, we believe that a global

analog of Theorem 1.4, properly formulated, should be true and we also hope to address

this problem in the future. Our study of the global mixed periods was motivated by its

analogy with the local problem. This analogy was already suggested by Heumos in his

survey paper on the subject [4].
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REMARK 1.5. The focus of this article is on nonvanishing of periods. Thus, the way Haar

measures are normalized plays no role in the proofs of the main results. We therefore do

not choose a specific normalization for the Haar measures appearing in this work and

(with the exception of Section 2.3) will make no further comments regarding the choice

of measures.

2 Global Mixed Periods

Mœglin and Waldspurger classified the discrete spectrum automorphic representations

of G(A) in [11]. We recall their result.

Let P = MU be a standard parabolic subgroup of G with Levi subgroup M and

unipotent radical U. If P is of type (n1, . . . ,nt), then for an automorphic representation

τ = τ1 ⊗ · · · ⊗ τt of M(A) and for λ = (λ1, . . . ,λt) ∈ Ct let τ [λ] be the representation on the

space of τ defined by

τ [λ] = |det|λ1 τ1 ⊗ · · · ⊗ |det|λt τt

and let I(τ ,λ) = IG
P (τ ,λ) be the representation of G(A) parabolically induced from τ [λ].

For a positive integer t let

Λt =

(
t − 1

2
,

t − 3
2

, . . . ,
1 − t

2

)
. (2.1)

Fix a character ξ of F×\A× and identify ZG(A) with A×. Let rt = n and let σ be an

irreducible, cuspidal automorphic representation of Gr(A). Assume that P is of type

(r, . . . , r) and let τ = σ⊗t. The representation I(τ ,Λt) has a unique irreducible quotient,

which we denote by L(σ, t). Note that the central character of I(τ ,Λt) and therefore also

of L(σ, t) is ωt
σ where ωσ is the central character of σ.

THEOREM 2.1 (Mœglin–Waldspurger). Let n = rt and let σ be an irreducible, cuspidal

automorphic representation of Gr(A) so that ωt
σ = ξ. The representation L(σ, t) occurs in

L2
disc(G, ξ) with multiplicity one and every irreducible component of L2

disc(G, ξ) is of the

form L(σ, t) for such a pair (σ, t). �

We now turn to the proof of Theorem 1.1. Let π = L(σ, t) be an irreducible component of

L2
disc(G, ξ). If π is cuspidal (i.e. if t = 1), it is well known that the Whittaker functional lψn

Un

is not identically zero on π, in other words π is (Un,ψn)-distinguished. On the other hand,

when n is even we show in [13, Theorem 3] that π is Sp(n)-distinguished if and only if t is

even. Theorem 1.2 therefore follows from
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THEOREM 2.2. Let n = (2m + 1)r and let σ be an irreducible, cuspidal automorphic

representation of Gr(A). The representation L(σ, 2m + 1) is (Hr,2mr,ψr)-distinguished. �

The proof of Theorem 2.2 is given in Section 2.2. We start with some notation and

a summary of necessary facts.

2.1 Eisenstein series, intertwining operators and multi-residues

When we say that P = MU is a standard parabolic subgroup of G with its standard Levi

decomposition, we mean that M is the standard Levi subgroup and U is the unipotent

radical of P. Throughout, P = MU and Q = LV will denote standard parabolic subgroups

of G with their standard Levi decompositions so that P is contained in Q.

For integers a ≤ b, let [a, b] = {a,a + 1, . . . , b}. We identify the index set

∆ = [1,n − 1] with the set of simple roots of G with respect to the standard Borel

subgroup of upper triangular matrices in G and let ∆M denote the set of those indices

i that correspond to roots in M. If P is of type (n1, . . . ,nt) then

∆M
= ∆ \ {n1,n1 + n2, . . . ,n1 + · · · + nt−1}.

Let Sn denote the group of permutations on [1,n]. We denote by WM the Weyl

group of M and let W = WG. We identify W with Sn and when convenient we consider

an element of Sn as a permutation matrix in G. Each double coset in WL\W/WM contains

a unique representative of minimal length—the left WL and right WM reduced represen-

tative. We denote by LWM the set of reduced representatives of the double cosets and let

LWc
M = {w ∈ LWM : wMw−1 ⊂ L}.

If n = tr and P is of type (r, . . . , r), the set MWc
M consists of the Weyl elements permuting

the blocks of M and we identify MWc
M with St.

