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OMER OFFEN AND EITAN SAYAG

Abstract. We show the uniqueness and disjointness of Klyachko models for

GLn over a non-archimedean local field. This completes, in particular, the

study of Klyachko models on the unitary dual. Our local results imply a
global rigidity property for the discrete automorphic spectrum.

1. Introduction

In this work we show that over a local non-archimedean field, the mixed (symplectic-
Whittaker) models introduced by Klyachko in [Kly84] are disjoint and that mul-
tiplicity one is satisfied. In [OS] we showed, over a p-adic field (a finite extension
of Qp), the existence of Klyachko models for unitarizable representations. The up
shot is then that for every irreducible, unitarizable representation of GLn over a
p-adic field there is a unique Klyachko model where it appears and it appears there
with multiplicity one.

To formulate the main result more precisely we introduce some notation. Let
F be a non-archimedean local field. For a positive integer r, denote by Ur the
subgroup of upper triangular unipotent matrices in GLr and let

Sp2k = {g ∈ GL2k : tgJ2kg = J2k}
where

(1) J2k =
(

0 wk
−wk 0

)
and wk ∈ GLk(F ) is the matrix with (i, j)th entry equal to δi,n+1−j . Whenever
n = r + 2k we consider the subgroup Hr,2k of GLn defined by

Hr,2k = {
(
u X
0 h

)
: u ∈ Ur, X ∈Mr×2k, h ∈ Sp2k}.

Let ψ be a non trivial character of F. For u = (ui,j) ∈ Ur(F ) we set

(2) ψr(u) = ψ(u1,2 + · · ·+ ur−1,r).

Let ψr,2k be the character of Hr,2k(F ) defined by

(3) ψr,2k

(
u X
0 h

)
= ψr(u).

When n = r + 2k the space

Mr,2k = IndGLn(F )
Hr,2k(F )(ψr)

is called a mixed model. Here Ind denotes the functor of non-compact smooth
induction. Representations of GLn(F ) are always assumed to be smooth. When
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we say that the representation π of GLn(F ) is unitary we really mean that π is a
smooth representation that has a unitary structure. We say that a representation π
of GLn(F ) admits the mixed modelMr,2k if HomGLn(F )(π,Mr,2k) 6= 0. The space

M =
[n2 ]

⊕
k=0
Mn−2k,2k

is referred to as the Klyachko model. The main result of this paper is the following.

Theorem 1. Let F be a non-archimedean local field and let π be an irreducible
representation of GLn(F ) then

(4) mπ = dimC(HomGLn(F )(π,M)) ≤ 1.

When F is a finite field, it is proved in [IS91] that mπ = 1 for every irreducible
representation π of GLn(F ). When F is a non-archimedean local field it is shown in
[HR90] that there exists an irreducible representation π of GL3(F ) so that mπ = 0.
Thus, we cannot expect in general for the inequality (4) to be an equality. However,
in [OS] we showed that if F is a p-adic field then mπ ≥ 1 for every irreducible,
unitary representation π of GLn(F ). We therefore have the following.

Corollary 1. Let F be a p-adic field and let π be an irreducible, unitary represen-
tation of GLn(F ) then mπ = 1.

By Frobenius receiprocity [BZ76, §2.28] for a representation π of GLn(F ) we
have

(5) HomGLn(F )(π,Mr,2k) = HomHr,2k(F )(π, ψr).

It follows that for an irreducible, unitary representation π of GLn(F ) there is a
unique integer 0 ≤ κ(π) ≤ [n2 ] such that

HomHn−2κ(π),2κ(π)(F )(π, ψn−2κ(π),2κ(π)) ∼= C,

i.e. such that π is (Hn−2κ(π),2κ(π), ψn−2κ(π),2κ(π))-distinguished and that the space
of such functionals is one dimensional. Moreover, κ(π) is the explicit value assigned
in [OS, Theorem 8] in terms of Tadic’s classification of the unitary dual.

The if direction of the following corollary was proved in [OS07, Theorem 1].
The other implication is straightforward from Theorem 1. Since it will not serve us
further in this work the corollary is formulated using the notation of [OS07] without
recalling it.

Corollary 2. Let F be a p-adic field and let π be an irreducible, unitary represen-
tation of GL2n(F ). Then π is distinguished by Sp2n(F ) if and only if

π ∼= U(δ1, 2n1)× · · · × U(δr, 2nr)× π(U(δ′1, 2n
′
1), α1)× · · · × π(U(δ′s, 2n

′
s), αs)

for some discrete series representations δ1, . . . , δr, δ′1, . . . δ
′
s, some positive integers

n1, . . . , nr, n
′
1, . . . , n

′
s and some real numbers α1, . . . , αs such that − 1

2 < αi <
1
2 .

In [OS] we also studied globally over a number field, the mixed (symplectic-
Whittaker) periods on the discrete automorphic spectrum of GLn. Let F be a
number field and let ψ be a non-trivial character of F\AF . We use (2) to view ψr
as a character of Ur(AF ) and (3) to view ψr,2k as a character of Hr,2k(AF ). For
an automorphic form φ in the discrete automorphic spectrum of GLn(AF ) and a
decomposition n = r + 2k we consider the mixed period integral

(6) Pr,2k(φ) =
∫
Hr,2k(F )\Hr,2k(AF )

φ(h)ψr,2k(h) dh.
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We say that an irreducible, discrete spectrum automorphic representation π of
GLn(AF ) is (Hr,2k, ψr,2k)-distinguished if Pr,2k is not identically zero on the space
of π. In [OS] we provided an explicit integer 0 ≤ κ(π) ≤ [n2 ] such that π is
distinguished by (Hn−2κ(π),2κ(π), ψn−2κ(π),2κ(π)). Furthermore, we showed that this
period integral is factorizable. Corollary 1 (particularly, the disjointness of Klyachko
models) then shows that there is a unique such integer. Furthermore, it implies an
interesting rigidity property of the discrete automorphic spectrum of GLn.

