
THE SL(2)-TYPE AND BASE CHANGE
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Abstract. The SL(2)-type of any smooth, irreducible and unitarizable representation
of GLn over a p-adic field was defined by Venkatesh. We provide a natural way to extend
the definition to all smooth and irreducible representations. For unitarizable representa-
tions we show that the SL(2)-type of a representation is preserved under base change with
respect to any finite extension. The Klyachko model of a smooth, irreducible and unita-
rizable representation π of GLn depends only on the SL(2)-type of π. As a consequence
we observe that the Klyachko model of π and of its base-change are of the same type.

1. introduction

Let F be a finite extension of Qp. In [Ven05], Venkatesh assigned a partition of n, the
SL(2)-type of π, to any smooth, irreducible and unitarizable representation π of GLn(F ).
For a representation of Arthur type the SL(2)-type encodes the combinatorial data in the
Arthur parameter. In general, the SL(2)-type is defined in terms of Tadić’s classification
of the unitary dual.

The reciprocity map for GLn(F ) is a bijection from the set of isomorphism classes
of smooth irreducible representations of GLn(F ) to the set of isomorphism classes of n-
dimensional Weil-Deligne representations (cf. [HT01] and [Hen00]). Applying the reci-
procity map we observe that there is a natural way to extend the definition of the SL(2)-
type to all smooth and irreducible representations of GLn(F ) (see Theorem 4.1 and Remark
2). The reciprocity map also allows the definition of base change with respect to any fi-
nite extension E of F. It is a map bcE/F from isomorphism classes of smooth irreducible
representation of GLn(F ) to isomorphism classes of smooth irreducible representation of
GLn(E) that is the ‘mirror image’ of restriction with respect to E/F of Weil-Deligne repre-
sentations. The content of Theorem 6.1, our main result, is that for any smooth, irreducible
and unitarizable representation π of GLn(F ) the representations π and bcE/F (π) have the
same SL(2)-type.

In [OS07], [OS08a], [OS08b] we studied the Klyachko models of smooth irreducible rep-
resentations of GLn(F ), that is, distinction of a representation with respect to certain
subgroups that are a semi direct product of a unipotent and a symplectic group. For uni-
tarizable representations, our results are also described in terms of Tadić’s classification
and depend, in fact, only on the SL(2)-type of a representation. For example, a smooth,
irreducible and unitarizable representation π of GL2n(F ) is Sp2n(F )-distinguished, i.e. it
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satisfies HomSp2n(F )(π,C) 6= 0, if and only if the SL(2)-type of π consists entirely of even
parts (and in this case HomSp2n(F )(π,C) is one dimensional [HR90, Theorem 2.4.2]). For
unitarizable representations, our results on Klyachko models are reinterpreted here in terms
of the SL(2)-type. As a consequence we show that Klyachko types (see Definition 1 below)
are preserved under base-change with respect to any finite extension. In particular, we
have

Theorem 1.1. Let E/F be a finite extension of p-adic fields. A smooth, irreducible and
unitarizable representation π of GL2n(F ) is Sp2n(F )-distinguished if and only if bcE/F (π)
is Sp2n(E)-distinguished.

The rest of this note is organized as follows. After setting some general notation in
Section 2, in Section 3 we recall the definition of the reciprocity map. In Section 4 we
recall the definition of Venkatesh for the SL(2)-type of a unitarizable representation and
extend it to all smooth irreducible representations. We recall (and reformulate in terms
of the SL(2)-type) our results on symplectic (and more generally on Klyachko) models
in Section 5. Our main observation Theorem 6.1 and its application to Klyachko models
Corollary 6.1 are stated in Section 6 and proved in Section 7. The main theorem says that
base change respects SL(2)-types and its corollary says that base change respects Klyachko
types. Theorem 1.1 is a special case where the Klyachko type is purely symplectic.