For an algebraic group Y defined over F, let X∗(Y) be the lattice of rational

characters of Y, let a∗Y = X∗(Y) ⊗ R and let aY be the dual vector space. Denote by 〈·, ·〉
the pairing between aY and a∗Y . If P is of type (n1, . . . ,nt), then we identify aM and its dual

with Rt. The pairing between aM and a∗M is then the standard inner product on Rt. There

is a natural embedding of aL into aM with an orthogonal decomposition

aM = aL ⊕ a
L
M .
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Denote by X �→ XL the orthogonal projection from aM to aL. We use similar notation for

the corresponding decomposition in the dual space and denote by λ �→ λL the orthogonal

projection of a∗M to a∗L. Using the Iwasawa decomposition G(A) = U(A)M(A)K, where

K is the standard maximal compact subgroup of G(A), we define the height function

HM : G(A) → aM by the requirement that for every χ ∈ X∗(M) we have

e〈χ,HM (umk)〉
=

∏
v

|χv(mv)|v .

The map HM induces an isomorphism M(A)/M(A)1 → aM . Let ρP = (Λn)M ∈ (aM)∗

where Λn is given by (2.1). Thus,

p �→ e〈2ρP ,HM (p)〉

is the modulus function of P(A).

Let τ be an irreducible, cuspidal automorphic representation of M(A). We iden-

tify the representation spaces of IG
P (τ ,λ) for all λ ∈ a∗M,C with the representation space

IG
P (τ ) with λ = 0. In particular, we have

ϕ(pg) = e〈ρP ,HM (p)〉τ (m)ϕ(g)

whenever ϕ ∈ IG
P (τ ), p = mu ∈ P(A), m ∈ M(A), u ∈ U(A) and g ∈ G(A). For ϕ ∈ IG

P (τ ) and

λ ∈ a∗M,C we denote by ϕλ the standard holomorphic section given by

ϕλ(g) = ϕ(g)e〈λ,HM (g)〉.

The action of the representation IG
P (τ ,λ) on the space IG

P (τ ) is then given by

(IG
P (g, τ ,λ)ϕ)λ(x) = ϕλ(xg)

for g, x ∈ G(A).

Let λ ∈ a∗M,C and let ϕ ∈ IG
P (τ ). The Eisenstein series EQ(ϕ,λ) is defined as the

meromorphic continuation of the series

EQ(g,ϕ,λ) =
∑

γ∈(P∩L)(F)\L(F)

ϕλ(γg).

When Q = G we also set E(ϕ,λ) = EQ(ϕ,λ).
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Assume now that n = tr, that P is of type (r, . . . , r), that Q is of type (m1r, . . . ,msr),

that σ is an irreducible, cuspidal automorphic representation of Gr(A) and that τ = σ⊗t

is the corresponding cuspidal representation of M(A). For any w ∈ MWc
M = St we let

M(w,λ) : I(τ ,λ) → I(τ ,wλ) be the standard (nonnormalized) intertwining operator. It is

defined by the meromorphic continuation of the integral

(M(w,λ)ϕ)wλ(g) =

∫
(U∩wUw−1)(A)\U(A)

ϕλ(w−1ug)du. (2.2)

Its domain of convergence includes that of the Eisenstein series and it admits a mero-

morphic continuation. Let

ΛQ
= (Λm1 , . . . ,Λms) ∈ (aL

M)∗

and let µ ∈ a∗L. For ϕ ∈ IG
P (τ ), the expression

EQ(ϕ,λ + µ)
∏

i∈∆L

(λi − λi+1 − 1)

is holomorphic at λ = ΛQ. We may therefore define the multi-residue of the Eisenstein

series by

EQ
−1(ϕ,µ) = lim

λ→ΛQ
EQ(ϕ,λ + µ)

∏
i∈∆L

(λi − λi+1 − 1).

It defines a surjective intertwining operator

EQ
−1(µ) : IG

P (τ ,ΛQ
+ µ) → IG

Q(L(σ,m1) ⊗ · · · ⊗ L(σ,mt),µ).

When Q = G we also denote the multi-residue operator by E−1 = EG
−1(0). It is then a

surjective intertwining operator from I(τ ,Λt) to L(σ, t) that realizes the representation

L(σ, t) in the space L2
disc(G, ξ) of automorphic forms. We also consider the multi-residue

of the intertwining operator M(w,λ). Let

∆(w) = {i ∈ [1, t − 1] : w(i) > w(i + 1)}

and set

M−1(w) = lim
λ→Λt

M(w,λ)
∏

i∈∆(w)
(λi − λi+1 + 1). (2.3)
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It is an intertwining operator from I(τ ,Λt) to I(τ ,wΛt). For an automorphic form φ on

G(A), we define its constant term along Q by

φQ(g) =

∫
V(F)\V(A)

φ(vg)dv.

The function � �→ φQ(�) is an automorphic form on L(A). We denote it by φQ[e].

2.2 Proof of Theorem 2.2

Fix a decomposition n = (2m+1)r. Let H = Hr,2mr, let P be of type (r, . . . , r) and let Q = LV

be of type (r, 2mr). Note that

H � (Ur × Sp(2mr))V and L � Gr × G2mr.