Corollary 3. Let F be a number field and let π = ⊗vπv be an irreducible, discrete
spectrum automorphic representation of G(AF ). Then there exists a unique integer
k = k(π) such that π is (Hn−2k,2k, ψn−2k)−distinguished. Moreover the following
are equivalent:

(1) π is (Hr,2k, ψr,2k)−distinguished;
(2) πv is (Hr,2k, ψr,2k)−distinguished for all places v of F ;
(3) πv0 is (Hr,2k, ψr,2k)−distinguished for some finite place v0 of F .

Remark 1. This rigidity property is best understood when Klyachko models are
read off the Arthur type defined in [Clo04]. This interpretation will be the subject
of a forthcoming note.

The rest of this work is devoted to the proof of Theorem 1. It is organized as
follows. After setting up the notation in §2, in §3-§4 we reduce Theorem 1 to a
statement about invariant distributions on orbits. This statement is made more
explicit in §5 and is then proved by induction in §6.

1.1. Acknowledgement. We wish to thank the Weizmann Institute of Science
where this work was initiated and the Hausdorff Research Institute for Mathematics
(HIM) in Bonn where this work was completed. We further thank Prof. Joseph
Bernstein for his insight regarding uniqueness theorems and Prof. Erez Lapid for
his insistence that an elementary proof is within reach. During the preparation of
this work the second named author was supported by the Ann Stone Postdoctoral
Fellowship, the Clore Postdoctoral Fellowship at the Weizmann Institute and BSF
grant # 2004200.

2. Notation

Let F be a non-archimedean local field and for any positive integer r let Gr =
GLr(F ). We denote by Ir the identity matrix in Gr. We also set G0 = {1}. Through-
out, we fix a positive integer n and let G = Gn. For a partition (n1, . . . , nt) of n
we denote by P(n1,...,nt) the standard parabolic subgroup of G of type (n1, . . . , nt).
It consists of matrices in upper triangular block form. If P = P(n1,...,nt) we denote
by P the parabolic opposite to P. It consists of matrices in lower triangular block
form. When we say that P = MU is the standard Levi decomposition of P we mean
that U is its unipotent radical, and M = P ∩ P = {diag(g1, . . . , gt) : gi ∈ Gni}.
We then denote by U the unipotent radical of P . We denote by a(r) the r-tuple
(a, . . . , a), thus for example P(1)n is the subgroup of upper triangular matrices in
G. For any standard Levi subgroup M of G denote by WM the Weyl group of
M and let W = WG. If M ′ is another standard Levi subgroup then any double
coset in WM\W/WM ′ has a unique element of minimal length which we refer to
as a left WM and right WM ′ reduced Weyl element. We denote by MWM ′ the set
of all left WM and right WM ′ reduced Weyl elements. For integers a and b we
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set [a, b] = {x ∈ Z : a ≤ x ≤ b}. For any subset A ⊆ [1, n] we denote by SA
the permutation group in the elements of A. It will be convenient to identify W
with S[1, n]. If P = MU and P ′ = M ′U ′ are standard parabolic subgroups of G
with their standard Levi decompositions, the Bruhat decomposition of G gives the
disjoint union

(7) G = t
w∈MWM′

PwP ′.

For any matrix X let tX denote the transpose matrix. For a skew-symmetric
matrix I = −tI ∈ G2k let

Sp(I) = {g ∈ G2k : tgIg = I}
and let

J2k =
(

0 wk
−wk 0

)
where wk ∈ Gk is the matrix with ijth entry δi,n+1−j . Denote by Ur the subgroup
of upper triangular unipotent matrices and by Ur the subgroup of lower triangular
unipotent matrices in Gr. For non-negative integers r and k let

Hr,2k = {
(
u X
0 h

)
: u ∈ Ur, X ∈Mr×2k(F ), h ∈ Sp(J2k)}

and let

Hr,2k = {
(

u 0
X h

)
: u ∈ Ur, X ∈M2k×r(F ), h ∈ Sp(J2k)}.

Note that Hr,2k is the image of Hr,2k under transpose. For g ∈ G let

gτ = tg−1.

The restriction to Hr,2k of the involution τ : G → G defines a group isomorphism
from Hr,2k to Hr,2k. Let n = r+2k = r′+2k′ and letHr,r′ = Hr,r′n = Hr,2k×Hr′,2k′ .
Thus

Hr,r
′

= {(h1, h
τ
2) : h1 ∈ Hr,2k, h2 ∈ Hr′,2k′}.

We denote by eHr,r′ the identity element of Hr,r′ . It will also be useful to consider
the map ξ : Hr,r′ → Hr′,r defined by

ξ(h1, h
τ
2) = (h2, h

τ
1).

The group Hr,r′ acts on G by

h · g = h1g
th2, h = (h1, h

τ
2) ∈ Hr,r

′
, g ∈ G.

We observe that

(8) t(h · g) = ξ(h) · tg, h ∈ Hr,r
′
, g ∈ G.

When r = r′ the map ξ is an involution of Hr,r. The formula (8) allows us then to
define the semi direct product

H̃r,r = Hr,r o {±1}
with multiplication rule

(h, ε)(h′, ε′) = (h ξε(h′), εε′) where ξε(h) =

{
h ε = 1
ξ(h) ε = −1.
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Here h, h′ ∈ Hr,r, ε, ε′ ∈ {±1}. The group H̃r,r acts on G by

(h, ε) · g = h · Tε(g) where Tε(g) =

{
g ε = 1
tg ε = −1.

In order to unify notation, when r 6= r′ we shall set H̃r,r′ = Hr,r′ × {1}.
For a non-trivial character ψ of F we define as in §1 the generic character ψr

of Ur by (2) and the character ψr,2k of Hr,2k by (3). Let θr,r
′

be the character of
Hr,r′ defined by

θr,r
′
(h1, h

τ
2) = ψr,2k(h1)ψr′,2k′(h2).

We also extend θr,r
′

to the character θ̃r,r
′

of H̃r,r′ defined by

θ̃r,r
′
(h, ε) = ε θr,r

′
(h).

3. Reduction to Invariant Distributions

Let n = r+ 2k = r′+ 2k′ be 2 decompositions of n. Let H = Hr,r′ and θ = θr,r
′
.

