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(O(V ⊕ F ), O(V )) IS A GELFAND PAIR

FOR ANY QUADRATIC SPACE V OVER A LOCAL FIELD F

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND EITAN SAYAG

Abstract. Let V be a quadratic space with a form q over an arbitrary local
field F of characteristic different from 2. Let W = V ⊕ Fe with the form Q

extending q with Q(e) = 1. Consider the standard embedding O(V ) →֒ O(W )
and the two-sided action of O(V ) × O(V ) on O(W ).

In this note we show that any O(V )×O(V )-invariant distribution on O(W )
is invariant with respect to transposition. This result was earlier proven in a
bit different form in [vD] for F = R, in [AvD] for F = C and in [BvD] for
p-adic fields. Here we give a different proof.

Using results from [AGS], we show that this result on invariant distributions
implies that the pair (O(V ), O(W )) is a Gelfand pair. In the archimedean set-
ting this means that for any irreducible admissible smooth Fréchet representation
(π, E) of O(W ) we have dimHomO(V )(E, C) ≤ 1.

A stronger result for p-adic fields is obtained in [AGRS].
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1. Introduction

Let F be a local field of characteristic different from 2.
Let (W, Q) be a quadratic space defined over F and fix e ∈ W a unit vector.

Consider the quadratic space V = e⊥ with q = Q|V . Define the standard imbedding
O(V ) →֒ O(W ) and consider the two-sided action of O(V )×O(V ) on O(W ) defined
by (g1, g2)h := g1hg−1

2 . We also consider the anti-involution τ of OQ given by
τ(g) = g−1. In this paper we prove the following theorem

Key words and phrases. Multiplicity one, invariant distribution, orthogonal groups, Gelfand
pairs.
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Theorem (A). Any O(V ) × O(V ) invariant distribution on O(W ) is invariant
under τ .

This theorem has the following corollary in representation theory.

Theorem (B). Let (π, E) be an irreducible admissible representation of O(W ).
Then

dimHomO(V )(E, C) ≤ 1

Here admissible representation refers to the usual notion in the non-archimedean
case and to the notion of admissible smooth Fréchet representation in the archimedean
setting.

Our proof for the archimedean and non-archimedean case is uniform, except at
one point where the archimedean case requires an extra analysis of a certain normal
bundle (see lemma 4.2).

Remark 1.1. We note that a related result for unitary representations of SO(V, Q)
is proved in [BvD] (for p-adic fields) and in [vD] (for the real numbers). In fact,
the proof given in those papers implies also theorem A. Also, an analogous theorem
for unitary groups is proven in [vD2].

Acknowledgements. We thank Prof. Gerrit van Dijk for pointing out to us that
the arguments of [vD], [AvD] and [BvD] give a proof of theorem A. We also thank
Dr. Sun Binyong for finding a mistake in the previous version of this note. Finally,
we would like to thank the referee for useful remarks.

2. From Invariant distributions to Representation theory

In this section we recall a technique due to Gelfand and Kazhdan which allows
to deduce theorem B from theorem A.

Recall the following theorem ([AGS])

Theorem 2.1. Let H ⊂ G be reductive groups and let τ be an involutive anti-
automorphism of G and assume that τ(H) = H. Suppose τ(T ) = T for all bi H-
invariant distributions 1 on G. Then for any irreducible admissible representation
(π, E) of G we have

dimHomH(E, C) · dimHomH(Ẽ, C) ≤ 1,

where Ẽ denotes the smooth contragredient representation.

Note that in the non-archimedean case the same result is proven in [Pra].
To finish the deduction of theorem B from theorem A we will show that

Theorem 2.2. Let (π, E) be an irreducible admissible representation of G = O(V ).

Then Ẽ ∼= E and in particular

dimHomH(E, C) = dimHomH(Ẽ, C)

For the proof we recall proposition I.2 (chapter 4) from [MVW]:

Proposition 2.3. Let V be a quadratic space and let g ∈ O(V ). Then g is conjugate
to g−1.