If φ is an automorphic form in the discrete spectrum, then it is easy to see that

lψr
H (φ) = (lψr

Ur
⊗ lSp(2mr))(φQ[e]). (2.4)

Let σ be a cuspidal automorphic representation of Gr(A), let τ = σ⊗2m+1 and let π =

L(σ, 2m + 1). Our goal is to show that the mixed period lψr
H is not identically zero on π.

As already explained, it is known that lψr
Ur

⊗ lSp(2mr) is not zero on σ[−m] ⊗ L(σ, 2m)
[

1
2

]
.

From (2.4) we see that it is enough to show the following.

PROPOSITION 2.3. The map φ �→ φQ[e] defines a surjection from π to σ[−m]⊗L(σ, 2m)
[

1
2

]
.

�

PROOF. Note first that σ[−m] ⊗ L(σ, 2m)
[

1
2

]
is irreducible and therefore it is enough to

prove that the map φ �→ φQ[e] is not identically zero on π and that its image indeed lies in

σ[−m] ⊗ L(σ, 2m)
[

1
2

]
.

Since φQ(�g) is the value at � of (π(g)φ)Q[e] for � ∈ L(A), g ∈ G(A), to prove that the map is

not zero it is enough to show that the constant term map φ �→ φQ is not identically zero on

π. But it is well known (e.g. [7]) that φ �→ φP is not identically zero (in fact φ �→ φP defines

an imbedding of L(σ, 2m + 1) in I(τ ,−Λ2m+1)) and we have

φP(g) =

∫
(U∩L)(F)\(U∩L)(A)

φQ(ug) du.
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It therefore only remains to show that φQ[e] lies in the space of the automorphic

representation σ[−m] ⊗ L(σ, 2m)
[

1
2

]
of L(A). To see this, we use the automorphic real-

ization of L(σ, 2m + 1) and compute the constant term of multi-residues of Eisenstein

series. Denote by wQ the longest element in LWM . Thus, wQ ∈ MWc
M and as a permutation

in S2m+1 it is the cycle (1, 2, . . . , 2m + 1). Let

µQ = wQΛ2m+1 − ΛQ
=

(
−m,

1
2

)
∈ a

∗
L.

The formula for the constant term that we obtain in Lemma 2.4, implies that E−1(ϕ)Q lies

in the image of the operator

EQ
−1(µQ) : I(τ ,Λ2m+1) → IG

Q(σ ⊗ L(σ, 2m),µQ)

for E−1(ϕ) in the space of π and therefore E−1(ϕ)Q[e] lies in σ[−m]⊗L(σ, 2m)
[

1
2

]
. It remains

only to compute the constant term.

LEMMA 2.4. For every ϕ ∈ I(τ ) we have

E−1(ϕ)Q = EQ
−1((M−1(wQ)ϕ),µQ). �

PROOF. For ϕ ∈ I(τ ) the constant term of the Eisenstein series E(ϕ,λ) is given by

E(ϕ,λ)Q =
∑

w∈LWc
M

EQ(M(w,λ)ϕ,wλ). (2.5)

The multi-residue operator limλ→Λ2m+1

∏2m
i=1(λi −λi+1 −1) and the constant term operator

are interchangeable. We show that after applying the multi-residue operator to (2.5),

only the term associated with wQ survives. The map w �→ w−1(1) is a bijection from

LWc
M to [1, 2m + 1]. Let w(i) ∈ LWc

M be such that w(i)(i) = 1, thus w(i) = (1, 2, . . . , i) (and

in particular w(2m+1) = wQ). For the term associated to the identity element w(1), note

that EQ(ϕ,λ)
∏2m

i=2(λi − λi+1 − 1) is holomorphic at Λ2m+1. Therefore, the contribution to

(2.5) of the term associated to the identity Weyl element vanishes after taking the multi-

residue operator. For i > 1 we have ∆(w(i)) = {i − 1} and therefore (λi−1 − λi − 1)M(w(i),λ)

is holomorphic at Λ2m+1. Note also that

{(w(i))−1(j) : j ∈ [1, 2m] and (w(i)Λ2m+1)j − (w(i)Λ2m+1)j+1 = 1}

= [1, 2m] \ {i − 1, i}
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and therefore that

EQ(M(w(i),λ)ϕ,w(i)λ)
∏

j∈[1,2m]\{i}
(λj − λj+1 − 1)

is holomorphic at Λ2m+1. Thus if i < 2m + 1, the w(i) contribution to (2.5) vanishes after

applying the multi-residue operator. It follows that

E−1(ϕ)Q = lim
λ→Λ2m+1

EQ(M(wQ,λ)ϕ,wQλ)
2m∏
i=1

(λi − λi+1 − 1).