The action of H̃ onG defines an action on C∞c (G) and on the space D(G) = C∞c (G)∗

of distributions on G by

(h · φ)(g) = φ(h−1 · g) and (h ·D)(φ) = D(h−1 · φ)

for h ∈ H̃, g ∈ G, φ ∈ C∞c (G) and D ∈ D(G). In this section we show that Theorem
1 reduces to the following.

Proposition 1. If D ∈ D(G) is such that h ·D = θ̃(h)D for all h ∈ H̃ then D = 0,
i.e.

(9) HomH̃(C∞c (G), θ̃) = 0.

3.1. Proposition 1 implies Theorem 1. Let π be an irreducible representation
of G. Set H = Hr,2k, H

′ = Hr′,2k′ , ψ = ψr,2k (forgive the abuse of notation) and
ψ′ = ψr′,2k′ . Denote by H (resp. H ′) the image of H (resp. H ′) under τ. Let
` ∈ HomH(π, ψ) and `′ ∈ HomH′(π, ψ′). The representation πτ (g) = π(gτ ) realizes
the contragradiant representation π̃ on the space Vπ of π [GK75] (see also [BZ76,
Theorem 7.3]). Note that `′ ∈ HomH′(π

τ , (ψ′)τ ) defines a functional ˜̀′ on the space
Vπ̃ of π̃ and that ˜̀′ ∈ HomH′(π̃, (ψ

′)τ ). Note further that `◦π(φ) is a smooth vector
in Vπ̃. Define the distribution D on G by

(10) D(φ) = ˜̀′(` ◦ π(φ)), φ ∈ C∞c (G).

For h ∈ H and h′ ∈ H ′ we have π((h−1, th′) ·φ) = π(h)◦π(φ)◦π(th′) and therefore

((h, (h′)τ ) ·D)(φ) = ˜̀′(` ◦ π(h) ◦ π(φ) ◦ π(th′)).

By our assumption on ` and `′ we have, ` ◦ π(h) = ψ(h)` and ˜̀′ ◦ π̃((h′)τ ) =
ψ′(h′)˜̀′, h ∈ H, h′ ∈ H ′. Also note that for any ṽ ∈ Vπ̃ viewed as a smooth
functional on π the composition ṽ ◦ π(g) is again a smooth functional on π and in
fact

(ṽ ◦ π(g))(v) = ṽ(π(g)v) = (π̃(g−1)ṽ)(v)

i.e.,
ṽ ◦ π(g) = π̃(g−1)ṽ.
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Applying this to ṽ = ` ◦ π(φ) and g = th′ we get that

((h, (h′)τ ) ·D)(φ) = ψ(h) ˜̀′((` ◦ π(φ)) ◦ π(th′))

= ψ(h) ˜̀′(π̃((h′)τ )(` ◦ π(φ))) = θ(h, (h′)τ ) D(φ).

We see that D is (H, θ)-equivariant. If r 6= r′ it follows from Proposition 1 that
D = 0. If we assume further that ` is non-zero then the vectors `◦π(φ), φ ∈ C∞c (G)
span Vπ̃. We conclude that ˜̀′ must vanish identically on Vπ̃ and hence also `′ = 0.
This shows that

(11) dimC(HomHr,2k(π, ψr,2k)) dimC(HomHr′,2k′ (π, ψr′,2k′)) = 0 whenever r 6= r′.

Assume now that r = r′. Recall that eH is the unit element of H. Note that
(eH,−1) · φ = tφ where tφ(g) = φ(tg), φ ∈ C∞c (G), g ∈ G. Note further that for
every h ∈ H we have

(h, 1)(eH,−1) = (eH,−1)(ξ(h), 1)

and that θ(ξ(h)) = θ(h). Since D ∈ HomH(C∞c (G), θ), it also follows that

D1 = D − (eH,−1) ·D ∈ HomH(C∞c (G), θ).

Furthermore, since θ̃(eH,−1) = −1 and (eH,−1) · D1 = −D1 we conclude that
D1 ∈ HomH̃(C∞c (G), θ̃). Proposition 1 now implies that

(12) D = (eH,−1) ·D.
Let B : C∞c (G)× C∞c (G)→ C be the bilinear form defined by

(13) B(φ1, φ2) = D(φ1 ∗ φ2)

where

(φ1 ∗ φ2)(g) =
∫
G

φ1(x)φ2(x−1g) dx.

Note that

π(φ1 ∗ φ2) = π(φ1) ◦ π(φ2) and t(φ1 ∗ φ2) = tφ2 ∗ tφ1, φ1, φ2 ∈ C∞c (G).

Thus, (12) implies that

B(φ1, φ2) = B((eH,−1) · φ2, (eH,−1) · φ1).

This implies that RB = (eH,−1) · LB where

LB = {φ ∈ C∞c (G) : B(φ, ·) ≡ 0} and RB = {φ ∈ C∞c (G) : B(·, φ) ≡ 0}
are respectively the left and right kernels of B. In other words

(14) RB = {tφ : φ ∈ LB}.
For a functional λ on Vπ let

K(λ, π) = {φ ∈ C∞c (G) : λ ◦ π(φ) = 0}.
Note that

B(φ1, φ2) = (˜̀′ ◦ π(φ∨2 ))(` ◦ π(φ1))
where

φ∨(g) = φ(g−1)
and therefore

LB = K(`, π) and RB = {φ∨ : φ ∈ K(˜̀′, π̃)}.
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By our definitions we have

K(˜̀′, π̃) = K(`′, πτ ) = {(tφ)∨ : φ ∈ K(`′, π)}

and therefore
RB = {tφ : φ ∈ K(`′, π)}.

It now follows from (14) that

K(`, π) = K(`′, π).

Since π is irreducible we get that ker ` = ker `′ and therefore that ` and `′ are
proportional. We therefore proved that

(15) dimC(HomHr,2k(π, ψr,2k)) ≤ 1 for all 0 ≤ k ≤ [
n

2
].

Theorem 1 is now a straightforward consequence of (5), (11) and (15).

4. Reduction to H-orbits

We keep the notation introduced in §3. For every g ∈ G we denote by Hg the
stabilizer of g in H and by H̃g the stabilizer of g in H̃. The purpose of this section
is to reduce Proposition 1 to the following.

Proposition 2. For every g ∈ G the character θ̃ is non-trivial on H̃g.