2. Notation

Let F be a finite extension of Qp for some prime number p and let | ·|F : F× → C× denote
the standard absolute value normalized so that the inverses of uniformizers are mapped to
the size of the residual field. Denote by WF the Weil group of F and by IF the inertia
subgroup of WF . We normalize the reciprocity map TF : WF → F×, given by local class
field theory, so that geometric Frobenius elements are mapped to uniformizers. The map
TF defines an isomorphism from the abelianization W ab

F of WF to F× (this is the inverse
of the Artin map). Let | ·|WF

= | ·|F ◦ TF denote the associated absolute value on WF .
Denote by 1Ω the characteristic function of a set Ω. Let MSfin(Ω) be the set of finite

multisets of elements in Ω, that is, the set of functions f : Ω→ Z≥0 of finite support. When
convenient we will also denote f by {ω1, . . . , ω1, ω2, . . . , ω2, . . . } where ω ∈ Ω is repeated
f(ω) times. Let P = MSfin(Z>0) be the set of partitions of positive integers and let

P(n) = {f ∈ P :
∞∑
k=1

k f(k) = n}

denote the subset of partitions of n. For n, m ∈ Z>0 let (n)m = m1n = {n, . . . , n} be the
partition of nm with ‘m parts of size n’. Let odd : P → Z≥0 be defined by

odd(f) =
∞∑
k=0

f(2k + 1),

i.e. odd(f) is the number of odd parts of the partition f.
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3. Reciprocity and base-change for GLn(F )

3.1. Weil-Deligne representations. An n-dimensional Weil-Deligne representation is a
pair ((ρ, V ), N) where (ρ, V ) is an n-dimensional representation of WF that decomposes as
a direct sum of irreducible representations and N : V → V is a linear operator such that

|w|WF
N ◦ ρ(w) = ρ(w) ◦N, w ∈ WF .

The map ((ρ, V ), N) 7→ ([ρ], f), where [ρ] denotes the isomorphism class of the n-dimensional
representation (ρ, V ) of WF and f ∈ P(n) is the partition of n associated to the Jordan de-
composition ofN, defines an injective map on isomorphism classes of Weil-Deligne represen-
tations. Denote its image by GF (n). In this way we identify the set GF (n) with the set of iso-
morphism classes of n-dimensional Weil-Deligne representations. Let PF,n : GF (n)→ P(n)
be the projection to the second coordinate. Let GF = ∪∞n=1GF (n) be the set of isomorphism
classes of all finite dimensional Weil-Deligne representations and let PF : GF → P be the
map such that PF |GF (n) = PF,n.

3.2. The local Langlands correspondence. Let AF (n) be the set of isomorphism
classes of smooth and irreducible representations of GLn(F ) and set AF = ∪∞n=1AF (n).
For every π ∈ AF we denote by ωπ the central character of (any representation in the
isomorphism class of) π. Fix a non trivial additive character ψ of F. Due to Harris-Taylor
[HT01] and independently to Henniart [Hen00] there exists a unique sequence of bijections

recF,n : AF (n)→ GF (n)

for all n ≥ 1 satisfying the following properties:

recF (χ) = χ ◦ TF ;(3.1)

L(π1 × π2, s) = L(recF (π1)⊗ recF (π2), s);(3.2)

ε(π1 × π2, s, ψ) = ε(recF (π1)⊗ recF (π2), s, ψ);(3.3)

det ◦ recF (π) = recF (ωπ);(3.4)

recF (π∨) = recF (π)∨.(3.5)

Here χ ∈ AF (1), π, π1, π2 ∈ AF , π∨ is the contragredient of π, recF (π)∨ is the dual of
recF (π) and recF : AF → GF is such that recF |AF (n) = recF,n .

3.3. Expressing recF in terms of rec◦F . Let A◦F (n) ⊆ AF (n) be the subset of isomor-
phism classes of supercuspidal representations and let G◦F (n) ⊆ GF (n) be the subset of
isomorphism classes ([ρ], f) such that ρ is irreducible and f = 1n = {n}. The set G◦F (n)
is identified with the set of isomorphism classes of irreducible and n-dimensional repre-
sentations of WF . The work of Harris-Taylor, Henniart shows that there exists a unique
sequence of bijections

recF,n|A◦F (n) = rec◦F,n : AF (n)→ G◦F (n)

satisfying (3.1), (3.2), (3.3), (3.4) and (3.5). The work of Zelevinsky [Zel80] allows the
extention of rec◦F to the map recF on AF . This is also explained in [Hen85] and we now
recall the construction of recF in terms of rec◦F .
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For s ∈ C and every isomorphism class $ = [π] ∈ AF (resp. % = ([ρ], f) ∈ GF ) let
$[s] = [π ⊗ |det|sF ] (resp. %[s] = ([ρ ⊗ | ·|sWF