The lemma follows. �

This completes the proof of Proposition 2.3. �

As we already explained, this completes the proof of Theorem 2.2.

It follows from Lemma 2.4 that we can express the mixed period as

lψr
H (E−1(ϕ)) = (lψr

Ur
⊗ lSp(2mr))(EQ

−1(M−1(wQ ϕ),µQ)[e]) (2.6)

where f [e] ∈ σ[−m] ⊗ L(σ, 2m)
[

1
2

]
is the valuation at e of an element f ∈ IG

Q((σ ⊗
L(σ, 2m),µQ).

COROLLARY 2.5. The mixed period integral l
ψn−2κ(π)
Hn−2κ(π),2κ(π)

is factorizable on the discrete

spectrum representation π. �

PROOF. It is well known that on a cuspidal representation the Whittaker functional is

factorizable. It also follows from the explicit formula in [14, Theorem 1.1], that the purely

symplectic period is factorizable on the residual spectrum. It then follows from (2.6) that

the mixed period lψr
Hr,2mr

is factorizable on L(σ, 2m + 1) for σ a cuspidal representation of

Gr(A). �

REMARK 2.6. Note that the factorization of the period is obtained using a formula for

the mixed period despite the fact that local multiplicity one for the mixed models

is not yet known. Note also that based on the conjectural disjointness of models for

unitary representations, we expect the period lψHr,2k
to vanish on every discrete spectrum

representation π such that κ(π) �= k.
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2.3 Some explicit formulas for the periods

Formula (2.6) indicates that the mixed period is related to special values of the Rankin–

Selberg L-function associated to σ and its contragradient σ̃. Let Lσ(s) = L(s,σ × σ̃) and

fix once and for all a finite set of places S containing the infinite places and such that for

v �∈ S the conductor of ψv is Ov. If σ is an everywhere unramified cuspidal representation

of G(A) and φ0 is its L2-normalized spherical vector, it may be that lψn
Un

(φ0) equals zero,

but in any case we can write lψn
Un

(σ(x)φ0) =
∏

v Wψv
v (x) where Wψv

v is the local spherical

Whittaker function for every place v of F, and is normalized so that Wψv
v (e) = 1 for all

v �∈ S. Clearly, there exists g ∈ G(A) such that lψn
Un

(σ(g)φ0) �= 0 (in fact, we may and do

choose g such that gv = e for v �∈ S). We denote by Wψv
1,v the L2-normalized spherical

Whittaker function and refer to [10, Section 2.2] for the normalization of Wψv
1,v and for

more details. It follows from Jacquet’s formula for the inner product of cusp forms that

∏
v∈S

∣∣∣∣∣Wψv
v (g)

Wψv
1,v(g)

∣∣∣∣∣
2

=
1

ress=1 LS
σ(s)

where LS
σ(s) is the partial L-function away from S. We then have

∣∣∣lψUn
(π(g)φ0)

∣∣∣2
=

∏
v∈S

αv(σv ; gv)

ress=1 Lσ(s)
(2.7)

where

αv(σv ; gv) = Lσv (1)
∣∣∣Wψv

1,v(gv)
∣∣∣2

.

Assume now that σ is an everywhere unramified cuspidal representation of

Gr(A) and let φ0 be the L2-normalized, spherical element of the discrete spectrum

representation π = L(σ, t). We have the following formula for the mixed period of φ0.

PROPOSITION 2.7. For a certain normalization of Haar measures independent of σ we

have that if t = 2m is even, then

∣∣lSp(n)φ0

∣∣2
=

Lσ(2)Lσ(4) · · ·Lσ(2m)
ress=1 Lσ(s)Lσ(3) · · ·Lσ(2m − 1)

and if t = 2m + 1 is odd, then there exists an element g0 ∈ Gr(A) such that

∣∣∣lψHr,2mr
(π(diag(g0, 12mr))φ0)

∣∣∣2
=

∏
v∈S

αv(σv ; g0,v)

ress=1 Lσ(s)

m∏
j=1

Lσ(2j)
Lσ(2j + 1)

. �
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PROOF. When t is even, the result is [13, Theorem 4] and when t = 1 the formula is (2.7).

Let v0 be the L2-normalized spherical cusp form in the space of σ and let ϕ
(t)
0 be the

spherical section in I(τ ,Λt) normalized so that ϕ
(t)
0 (e) = v⊗t

0 . We now prove the formula

for t = 2m + 1 > 1 using (2.6) and a computation similar to that in [13]. Indeed, we have

φ0 =
E−1(ϕ

(t)
0 )

‖E−1(ϕ
(t)
0 )‖2

.