Remark 2. The objects involved and the statement of Proposition 2 makes sense
over any field F and in fact, our proof is valid in this generality. In particular, using
Mackey theory, it gives an alternative proof of the uniqueness and disjointness of
Klyachko models over a finite field.

4.1. Proposition 2 implies Proposition 1. Assume now that Proposition 2
holds. We deduce that Proposition 1 also holds. Let 1H̃g denote the trivial character

of H̃g. Note that h · g 7→ H̃g h−1 is a homeomorphism of H̃-spaces H̃ · g ' H̃g\H̃
that induces an H̃-isomorphism

(16) C∞c (H̃ · g) ' indH̃H̃g (1H̃g )

where ind denotes smooth induction with compact support. Therefore, by Frobe-
nius reciprocity [BZ76, §2.29]

(17) HomH̃(C∞c (H̃ · g), θ̃) = HomH̃g (δH̃g , θ|H̃g )

where δH̃g is the modulus function of H̃g. Since the image of θ̃ lies in the unit circle
(in fact, the image of θ lies in the group of p-powered roots of unity where p is the
residual characteristic of F ) and since δH̃g is positive, we get that whenever θ̃|H̃g is
non-trivial we also have

(18) θ̃|H̃g 6= δH̃g .

It follows from Proposition 2 that (18) holds for every g ∈ G and therefore by (16)
that

(19) HomH̃(C∞c (H̃ · g), θ̃) = 0, g ∈ G.

Proposition 1 follows from (19) using the theory of Gelfand-Kazhdan [GK75]. In-
deed, we apply [BZ76, Theorem 6.9] to the following setting. We view C∞c (G) as a
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module over itself by convolution. By [BZ76, Proposition 1.14] it uniquely defines
a sheaf F over the l-space G. We let H̃ act on C∞c (G) by

h ·θ̃ φ = θ̃(h)h · φ.

This defines an action of H̃ on the sheaf F . The space of H̃-invariant distributions
on F is then precisely HomH̃(C∞c (G), θ̃). The action of H̃ on G is constructible
by [BZ76, §6.15, Theorem A]. The second assumption of [BZ76, Theorem 6.9] is
precisely (19). It follows that there are no H̃-invariant distributions on the sheaf
F , i.e. that (9) holds.

5. The property of H-orbits made explicit

In order to prove Proposition 2 it will be convenient to reformulate it, by de-
scribing more explicitly the property of the H̃-orbits that we wish to prove. We
begin with this reformulation.

5.1. The property P(g, r, r′). For g ∈ G let P(g, r, r′) = Pn(g, r, r′) be the fol-
lowing property: either

(20) there exists y ∈ Hr,2k such that g−1yg ∈ Hr′,2k′ and θr,r
′
(y, g−1yg) 6= 1

or r = r′ and

(21) there exists y ∈ Hr,2k such that g−1y tg ∈ Hr,2k and θr,r(y, g−1y tg) = 1.

Lemma 1. For every g ∈ G, θ̃r,r′ is non-trivial on H̃r,r′g if and only if the property
P(g, r, r′) holds.

Proof. Note that

Hr,r
′

g = {(y, g−1yg) : y ∈ Hr,2k ∩ gHr′,2k′g
−1}

and therefore (20) holds if and only if θr,r
′

is not trivial on Hr,r′g . If r 6= r′ this
proves the lemma. If r = r′ it remains to show that when θr,r is trivial on Hr,rg
then θ̃r,r is not trivial on H̃r,rg if and only if we have (21). Note that

{h ∈ Hr,r : (h,−1) ∈ H̃r,rg } = {(y, g−1y tg) : y ∈ Hr,2k ∩ gHr,2kg
τ}.

If y ∈ Hr,2k ∩ gHr,2kg
τ then for h = (y, g−1y tg) ∈ Hr,r we have h · tg = g, i.e.

(h,−1) ∈ H̃r,rg and therefore by (8) we get that h ξ(h) ∈ Hr,rg so that θr,r(h ξ(h)) =
1. Since θr,r = θr,r ◦ ξ we have θr,r(h) ∈ {±1}. With this notation (21) is satisfied
by y if and only if θr,r(h) = 1 and θ̃r,r(h,−1) = −1. The remaining of the lemma
follows. �

We make here another simple observation that will help to shorten some of the
arguments in the proof of Proposition 2.

Lemma 2. If the property P(g, r, r′) holds then P(h · g, r, r′) holds for all h ∈ H̃
and P(tg, r′, r) holds.

Proof. Note that H̃h·g = hH̃gh−1 and that θ̃ is a character. Thus, the first state-
ment is immediate from Lemma 1. If r = r′ this argument with h = (eH,−1) also
contains the second statement. If r 6= r′ the second statement follows from the fact
that Hr

′,r
tg = ξ(Hr,r′g ) (that follows from (8) ) and the fact that θ ◦ ξ = θ. �
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In light of Lemma 1 in order to show Proposition 2 we need to show that for
every r, r′ ≤ n such that n− r ≡ n− r′ ≡ 0( mod 2) and for every g ∈ G we have
P(g, r, r′). This will occupy the rest of this paper.

5.2. Two cases where P(g, r, r′) is already known. There are two extremes
that are already known. The first is a well known fact concerned with the double
coset space Un\G/Un. It can be found in the proof of [GK75, Lemma 4.3.8] (it is
essentially the steps (a)-(d) verifying condition 4 of [GK75, Theorem 4.2.10]) and
it is applied in order to prove the uniqueness of Whittaker models. We provide a
proof here for the sake of completeness.

Lemma 3. For every g ∈ G the property Pn(g, n, n) holds.

Proof. By the Bruhat decomposition every Hn,n-orbit in G contains an element of
the form aw where w ∈W and a = diag(a1, . . . , an). We show that if θn,n is trivial
on the stabilizer Hn,naw , i.e. if (20) is not satisfied then

(22) for all i=1,. . . ,n-1 either w−1(i) < w−1(i+ 1)

or w−1(i) = w−1(i+ 1) + 1 and ai = ai+1.