], f)). A segment in A◦F (resp. G◦F ) is a set of
the form

∆[σ, r] = {σ[
1− r

2
], σ[

3− r
2

], . . . , σ[
r − 1

2
]}

(resp.

∆[ρ, r] = {ρ[
1− r

2
], ρ[

3− r
2

], . . . , ρ[
r − 1

2
]})

for some σ ∈ A◦F (resp. ρ ∈ G◦F ) and r ∈ Z>0. Let S (resp. S ′) denote the set of all
segments in A◦F (resp. G◦F ) and let O = MSfin(S) (resp. O′ = MSfin(S ′)). The bijection
rec◦F : A◦F → G◦F defines a bijection rec◦F : S → S ′ given by rec◦F (∆[σ, r]) = ∆[rec◦F (σ), r]
and a bijection rec◦F : O → O′ given by rec◦F (a)(rec◦F (∆)) = a(∆), ∆ ∈ S.

In [Zel80, Section 6.5] Zelevinsky defines a bijection a 7→ 〈a〉 from O to AF . The Zelevin-
sky involution is defined in [Zel80, Section 9.12] as an involution on the Grothendieck group
associated with AF . It is proved by Aubert [Aub95], [Aub96] and independently by Proc-
ter [Pro98] that the Zelevinsky involution restricts to a bijection from AF to itself that we
denote by π 7→ πt. In [Zel80, Section 10.2] Zelevinsky defines a bijection τ : O′ → GF as
follows. For a segment ∆[ρ, r] ∈ S ′ where ρ ∈ G◦F (k) let

τ(∆[ρ, r]) = (⊕ri=1 ρ, (r)k)

and for a′ ∈ O′ set

τ(a′) = ⊕∆′∈O′τ(∆′)

where for ([ρ1], f1), . . . , ([ρm], fm) ∈ GF the direct sum is given by

([ρ1], f1)⊕ · · · ⊕ ([ρm], fm) = ([ρ1 ⊕ · · · ⊕ ρm], f1 + · · ·+ fm).

The reciprocity map recF is given by

recF (〈a〉t) = τ(rec◦F (a)), a ∈ O.

4. The SL(2)-type of a representation

Denote byAuF (n) the subset ofAF (n) consisting of all isomorphism classes of unitarizable
representations and letAuF = ∪∞n=1AF (n). For [π1], . . . , [πm] ∈ AF we denote by π1×· · ·×πm
the representation parabolically induced from π1 ⊗ · · · ⊗ πm and by [π1] × · · · × [πm] its
isomorphism class.

For σ ∈ A◦F and integers n, r > 0 let

δ[σ, n] = 〈∆[σ, n]〉t,

a(σ, n, r) = {∆[σ[
1− r

2
], n],∆[σ[

3− r
2

], n], · · · ,∆[σ, n](
r − 1

2
)} ∈ O

and

U(δ[σ, n], r) = 〈a(σ, n, r)〉.
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Tadić’s classification of the unitary dual of GLn(F ) [Tad86] implies that if σ ∈ A◦F ∩ AuF
then U(δ[σ, n], r) ∈ AuF and that for any π ∈ AuF there exist σ1, . . . , σm ∈ A◦F and integers
n1, . . . , nm, r1, . . . , rm > 0 such that

(4.1) π = U(δ[σ1, n1], r1)× · · · × U(δ[σm, nm], rm).

It further follows from [Tad95, Lemma 3.3] that

(4.2) U(δ[σ, n], r)t = U(δ[σ, r], n).