As explained in [13], Langlands showed that

‖E−1(ϕ
(t)
0 )‖−2

2 =
Lσ(2)Lσ(3) · · ·Lσ(t)
(ress=1 Lσ(s))t−1

(note the typo in the proof of [13, Theorem 4] where ‖E−1(ϕ0)‖2
2 should be replaced by

‖E−1(ϕ0)‖−2
2 ). On the other hand

M−1(wQ)ϕ(2m+1)
0 =

ress=1 Lσ(s)
Lσ(2m + 1)

ϕ
(2m+1)
0

and therefore

EQ
−1(M−1(wQ)ϕ(2m+1)

0 ,µQ)[e] =
ress=1 Lσ(s)
Lσ(2m + 1)

(v0 ⊗ EG2mr
−1 (ϕ(2m)

0 )).

The computation in the proof of [13, Theorem 4] gives

lSp(2mr)(E
G2mr
−1 (ϕ(2m)

0 )) =
(ress=1 Lσ(s))m−1

Lσ(3)Lσ(5) · · ·Lσ(2m − 1)
.

Plugging all this to (2.6) we get

∣∣∣lψr
Hr,2mr

(φ0)
∣∣∣2

=

∣∣∣lψr
Ur

(v0)
∣∣∣2 Lσ(2)Lσ(4) · · ·Lσ(2m)

Lσ(3)Lσ(5) · · ·Lσ(2m + 1)
.

As already explained, for some everywhere unramified cuspidal representations σ, it may

be that lψr
Ur

(v0) = 0; however, there exists g0 ∈ Gr(A) such that lψr
Ur

(σ(g0)v0) �= 0. A similar

computation then gives that for g = diag(g0, 12mr) we have

∣∣∣lψr
Hr,2mr

(π(g)φ0)
∣∣∣2

=

∣∣∣lψr
Ur

(σ(g0)v0)
∣∣∣2 Lσ(2)Lσ(4) · · ·Lσ(2m)

Lσ(3)Lσ(5) · · ·Lσ(2m + 1)
.

The formula now follows from (2.7). �



16 O. Offen and E. Sayag

3 Local Mixed Models

Let F be a non-archimedean local field of characteristic zero. For any algebraic group Y

defined over F, we denote from now on by Y the group Y(F) of F-rational points. Our goal

is to prove Theorem 1.4, i.e. to show that for any irreducible, unitary representation π of

G we can attach an integer κ(π) ∈
[
0,

[
n
2

]]
so that

HomHn−2κ(π),2κ(π) (π,ψn−2κ(π)) �= 0.

The index κ(π) is expressed in terms of the classification of the unitary dual of G obtained

by Tadic in [19]. Our proof is based on the properties of derivatives for representations

of G introduced by Gelfand and Kazhdan in [3]. In [23, Theorem 6.1], Zelevinsky classified

all irreducible representation of G in terms of cuspidal representations. The derivatives

are computed by Zelevinsky in [23, Theorem 8.1]. Furthermore, the highest derivative of

any irreducible representation is irreducible. This computation is for derivatives in the

“opposite direction” to those suited for the study of Klyachko models with respect to the

pairs (Hr,2k,ψr). It will be more convenient to apply Zelevinsky’s results as they stand. We

therefore begin by introducing a closely related family of mixed models compatible with

the derivatives computed by Zelevinsky.

3.1 Another family of mixed models

The derivatives computed by Zelevinsky are more suited to the study of mixed models

with respect to the pairs (H ′
2k,r,ψ

′
r) where

H ′
2k,r =

{(
h X

0 u

)
: h ∈ Sp(2k), u ∈ Ur, X ∈ M2k×r

}

and

ψ ′
r

(
h X

0 u

)
= ψ(u1,2 + · · · + ur−1,r)

whenever u = (ui,j) ∈ Ur. The next lemma is relating between the two families of mixed

models.

LEMMA 3.1. Let (π,V) be a representation of G. There is a linear isomorphism

HomHr,2k(π,ψr) � HomH ′
2k,r

(π̃, ψ̄ ′
r). �
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PROOF. Fix r and 2k and let H = Hr,2k and H ′ = H ′
2k,r. Let τ be the involution on G defined

by

τ (g) = wtg−1w−1

where

w =

(
0 wr

12k 0

)
.

Let (πτ ,V) be the representation of G on V given by πτ (g)v = π(τ (g))v. It is well known

([3]) that πτ is isomorphic to π̃ and therefore that there is a linear isomorphism

HomH ′(π̃, ψ̄ ′
r) = HomH ′(πτ , ψ̄ ′

r).