When (22) is satisfied then there is a partition (n1, . . . , nt) of n such that w =
diag(wn1 , . . . , wnt) is the longest element of WM where M is the standard Levi
subgroup of G of type (n1, . . . , nt) and a lies in the center of M. In particular,
we then have aw = t(aw) and therefore aw satisfies (21) with y = In. Assume
now that θn,n is trivial on Hn,naw . Let u, v ∈ Un be such that (u, vτ ) ∈ Hn,naw . Thus,
w−1a−1uaw = vτ ∈ Un and therefore for any i < j if w−1(i) < w−1(j) then ui,j = 0
and if w−1(i) > w−1(j) then (vτ )w−1(i),w−1(j) = a−1

i ajui,j . Let Ei,j ∈Mn×n(F ) be
the matrix with (b, c)th entry equal to δ(i,j),(b,c) and let ui,j(s) = In+sEi,j , s ∈ F. If
w−1(i) > w−1(i+ 1) then for any s ∈ F if u = ui,i+1(s) and v = (w−1a−1uaw)τ we
have (u, vτ ) ∈ Hn,naw . If w−1(i) > w−1(i+1)+1 then θ(u, vτ ) = ψ(s) and since s may
be chosen arbitrarily this leads to a contradiction. Thus w−1(i) = w−1(i + 1) + 1
and 1 = θ(u, vτ ) = ψ(s(1− a−1

i ai+1)). It follows that ai = ai+1. The property (22)
is therefore satisfied. �

The second extreme is with respect to the symplectic group. It was proved by
Heumus and Rallis [HR90, Proposition 2.3.1] based on results of Klyachko [Kly84,
Corollary 5.6]. Recently, Goldstein and Guralnick essentially provided an indepen-
dent proof over any field [GG07, Proposition 3.1].

Lemma 4. When n is even for every g ∈ G the property Pn(g, 0, 0) holds.

Proof. We show that when r = r′ = 0 (21) holds for every g ∈ G. That is, we
show that for every g ∈ G we have tg ∈ Sp(Jn)gSp(Jn). As observed in the proof
of Lemma 2, it is enough to prove that there exists y ∈ Sp(Jn)gSp(Jn) such that
ty ∈ Sp(Jn)gSp(Jn). Let n = 2k and let

J ′n =
(

0 Ik
−Ik 0

)
= tσJnσ where σ =

(
wk 0
0 Ik

)
.

Thus,
Sp(J ′n) = σ−1Sp(Jn)σ.
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It follows from [GG07, Proposition 3.1] that there exists g′ ∈ Gk such that diag(Ik, g′) ∈
Sp(J ′n)σ−1gσSp(J ′n), i.e that y = σ diag(Ik, g′)σ−1 ∈ Sp(Jn)gSp(Jn). Since ev-
ery matrix in Gk is conjugate to its transpose and since diag(x, tx) ∈ Sp(J ′n)
for every x ∈ Gk we see that diag(Ik, tg′) ∈ Sp(J ′n)σgσSp(J ′n), i.e. that ty =
σ diag(Ik, tg′)σ−1 ∈ Sp(Jn)gSp(Jn). �

6. Proof by induction of Pn(g, r, r′)

Fix 2 decompositions n = r+ 2k = r′+ 2k′. We prove by induction on n that for
every g ∈ G we have Pn(g, r, r′). If r = r′ = 0 then this is Lemma 4. We assume
from now on that r + r′ > 0. The induction hypothesis is that for all n1 < n,
all r1, r′1 ≤ n1 such that n1 − r1 ≡ n1 − r′1 ≡ 0( mod 2) and all g′ ∈ Gn1 we
have Pn1(g′, r1, r′1). Set H = Hr,2k, H

′ = Hr′,2k′ , H = H ×H ′ and θ = θr,r
′
. Let

P = P(1(r),2k) and P ′ = P(1(r′),2k′). For w ∈ W viewed as a permutation in S[1, n]
let

Iw = {i ∈ [1, r] : w−1(i) ∈ [1, r′]}.

6.1. A simple proof for most Bruhat cells.

Lemma 5. Let w ∈ MWM ′ be such that Iw is not empty then the property P(g, r, r′)
holds for every g ∈ PwP ′.

Proof. Note that U×U ′ ⊆ H and therefore that every H-orbit in PwP ′ contains an
element of MwM ′. In light of Lemma 2 we may assume without loss of generality
that g ∈MwM ′.

Assume first that there exists an integer i such that 1 ≤ i ≤ min{r, r′} and
Iw = w−1(Iw) = [1, i]. We can then write w = diag(w1, w2) for some w1 ∈ S[1, i]
and w2 ∈ S[i + 1, n]. Thus for g ∈ MwM ′ there exists g1, g2 ∈ Gn−i, and a =
diag(a1, . . . , ai) ∈ Gi such that g = diag(Ii, g1)w diag(a, g2) = diag(w1a, g

′) for
g′ = g1w2g2 ∈ Gn−i. Let (u1, u

τ
2 , ε) ∈ (H̃i,ii )w1a be such that θ̃i,i(u1, u

τ
2 , ε) 6= 1

and let (h1, h
τ
2 , ε
′) ∈ (H̃r−i,r

′−i
n−i )g′ be such that θ̃r−i,r

′−i(h1, h
τ
2 , ε
′) 6= 1. The first

exists by Lemma 3. For the second we apply the induction hypothesis to have
Pn−i(g′, r − i, r′ − i). If ε = 1 then

h = (diag(u1, In−i),diag(u2, In−i)τ , 1) ∈ H̃g and θ̃(h) = θ̃i,i(u1, u
τ
2 , 1) 6= 1.

Similarly, if ε′ = 1 then

h = (diag(Ii, h1),diag(Ii, h2)τ , 1) ∈ H̃g and θ̃(h) = θ̃r−i,r
′−i(h1, h

τ
2 , 1) 6= 1.

If on the other hand ε = ε′ = −1 then

h = (diag(u1, h1),diag(u2, h2)τ ,−1) ∈ H̃g and θ̃(h) = −1.