1In fact it is enough to check this only for Schwartz distributions.

http://arxiv.org/abs/0709.1273
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Proof of Theorem 2.2. For non-archimedean fields this is a theorem from [MVW]
page 91. For archimedean fields we use the Harish-Chandra regularity theorem and
the proposition that any element in g ∈ O(V ) is conjugate in O(V ) to g−1. Thus,

the characters of E and Ẽ are the same and hence Ẽ ∼= E. �

Remark 2.4. A related result for the groups SO(V ) can be found in [GP], propo-
sition 5.3.

3. Basic Results on Invariant distributions

In this paper we consider distributions over l-spaces and over smooth manifolds.
l-spaces are locally compact totally disconnected topological spaces (see [BZ], sec-
tion 1).

For X a smooth manifold or an l-space we denote by D(X) the space of distri-
butions on X . When X is an l-space this means that D(X) = S(X)∗ where S(X)
is the space of locally constant functions with compact support on X . For smooth
X , we let D(X) = C∞

c (X)∗.
The basic tools to study invariant distributions on a G-space X are Bruhat filtra-

tion, Frobenuis reciprocity ([BZ], [Bar] and [AGS]) and the Bernstein’s localization
principle ([Ber] and [AG]). Let us remind the statements.

For the simplicity of formulation we provide, for each principle, two versions: for
l-spaces and for smooth manifolds.

3.1. Bruhat Filtration. Although we will not need the non-archimedean version
of this principle, we formulate it for completeness. It is a simple consequence of
proposition 1.8 in [BZ].

Theorem 3.1. Let an l-group G act on an l-space X. Let X =
⋃l

i=0 Xi be a G-
invariant stratification of X. Let χ be a character of G. Suppose that D(Xi)

G,χ = 0.
Then D(X)G,χ = 0.

To formulate the archimedean version we let X be a smooth manifold and Y ⊂ X
a smooth submanifold. We remind the definition of the conormal bundle CNX

Y . For
this denote by TX the tangent bundle of X and by NX

Y := (TX |Y )/TY the normal
bundle to Y in X . The conormal bundle is defined by CNX

Y := (NX
Y )∗. Denote by

Symk(CNX
Y ) the k-th symmetric power of the conormal bundle.

Theorem 3.2 (Bruhat). Let a Lie group G act on a smooth manifold X. Let

X =
⋃l

i=0 Xi be a smooth G-invariant stratification of X. Let χ be a character of G.

Suppose that for any k ∈ Z≥0, D(Xi, Symk(CNX
Xi

))G,χ = 0. Then D(X)G,χ = 0.

For proof see [AGS].

3.2. Frobenius reciprocity. For l-space, the following version of Frobenius reci-
procity is proven in [Ber]:

Theorem 3.3 (Frobenius reciprocity). Let a unimodular l-group G act transitively
on an l-space Z. Let ϕ : X → Z be a G-equivariant continuous map. Let z ∈ Z.
Suppose that its stabilizer StabG(z) is unimodular. Let Xz be the fiber of z. Let χ
be a character of G. Then D(X)G,χ is canonically isomorphic to D(Xz)

StabG(z),χ.

An archimedean version is considered in [Bar]. Here is a slight generalization
(see [AGS]):

http://www.math.tau.ac.il/\unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
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http://arxiv.org/abs/0709.1273
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Theorem 3.4 (Frobenius reciprocity). Let a unimodular Lie group G act transi-
tively on a smooth manifold Z. Let ϕ : X → Z be a G-equivariant smooth map.
Let z ∈ Z. Suppose that its stabilizer StabG(z) is unimodular. Let Xz be the
fiber of z. Let χ be a character of G. Then D(X)G,χ is canonically isomorphic to
D(Xz)

StabG(z),χ. Moreover, for any G-equivariant bundle E on X, D(X, E)G,χ is
canonically isomorphic to D(Xz , E|Xz

)StabG(z),χ.