Note further that τ (H) = H ′ and that ψr(h) = ψ̄ ′
r(τ (h)). This implies that the identity map

defines a linear isomorphism

HomH(π,ψr) = HomH ′(πτ , ψ̄ ′
r). �

3.2 The dual of G

Zelevinski classified in [23] all irreducible representations of G in terms of cuspidal

representations. For a representation σ of Gr and for λ ∈ C let σ[λ] = |det|λ σ. If σi is a

representation of Gri , i = 1, . . . , t we denote by σ1 × · · · × σt the representation of Gr1+···+rt

parabolically induced from σ1 ⊗ · · · ⊗ σt. Let C denote the collection of all irreducible,

cuspidal representations of Gr for all positive integers r. For any a, b ∈ R such that

0 ≤ b − a ∈ Z and any ρ ∈ C the set

∆ = [a, b](ρ)
= {ρ[a + i] : 0 ≤ i ≤ b − a}

is called a segment. The representation ρ[a]× ρ[a + 1]× · · · × ρ[b] has a unique irreducible

subrepresentation which is denoted by 〈∆〉. We say that a segment ∆ = [a, b](ρ) precedes

the segment ∆ ′ = [a ′, b ′](ρ) if ∆ ′ �⊂ ∆, ρ ′[a ′] = ρ[a + k] for some integer k > 0 and ∆ ∪ ∆ ′

is also a segment. Denote by O the collection of all multisets of segments [a, b](ρ) with

ρ ∈ C and b − a a nonnegative integer. For any a ∈ O, the segments in a can be arranged

as a = {∆1, . . . ,∆t} so that for all 1 ≤ i < j ≤ t the segment ∆i does not precede ∆j. In
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this case the representation 〈∆1〉 × · · · × 〈∆t〉 has a unique irreducible subrepresentation

denoted by 〈a〉. This is the statement of [23, Theorem 6.1 (a)]. The rest of [23, Theorem 6.1]

is the following statement.

THEOREM 3.2 (Zelevinsky). Any irreducible representation of G is of the form 〈a〉 for a

uniquely determined multiset a ∈ O. �

3.3 Derivatives of representations of G

Derivatives of representations of G were introduced in [3]. For a nonnegative integer

k ≤ n, the kth derivative is a functor taking a representation π of G to a representation

π(k) of Gn−k. It is defined as follows. Let Pk be the mirabolic subgroup of matrices in

Gk with last row (0, . . . , 0, 1) and let Vk be its unipotent radical. We imbed Gk−1 in the

upper left block of Gk whenever convenient. The functors Φ− from representations of Pk

to representations of Pk−1 and Ψ− from representations of Pk to representations of Gk−1

are defined in [1, § 3.2]. For a representation τ of Pk, Φ−(τ ) is the normalized Jacquet

functor of τ with respect to Vk and the character θ(v) = ψ(vk−1,k), v = (vi,j) ∈ Vk regarded

as a representation of Pk−1 imbedded in Pk and Ψ−(τ ) is the normalized Jacquet module

of τ with respect to Vk and the trivial character regarded as a representation of Gk−1

imbedded in Pk. If Φ−(m) denotes the functor Φ− applied m times (hence it is a functor

from representations of Pn to representations of Pn−m) and π is a representation of G,

then the rth derivative of π is given by

π(r)
= Ψ−Φ−(r)(π|Pn

).

The main property of derivatives relevant to the study of mixed models lies in the content

of [23, Proposition 3.7]. We now recall this property. For any representation (π,V) of Gn,

let (π(r),V(r)) be the rth derivative. Then there is a surjective morphism A = A(r)
ψ (π) : V →

V(r) so that

A(π

(
g X

0 u

)
v) = ψr(u)π(r)(g)(Av) (3.1)

for all g ∈ Gn−r, u ∈ Ur, X ∈ Mn−r×r and v ∈ V. For any subgroup Y of Gn−r, let

HY,r =

{(
y X

0 u

)
: y ∈ Y, X ∈ Mn−r×r, u ∈ Ur

}
.
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The map A provides the identification

HomHY,r(π,ψr) = HomY(π(r), 1). (3.2)

The functor of mth derivative satisfies a “Leibnitz rule”. In [1, Lemma 4.5], it is

proved that for representations σ1 of Gk and σ2 of Gr the representation (σ1 × σ2)(m) is

glued together from σ
(i)
1 × σ

(m−i)
2 , i = 0, . . . ,m, i.e. that there is a filtration on (σ1 × σ2)(m)

with factors σ(i) × σ
(m−i)
2 . An easy consequence of [1, Proposition 4.13 (a),(b)] is the

following.

LEMMA 3.3. There exists a surjective morphism from (σ1 × σ2)(m) to σ1 × σ
(m)
2 . �

PROOF. It follows from [1, Proposition 4.13 (a)] that there is a surjective morphism

(σ1 × σ2)|Pk+r
� σ1 × (σ2|Pr

)

(see [1, p. 457–458] for the meaning of the induced representation σ1 × (σ2|Pr
)). Let Ω be

either Φ− or Ψ−. From [1, Proposition 4.13 (b)] for a representation τ of Pr we have

Ω(σ1 × τ ) = σ1 × Ω(τ ).