We are now left with the case that either Iw or w−1(Iw) is not of the form [1, i]
as above. Note that if g ∈ PwP ′ then tg ∈ P ′w−1P and that w−1 ∈ M ′WM . It
follows from Lemma 2 that it is enough to prove our lemma either for g or for tg.
We may therefore assume, without loss of generality, that Iw is not of the form
[1, i] for any 1 ≤ i ≤ min{r, r′}. Since we assume that g ∈ MwM ′ there exist
g1 ∈ G2k, g2 ∈ G2k′ and a = diag(a1, . . . , ar′) a diagonal matrix in Gr′ such that
g = diag(Ir, g1)w diag(a, g2). By our assumption on w we have that [1, r]\ Iw is not
empty. Let ` = min([1, r] \ Iw). Since [1, `− 1] is contained but does not equal Iw
the set [`+ 1, r]∩ Iw is not empty. Let q = min([`+ 1, r]∩ Iw). Then q−1 6∈ Iw and
q ∈ Iw. In particular, w−1(q − 1) > r′ and w−1(q) ≤ r′. Let Ei,j ∈ Mn×n(F ) be
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the matrix with (b, c)th entry equal to δ(i,j),(b,c) and let ui,j(s) = In + sEi,j , s ∈ F.
Note that uq−1,q(s) ∈ U ⊆ Hr,2k and that ψr,2k(uq−1,q(s)) = ψ(s). Thus, there
exists s ∈ F such that ψr,2k(uq−1,q(s)) 6= 1. On the other hand,

g−1uq−1,q(s)g =
(
a−1 0
0 g−1

2

)
uw−1(q−1),w−1(q)(s)

(
a 0
0 g2

)
=
(
Ir′ 0
∗ I2k′

)
∈ Hr′,2k′

and ψr′,2k′(g−1uq−1,q(s)g) = 1. It follows that hs = (uq−1,q(s), g−1uq−1,q(s)g) ∈ Hg
and if s is such that ψr,2k(uq−1,q(s)) 6= 1 then θ(hs) 6= 1. �

6.2. The closed Bruhat cell. We are now left with the case that Iw is empty.
Since this means that w−1 maps [1, r] into [r′ + 1, n] we must have, in particular,
n ≥ r + r′. It is not difficult to see that there is then a unique such element in
MWM ′ , namely,

w = wr,r
′

=

 0 Ir 0
Ir′ 0 0
0 0 In−(r+r′)

 .

Note then that PwP ′, is the closed Bruhat cell. We remark further that this
contains the case that either r or r′ is 0. Let g ∈ MwM ′. Note that there exist
g1 ∈ G2k and g2 ∈ G2k′ such that

g =
(
Ir

g1

)
w

(
Ir′

g2

)
.

Indeed, for t ∈ Gr, t
′ ∈ Gr′ (and in particular when t and t′ are diagonal) if

g′1 ∈ G2k and g′2 ∈ G2k′ we have(
t

g′1

)
w

(
t′

g′2

)

=
(
Ir

g′1

) 0 t 0
t′ 0 0
0 0 In−(r+r′)

( I ′r
g′2

)
=
(
Ir

g1

)
w

(
Ir′

g2

)
where g1 = g′1 diag(t′, I2k−r′) and g2 = diag(t, I2k′−r)g′2.

In order to show P(g, r, r′) we distinguish between 2 cases. We denote by
〈v1, . . . , vi〉 the subspace of a vector space V spanned by v1, . . . , vi ∈ V. Let V
be a subspace of the vector space M`×1(F ) for some positive integer `. We say that
a skew symmetric matrix I ∈M`×`(F ) is totally isotropic on V if tvIv′ = 0 for all
v, v′ ∈ V. Denote by ei the column vector with 1 in the ith row and 0 in each other
row. Thus ei ∈M`×1(F ) for an integer ` which is implicit in our notation. Let

I1 = tg1J2kg1 and I2 = gτ2J2k′g
−1
2 .

We say that g belongs to the totally isotropic case if both I−1
1 is totally isotropic

on 〈e1, . . . , er′〉 and I2 is totally isotropic on 〈e1, . . . , er〉 . Otherwise we say that g
does not belong to the totally isotropic case. It is easy to verify that this property
indeed depends only on g and not on g1 and g2. Note that if g belongs to the totally
isotropic case we must have r′ ≤ k and r ≤ k′. These inequalities are crucial for
the proof of Lemma 11. They follow from the simple observation that a totally
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isotropic subspace for a nondegenerate symplectic form I is of dimension at most
half of the rank of I. We now prove P(g, r, r′) separately in each of the 2 cases.

6.2.1. When g does not belong to the totally isotropic case. In this case we prove
that g satisfies (20). It will be convenient to make this property more explicit. We
say that the 2 skew-symmetric forms I1 ∈ G2k and I2 ∈ G2k′ satisfy the property
Q(I1, I2, r, r′) if there exist u ∈ Ur and u′ ∈ Ur′ such that ψr(u) 6= ψr′(u′) and for
some X ∈Mr×2k′−r(F ), Y ∈Mr′×2k−r′(F ) and D ∈ Gn−(r+r′) we have(

u X
0 D

)
∈ Sp(I2) and

(
tu′ 0
Y D

)
∈ Sp(I1).

Lemma 6. Let

g =
(
Ir

g1

)
w

(
Ir′

g2

)
∈MwM ′

and let
I1 = tg1J2kg1 and I2 = gτ2J2k′g

−1
2 .

Then g satisfies (20) if and only if Q(I1, I2, r, r′).

Proof. Let

y =
(
u Z

h

)
∈ H

with u ∈ Ur, h ∈ Sp(J2k) and Z ∈ Mr×2k(F ). To explicate condition (20) we
compute g−1yg. First note that we have(

Ir
g−1
1

)(
u Z

h

)(
Ir

g1

)
=
(
u Zg1

g−1
1 hg1

)
.

We write

g−1
1 hg1 =

(
tu′ B
Y D

)
and Zg1 = (Z1, Z2)

with u′ ∈Mr′×r′(F ), D ∈M2k−r′×2k−r′(F ), Z1 ∈Mr×r′(F ) and Z2 ∈Mr×2k−r′(F ).
We then have 0 Ir′ 0

Ir 0 0
0 0 In−(r+r′)

 u Z1 Z2

0 tu′ B
0 Y D

 0 Ir 0
Ir′ 0 0
0 0 In−(r+r′)

 =

 tu′ 0 B
Z1 u Z2

Y 0 D

 .