Remark 1. A representation π as in (4.1) is unitarizble if and only if the representations
σi with a non-unitary central character come in pairs σ[α] and σ[−α] where 0 < α < 1

2
. In

particular, (4.1) takes the complimentary series into account.

Let π ∈ AuF be of the form (4.1) where σi ∈ A◦F (ki), i = 1, . . . ,m. The SL(2)-type of π
is defined in [Ven05, Definition 1] to be the partition

(4.3) {(r1)k1n1 , . . . , (rm)kmnm}.
Theorem 4.1. The SL(2)-type of a representation π ∈ AuF equals PF (recF (πt)).

Remark 2. Theorem 4.1 allows us to define the SL(2)-type of any π ∈ AF by the formula
PF (recF (πt)). Since for representations of Arthur type the SL(2)-type is determined by the
partition associated with the second SL2(C) component of the Arthur parameter and since
the Zelevinsky involution interchanges between the two SL2(C) components (cf. [Ban06,
(1)] and the references there) this is a natural extension for the definition of the SL(2)-
type. Note further that given a reciprocity map (local Langlands conjecture), this provides
a recipe to define the SL(2)-type of an irreducible representation for any reductive group!

Proof. Based on Tadić’s classification of the unitary dual of GLn(F ), the proof of Theorem
4.1 is merely a matter of following the definitions. For convenience, we provide the proof.
The key is in the following simple observations.

Lemma 4.1. Let π ∈ AuF be of the form (4.1). Then

(4.4) recF (π) = ⊕mi=1 ⊕
ri
j=1 τ(∆[σi[

ri + 1

2
− j], ni])

and

(4.5) πt = U(δ[σ1, r1], n1)× · · · × U(δ[σm, rm], nm) ∈ AuF .
Proof. Let ai = a(σi, ri, ni). It follows from (4.2) that

(4.6) π = 〈a1〉t × · · · × 〈am〉t = (〈a1〉 × · · · × 〈am〉)t

and since t is an involution on AF that 〈a1〉 × · · · × 〈am〉 ∈ AF . Thus, it follows from
[Zel80, Proposition 8.4] that 〈a1〉 × · · · × 〈am〉 = 〈a1 + · · ·+ am〉. In other words π =
〈a1 + · · ·+ am〉t and therefore by definition

recF (π) = τ(rec◦F (a1 + · · ·+ am)) = ⊕mi=1τ(rec◦F (ai)).

The identity (4.4) now follows from the definition of τ(rec◦F (ai)). Equation (4.6) implies
the identity in (4.5) and the classification of Tadić therefore implies that πt is indeed
unitarizable. �
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Applying (4.4) to πt and comparing with (4.3) Theorem 4.1 follows from the definitions.
�

From now on for every π ∈ AF we denote by

(4.7) V(π) = PF (recF (πt))

the SL(2)-type of π.

5. Klyachko models

For positive integers r and k denote by Ur the subgroup of upper triangular unipotent
matrices in GLr(F ) and by Sp2k(F ) the symplectic group in GL2k(F ). Fix a decomposition
n = r + 2k. Let

Hr,2k = {
(
u X
0 h

)
: u ∈ Ur, X ∈Mr×2k(F ), h ∈ Sp2k(F )}.

Let ψ be a non trivial character of F. For u = (ui,j) ∈ Ur let

ψr(u) = ψ(u1,2 + · · ·+ ur−1,r)

and let ψr,2k be the character of Hr,2k defined by

ψr,2k

(
u X
0 h

)
= ψr(u).

We refer to the space

Mr,2k = Ind
GLn(F )
Hr,2k

(ψr,2k)

as a Klyachko model for GLn(F ). Here Ind denotes the functor of non-compact smooth
induction.

In [OS08b, Corollary 1] we showed that for any π ∈ AuF (n) there exists a unique decom-
position

n = r(π) + 2k(π)

such that

HomGLn(F )(π,Mr(π),2k(π)) 6= 0

and that in fact dimC(HomGLn(F )(π,Mr(π),2k(π))) = 1.

Definition 1. For π ∈ AuF , the Klyachko type of π is the ordered pair (r(π), 2k(π)).