Together with the exactness of Ω, this implies that there is a surjective morphism

Ω((σ1 × σ2)|Pk+r
) � σ1 × Ω(σ2|Pr

).

Iterating this argument, the lemma follows from the definition of the derivative. �

If π(k) �= 0 and π(m) = 0 for all m > k, then π(k) is called the highest derivative of π. For any

segment ∆ = [a, b](ρ), let ∆− = [a, b − 1](ρ). If a ∈ O is any multiset of segments, let a− be

the multiset of segments ∆− so that ∆ is a segment in a and ∆− is not empty.

THEOREM 3.4 ([23], Theorem 8.1). For all a ∈ O the highest derivative of 〈a〉 is 〈a−〉. �

3.4 The unitary dual of G

We briefly review the classification of Tadic for the unitary dual of the general linear

groups ([19, Theorem D]). A representation δ of Gr is called square integrable if its matrix

coefficients belong to L2(ZG\G). Denote by Du the collection of all irreducible, square
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integrable representations of Gr with r ranging over all positive integers. For δ ∈ Du and

a positive integer t, the representation

δ

[
1 − t

2

]
× δ

[
3 − t

2

]
× · · · × δ

[
t − 1

2

]

has a unique irreducible subrepresentation which we denote by U(δ, t). This description

is obtained from [19, Theorem D] by dualization. It will be convenient to allow the

notation U(δ, 0) for the trivial representation of G0 = {e}. Let B be the collection of all

representations of the form U(δ, t) or U(δ, t)[α] × U(δ, t)[−α] where δ ∈ Du, t is a positive

integer and 0 < α < 1
2 .

THEOREM 3.5 (Tadic). For every σ1, . . . ,σt ∈ B the representation σ1 × · · · × σt is ir-

reducible and unitary. Any irreducible, unitary representation of G is of this form

uniquely determined (up to reordering) by the multiset {σ1, . . . ,σt}. �

3.5 Derivatives of Speh representations

We will have to compute the highest derivatives for certain representations induced

from Speh representations. In order to be able to apply Theorem 3.4, we need to express

the representations of the form U(δ, t)[α] in terms of the classification of Zelevinsky for

the dual of G, i.e. we wish to describe explicitly the set a = a(δ, t,α) ∈ O such that

U(δ, t)[α] = 〈a〉. For any δ ∈ Du there is an irreducible, cuspidal, unitary representation

ρ ∈ C and a positive integer d such that δ is the unique irreducible subrepresentation of

ρ

[
d − 1

2

]
× · · · × ρ

[
1 − d

2

]
,

i.e. such that δ =
〈{

ρ
[

d−1
2

]
, ρ

[
d−3

2

]
, . . . , ρ

[
1−d

2

]}〉
is given in terms of singleton segments.

Let

∆(t, ρ) =

[
1 − t

2
,

t − 1
2

](ρ)

.

In [19, Theorem A. 10 (iii)] it is proved that

U(δ, t) =

〈{
∆

(
t, ρ

[
1 − d

2

])
,∆

(
t, ρ

[
3 − d

2

])
, . . . ,∆

(
t, ρ

[
d − 1

2

])}〉
.
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As pointed out in [20, Theorem 3.2], for any α ∈ R we then have

a(δ, t,α)=

{
∆

(
t, ρ

[
1 − d

2
+α

])
,∆

(
t, ρ

[
3 − d

2
+α

])
, . . . ,∆

(
t, ρ

[
d − 1

2
+α

])}
.

Note that

∆(t, ρ)−
= ∆

(
t − 1, ρ

[
−

1
2

])

and therefore that

a(δ, t,α)−

=

{
∆

(
t − 1, ρ

[
1 − d

2
+

(
α −

1
2

)])
, . . . ,∆

(
t − 1, ρ

[
d − 1

2
+

(
α −

1
2

)])}
.

By Theorem 3.4 we get that the highest derivative of U(δ, t)[α] is

U(δ, t − 1)
[
α −

1
2

]
. (3.3)

See [18, Theorem 3] for an analog for GLn(R). Applying the Leibnitz rule for

derivatives and an easy inductive argument we obtain the following.

LEMMA 3.6. Let δ, . . . , δm ∈ Du, t1, . . . , tm positive integers and α1, . . . ,αm ∈ R. The highest

derivative of the representation

U(δ1, t1)[α1] × · · · × U(δm, tm)[αm]

is the representation

U(δ1, t1 − 1)
[
α1 −

1
2

]
× · · · × U(δm, tm − 1)

[
αm −

1
2

]
. �

PROOF. Let δi be a representation of Gri . We wish to show that

(U(δ1, t1)[α1] × · · · × U(δm, tm)[αm])(k)

=


0 k > r1 + · · · + rm

U(δ1, t1 − 1)
[
α1 −

1
2

]
× · · · × U(δm, tm − 1)

[
αm −

1
2

]
k = r1 + · · · + rm.
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We have already proved this when m = 1. Assume by induction that this is true for m − 1.