Therefore,

g−1yg =

 tu′ (0, B)g2

g−1
2

(
Z1

Y

)
g−1
2

(
u Z2

0 D

)
g2

 .

We see that g−1yg ∈ H ′ if and only if u′ ∈ Ur′ , B = 0 and

g−1
2

(
u Z2

0 D

)
g2 ∈ Sp(J2k′).

Recall also that (
tu′ 0
Y D

)
∈ g−1

1 Sp(J2k)g1.

With this notation, when g−1yg ∈ H ′ we have

θ(y, g−1yg) = ψr(u)ψr′((u′)−1).

Since
g−1
1 Sp(J2k)g1 = Sp(I1) and g2Sp(J2k′)g−1

2 = Sp(I2),
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the lemma is now immediate. �

In order to proceed we need the following Lemma of Klyachko [Kly84, §1.3, p.
368, Step 3].

Lemma 7. Let I = −tI ∈ G2k and let r ≤ 2k be such that I is not totally isotropic
on 〈e1, . . . , er〉 then there exists u ∈ Ur with ψr(u) 6= 1 and X ∈Mr×2k−r(F ) such
that

(23)
(
u X
0 I2k−r

)
∈ Sp(I).

Proof. Let i ∈ [1, r − 1] be maximal so that I is totally isotropic on 〈e1, . . . , ei〉 .
There is therefore v0 ∈ 〈e1, . . . , ei〉 such that tv0Iei+1 6= 0. We may further assume
that v0 ∈ ei + 〈e1, . . . , ei−1〉 since if teiIei+1 6= 0 then we may take v0 = ei
and otherwise, we may replace v0 by its sum with any scalar multiple of ei. Let
V = M2k×1(F ) and for every s ∈ F define λs ∈ HomF (V, F ) by λs(v) = s tv0Iv.
Note that the map s 7→ λs(ei+1), s ∈ F is onto F. Identify GL(V ) with G2k via the
standard basis {e1, . . . , e2k} and define an element hs ∈ G2k by

hs(v) = v + λs(v) v0.

Thus, hs ∈ Sp(I) is of the form (23) with ψr(u) = ψ(λs(ei+1)). �

Lemma 8. Let

g =
(
Ir

g1

)
w

(
Ir′

g2

)
∈MwM ′

not belong to the totally isotropic case and let

I1 = tg1J2kg1 and I2 = gτ2J2k′g
−1
2 .

Then we have Q(I1, I2, r, r′).

Proof. If I2 is not totally isotropic on 〈e1, . . . , er〉 then by Lemma 7 there exist
u ∈ Ur and X ∈Mr×2k′−r such that ψr(u) 6= 1 and(

u X
0 I2k′−r

)
∈ Sp(I2).

Then Q(I1, I2, r, r′) is satisfies with Y = 0, u′ = Ir′ and D = In−(r+r′). Note
further that Sp(I−1

1 ) = {tg : g ∈ Sp(I1)}. Thus, if I−1
1 is not totally isotropic

on 〈e1, . . . , er′〉 then by Lemma 7 applied to I−1
1 there exist u′ ∈ Ur′ and Y ∈

M2k−r′×r′ such that ψr′(u′) 6= 1 and(
tu′ 0
Y I2k−r′

)
∈ Sp(I1).

Thus, Q(I1, I2, r, r′) is satisfied with X = 0, u = Ir and D = In−(r+r′). �

6.2.2. When g belongs to the totally isotropic case. Assume from now on that both
I2 is totally isotropic on 〈e1, . . . , er〉 and I−1

1 is totally isotropic on 〈e1, . . . , er′〉 .
Recall that, in particular, we then have r ≤ k′ and r′ ≤ k. In the case at hand
H · g contains an element of a rather simple form that will allow us the inductive
argument. In order to bring g to this simpler form we need the following lemma.

Lemma 9. Let ` ≤ m and Q = P(`,2m−`). Then

Sp(J2m)Q = {g ∈ G2m : tgJ2mg is totally isotropic on 〈e1, . . . , e`〉}.
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Proof. If h ∈ Sp(J2m) and q ∈ Q then t(hq)J2mhq = tqJ2mq. Since q preserves
the space 〈e1, . . . , e`〉 and since J2m is totally isotropic on 〈e1, . . . , e`〉 we get that
tqJ2mq is also totally isotropic on 〈e1, . . . , e`〉 . To prove the other direction let
g ∈ G2m be such that tgJ2mg is totally isotropic on 〈e1, . . . , e`〉 . Then

x = tgJ2mg =
(

0` A
−tA D

)
∈ G2m

for some D = −tD ∈M2m−`×2m−`(F ). We must show that there exists q ∈ Q such
that tqxq = J2m. Since x is invertible and ` ≤ 2m − ` the matrix A is of rank `.
Performing elementary operations, there exists α ∈ G` and γ ∈ G2m−` such that
tαAγ = (0`×2(m−`), w`). It follows that for q = diag(α, γ) ∈ Q, tqxq has the form 0 0 w`

0 a b
−w` −tb d


where a = −ta ∈ G2(m−`) and d = −td ∈ M`×`(F ). Write β = (β1, β2) with
β1 ∈M`×2(m−`)(F ) and β2 ∈M`×`(F ). Note that I` 0 0

tβ1 I2(m−`) 0
tβ2 0 I`

 0 0 w`
0 a b
−w` −tb d

 I` β1 β2

0 I2(m−`) 0
0 0 I`


=

 0 0 w`
0 a b+ tβ1w`
−w` −tb− w`β1 d+ tβ2w` − w`β2

 .

We may now take β1 = −w`tb. Any skew symmetric matrix in M`×`(F ) can be
written as a difference X − tX for some X ∈ M`×`(F ). Thus, there also exists β2

such that tβ2w` − w`β2 = −d. We get that there exists q ∈ Q such that

tqxq =

 0 0 w`
0 a 0
−w` 0 0

 .

Let y ∈ G2(m−`) be such that tyay = J2(m−`). Thus q′ = q diag(I`, y, I`) ∈ Q and
tq′xq′ = J2m. �

For x ∈ G` let
x̃ = w` x

τ w`.