In fact, for AuF [OS08a, Theorem 8] provides a recipe for reading the Klyachko type off
from Tadić’s classification. Based on (4.3), our results can be reinterpreted by the formula

(5.1) r(π) = odd(V(π)), π ∈ AuF .
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6. Base change-The main results

Let E be a finite extension of F. Denote by resE/F,n : GF (n)→ GE(n) the map defined by
resE/F,n(([ρ], f)) = ([ρ|WE

], f). For n ≥ 1 the base change bcE/F (π) ∈ AE(n) of π ∈ AF (n)
is defined by

recE(bcE/F (π)) = resE/F (recF (π)).

Theorem 6.1. Let E/F be a finite extension of p-adic fields and let π be a smooth, irre-
ducible and unitarizable representation of GLn(F ). Then bcE/F (π) is a smooth, irreducible
and unitarizable representation of GLn(E) and

V(π) = V(bcE/F (π)),

i.e. π and bcE/F (π) have the same SL(2)-type.

As a consequence we have the following.

Corollary 6.1. Under the assumptions of Theorem 6.1 we have

r(π) = r(bcE/F (π)),

i.e. π and bcE/F (π) have the same Klyachko type.

Corollary 6.1 is straightforward from Theorem 6.1 and (5.1).

7. Proof of the main result

Lemma 7.1. Let E/F be a finite extension. For σ ∈ A◦F ∩ AuF there exist σ1, . . . , σm ∈
A◦E ∩ AuE such that

bcE/F (σ) = σ1 × · · · × σm.
Proof. Recall that a representation in A◦F is unitarizable if and only if its central character
is unitary. Let ρ be the irreducible representation of WF such that recF (σ) = ([ρ],1n).
It follows from (3.4) that ρ has a unitary central character and therefore it has a unitary
structure. Thus, the restriction ρ|WE

to WE also has a unitary structure and therefore
each of its irreducible componencts has a unitary central character. The lemma follows by
applying (4.4) to resE/F (recF (σ)). �

Proposition 7.1. Let E/F be a finite extension and let π ∈ AuF then bc(π) ∈ AuE and

(7.1) bcE/F (πt) = bcE/F (π)t.

Proof. Let π ∈ AuF be of the form (4.1). It follows from Lemma 7.1 there exist σi,k ∈
A◦E, i = 1, . . . ,m, k = 1, . . . , ti (not necessarily with a unitary central character) such that

bcE/F (σi) = σi,1 × · · · × σi,ti .
Let ρi = rec◦F (σi) and ρi,k = rec◦E(σi,k). Thus,

resE/F (ρi) = ⊕tik=1ρi,k.

It follows from (4.4) that

(7.2) resE/F (recF (π)) = ⊕mi=1 ⊕
ri
j=1 ⊕

ti
k=1τ(∆[σi,k[

ri + 1

2
− j], ni]).



8 OMER OFFEN AND EITAN SAYAG

On the other hand, let

Π = ×mi=1 ×
ti
k=1 U(δ[σi,k, ni], ri).

Since π ∈ AuF , the classification of Tadić implies that Π ∈ AuE and by (4.4) applied to E
instead of F we have

(7.3) recE(Π) = ⊕mi=1 ⊕
ri
j=1 ⊕

ti
k=1τ(∆[σi,k[

ri + 1

2
− j], ni]).

Comparing (7.2) with (7.3) we obtain that Π = bcE/F (π) and in particular that bcE/F (π) ∈
AuE. Applying this to πt expressed by (4.5) gives

bcE/F (πt) = ×mi=1 ×
ti
k=1 U(δ[σi,k, ri], ni).

Applying (4.5) now to bcE/F (π)t we obtain the identity (7.1). �

It is straightforward from the definitions that

(7.4) PF (recF (π)) = PE(recE(bcE/F (π))), π ∈ AF .
For π ∈ AuF , applying (7.4) to πt and then (7.1) we get that

PF (recF (πt)) = PE(recE(bcE/F (π)t)).

The identity V(π) = V(bcE/F (π)) is now immediate from the definition (4.7). This com-
pletes the proof of Theorem 6.1.
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sentations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165–210, 1980.