By Leibnitz rule, the representation (U(δ1, t1)[α1]×· · ·×U(δm, tm)[αm])(k) is glued together

from

(U(δ1, t1)[α1])(i) × (U(δ2, t2)[α2] · · · × U(δm, tm)[αm])(k−i)

for i = 0, . . . , k. But if k > r1 + · · · + rm, then for each i we have either i > r1 or

k − i > r2 + · · · + rm, and therefore it follows from the induction hypothesis that

(U(δ1, t1)[α1]×· · ·×U(δm, tm)[αm])(k) = 0. Similarly, if k = r1 + · · ·+rm, then any component

with i �= r1 must vanish. It follows that

(U(δ1, t1)[α1] × · · · × U(δm, tm)[αm])(r1+···+rm)

= (U(δ1, t1)[α1])(r1) × (U(δ2, t2)[α2] · · · × U(δm, tm)[αm])(r2+···+rm)

and the lemma follows by the induction hypothesis. �

3.6 Klyachko models for some representations of G

We are now ready to state our main local result.

THEOREM 3.7. Let δ1, . . . , δq, δ
′
1, . . . , δ

′
q ′ ∈ Du, let m1, . . . ,mq, m ′

1, . . . ,m
′
q ′ be nonnegative

integers and let α1, . . . ,αq,α
′
1, . . . ,α

′
q ′ ∈ R. Assume that δi is a representation of Gri , that

δ ′
i is a representation of Gr ′

i
and that

n =

q∑
i=1

(2mi + 1)ri +

q ′∑
i=1

2m ′
ir

′
i .

Let n = r + 2k where

r = r1 + · · · + rq and k = m1r1 + · · · + mqrq + m ′
1r ′

1 + · · · + mq ′rq ′ .

The representation

U(δ ′
1, 2m ′

1)[α
′
1] × · · · × U(δ ′

q ′ , 2m ′
q ′)[α ′

q ′ ]

×U(δ1, 2m1 + 1)[α1] × · · · × U(δq, 2mq + 1)[αq] (3.4)

is (Hr,2k,ψr)-distinguished. �
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PROOF. For δ ∈ Du the contragradiant of U(δ, t) is U(δ̃, t). Since the contragradiant of an

induced representation σ1 ×· · ·×σt is σ̃1 ×· · ·× σ̃t, the contragradiant of a representation

that has the form (3.4) is also of such a form. It therefore follows from Lemma 3.1 that

the theorem is equivalent to the statement that representations π of the form (3.4) are

(H ′
2k,r,ψ

′
r)-distinguished (ψ and therefore ψ̄ is an arbitrary nontrivial character of F). Let

σ1 = U(δ ′
1, 2m ′

1)[α
′
1] × · · · × U(δ ′

q ′ , 2m ′
q ′)[α ′

q ′ ],

σ2 = U(δ1, 2m1 + 1)[α1] × · · · × U(δq, 2mq + 1)[αq]

and π = σ1 × σ2. By Lemma 3.3 there is a surjective morphism p : π(r) → σ1 × σ
(r)
2 . There

is also a surjective linear map A : π → π(r) satisfying the equivariance properties of (3.1).

By Lemma 3.6 we see that

σ1 × σ
(r)
2 = U(δ ′

1, 2m ′
1)[α

′
1] × · · · × U(δ ′

q ′ , 2m ′
q ′)[α ′

q ′ ]

×U(δ1, 2m1)
[
α1 −

1
2

]
× · · · × U(δq, 2mq)

[
αq −

1
2

]

is induced from Speh representations of the form U(δ, t)[α] with t even. By [15, Proposi-

tion 2], there exists a nonzero element � ∈ HomSp(2k)(σ1 × σ
(r)
2 ,C). It follows that � ◦ p ◦A is

a nonzero element of HomH ′
2k,r

(π,ψ ′
r). �

Using the notation of Theorem 3.7 for a representation π of the form (3.4) we define

κ(π) = k.

Note that by Theorem 3.5 every irreducible, unitary representation π of G is of the form

(3.4) with |αi| ,
∣∣α ′

i

∣∣ < 1
2 . In particular, κ(π) is defined. The following corollary is then

immediate from Theorem 3.7.

COROLLARY 3.8. Let π be an irreducible, unitary representation of G then π is

(Hn−2κ(π),2κ(π),ψn−2κ(π))-distinguished. �

This proves in particular Theorem 1.4.
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