The following property of the group Sp(J2m) will be used several times in the proof
of P(g, r, r′). Assume that ` ≤ m.

(24) For all x ∈ G`, s ∈ Sp(J2(m−`)) and y there exists y∗ uniquely determined
by x, s and y and dependent linearly on y and there exists z such that x y∗ z

0 s y
0 0 x̃

 (resp.

 x 0 0
y∗ s 0
z y x̃

) lies in Sp(J2m).

We now choose a convenient representative for g.

Lemma 10. Let

g =
(
Ir

g1

)
w

(
Ir′

g2

)
∈MwM ′
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belong to the totally isotropic case. Then there exists γ ∈ Gn−(r+r′) such that 0 Ir 0
Ir′ 0 0
0 0 γ

 ∈ H · g.
Proof. Since−I−1

1 = g−1
1 J2kg

τ
1 is totally isotropic on 〈e1, . . . , er′〉 and I2 = gτ2J2kg

−1
2

is totally isotropic on 〈e1, . . . , er〉, it follows from Lemma 9 that

g1 ∈ Sp(J2k)
(
α1 0
β′1 γ1

)
and g2 ∈

(
α2 β′2
0 γ2

)
Sp(J2k′)

for some α1 ∈ Gr′ , γ1 ∈ G2k−r′ , α2 ∈ Gr, γ2 ∈ G2k′−r and β′1 and β′2 of the
appropriate size. Therefore, 0 α2 β′2

α1 0 0
β′1 0 γ1γ2

 =

 Ir 0 0
0 α1 0
0 β′1 γ1

 0 Ir 0
Ir′ 0 0
0 0 In−(r+r′)

 Ir′ 0 0
0 α2 β′2
0 0 γ2

 ∈ H · g.
Note that diag(α1, I2(k−r′), α̃1) ∈ Sp(J2k) and diag(α2, I2(k′−r), α̃2) ∈ Sp(J2k′) and
therefore that

h = diag(Ir, α−1
1 , I2(k−r′), α̃

−1
1 ) ∈ H and h′ = diag(Ir′ , α−1

2 , I2(k′−r), α̃
−1
2 ) ∈ H ′.

Thus,

h

 0 α2 β′2
α1 0 0
β′1 0 γ1γ2

h′ =

 0 Ir β2

Ir′ 0 0
β1 0 γ

 ∈ H · g
for some γ ∈ Gn−(r+r′), β1 and β2. Now note that Ir β2γ

−1β1 −β2γ
−1

0 Ir′ 0
0 0 In−(r+r′)

 0 Ir β2

Ir′ 0 0
β1 0 γ

 Ir′ 0 0
0 Ir 0

−γ−1β1 0 In−(r+r′)


=

 0 Ir 0
Ir′ 0 0
0 0 γ

 ∈ H · g.
�

Lemma 11. Let γ ∈ Gn−(r+r′) and let

g =

 0 Ir 0
Ir′ 0 0
0 0 γ


then P(g, r, r′).

Proof. Recall that r + r′ > 0. Let

σ1 =
(

I2(k−r′)
wr′

)
and σ2 =

(
I2(k′−r)

wr

)
.
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For x = σ−1
1 γσ2 we have by the induction hypothesis Pn−(r+r′)(x, r, r′). Fix y ∈

Hr,2(k′−r) such that either

(25) x−1yx ∈ Hr′,2(k−r′) and θ(y, x−1yx) 6= 1

or

(26) r = r′, x−1y tx ∈ Hr′,2(k−r′) and θ(y, x−1y tx) = 1.

For every invertible matrix z denote by z? the matrix z if y satisfies (25) and the
matrix tz otherwise. Note that if (26) holds then σ1 = σ2 and therefore in either
case we have

x? = σ−1
1 γ?σ2.

There exist s′ ∈ Sp(J2(k−r′)), u′ ∈ Ur′ and %′ ∈Mr′×2(k−r′)(F ) such that

σ1yσ
−1
1 =

(
s′

%′ t(ũ′)

)
and there exist s ∈ Sp(J2(k′−r)), u ∈ Ur and % ∈M2(k′−r)×r(F ) such that

γ−1σ1yσ
−1
1 γ? = σ2x

−1yx?σ−1
2 =

(
s %

ũ

)
.

Note then that

(27) θ(y, x−1yx?) = ψr(u)ψr′(u′)−1.

By (24) there exist (%′)∗ ∈M2(k−r′)×r′(F ), %∗ ∈Mr×2(k′−r)(F ), z′ and z such that

h =

 tu′ 0 0
(%′)∗ s′ 0
z′ %′ tũ′

 ∈ Sp(J2k) and h′ =

 u %∗ z
0 s %
0 0 ũ

 ∈ Sp(J2k′).

Note that

g? =

 0 Ir 0
Ir′ 0 0
0 0 γ?

 .

Let
ζ1 = (%∗, z)(γ?)−1 and ζ = (0r×r′ , ζ1)

then

Y =
(
u ζ
0 h

)
∈ H, g−1Y g? =

(
tu′ 0
ζ ′ h′

)
∈ H ′

where

ζ ′ =
(

0r×r′
ζ ′1

)
, ζ ′1 = γ−1

(
(%′)∗

z′

)
and θ(Y, g−1Y g?) = ψr(u)ψr′(u′)−1.

The property Pn(g, r, r′) therefore follows from (27) and the fact that either (25)
holds or (26) holds. �

6.3. Conclusion. For g ∈ G, by (7) there exists w ∈ MWM ′ such that g ∈ PwP ′.
If Iw is not empty then P(g, r, r′) is proved in Lemma 5. If Iw is empty then we
separated in §6.2 the statement P(g, r, r′) into 2 cases. If g belongs to the totally
isotropic case then P(g, r, r′) follows from Lemma 2, Lemma 10 and Lemma 11.
Otherwise P(g, r, r′) follows from Lemma 6 and Lemma 8. It follows that for every
g ∈ G we have P(g, r, r′). Proposition 2 now follows from Lemma 1. Therefore,
Proposition 1 follows from §4.1 and Theorem 1 follows from §3.1.
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