3.3. Bernstein’s Localization principle. For l-spaces it is taken from [Ber]:

Theorem 3.5 (Localization principle). Let X and T be l-spaces and φ : X → T be
a continuous map. Let an l-group G act on X preserving the fibers of φ. Let χ be a
character of G. Suppose that for any t ∈ T , D(φ−1(t))G,χ = 0. Then D(X)G,χ = 0.

For real smooth algebraic varieties, the following theorem is proven in [AG],
Corollary 4.0.8:

Theorem 3.6 (Localization principle). Let a real reductive group G act on a smooth
affine real algebraic variety X. Let Y be a smooth real algebraic variety and φ :
X → Y be an algebraic G-invariant submersion. Suppose that for any y ∈ Y we
have D(φ−1(y))G,χ = 0. Then D(X)G,χ = 0.

4. Proof of Theorem A

Recall the setting. (W, Q) is a quadratic space over F , e ∈ W with Q(e) = 1.
Also (V, q) is defined by V = e⊥ and q = Q|V .

We need some further notations.

• Oq = O(V, q) is the group of isometries of the quadratic space (V, q).
• Gq = O(V, q) × O(V, q).
• ∆ : Oq → Gq the diagonal. Hq = ∆(Oq) ⊂ Gq.
• τ(g1, g2) = (g2, g1).

• G̃q = Gq ⋊ {1, τ}, same for H̃q

• χ : G̃q → {+1,−1} the non trivial character with χ(Gq) = 1.

• G̃Q acts on OQ by (g1, g2)x = g1xg−1
2 and τ(x) = x−1.

Clearly Theorem A follows from the following theorem:

Theorem 4.1. D(OQ)
fGq,χ = 0

4.1. Proof of theorem 4.1. We denote by Γ = {w ∈ W : Q(w) = 1}. Note that

by Witt’s theorem Γ is an OQ transitive set and therefore Γ× Γ is a transitive G̃Q

set where the action of GQ is the standard action on W ⊕ W and τ acts by flip.
Applying Frobenuis reciprocity (3.3, 3.4) to projections of OQ × Γ × Γ first on

Γ × Γ and then on OQ we have

D(OQ)
fGq,χ = D(OQ × Γ × Γ)

gGQ,χ

and also that

D(OQ × Γ × Γ)
gGQ,χ = D(Γ × Γ)

gHQ,χ

In what follows we will abuse notation and write Q(u, v) for the bilinear form
defined by Q. Define a map D : Γ×Γ → Z where Z = {(v, u) ∈ W ⊕W : Q(v, u) =
0, Q(v + u) = 4} by

D(x, y) = (x + y, x − y).

http://www.math.tau.ac.il/\unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bernstein-P-invar-SLN.pdf
http://arxiv.org/abs/0803.3395
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D defines an G̃Q-equivariant homeomorphism and thus we need to show that

D(Z)
gHQ,χ = 0

Here, the action of GQ on Z ⊂ W ⊕ W is the restriction of its action on W ⊕ W
while the action of τ is given by τ(v, u) = (v,−u).

Now we cover Z = U1 ∪ U2 where

U1 = {(v, u) ∈ Z : Q(v) 6= 0}

and

U2 = {(v, u) ∈ Z : Q(u) 6= 0}

We will show D(U1)
gHQ,χ = 0, and the proof for U2 is analogous. This will finish

the proof.

Lemma 4.2. D(U1)
gHQ,χ = 0

Proof for non-archimedean F . Consider ℓ1 : U1 → F − {0} defined as ℓ1(v, u) =

Q(v). By the localization principle, it is enough to show D(Uα
1 )

gHQ,χ = 0 where
Uα

1 = ℓ−1
1 (α), for any α ∈ F − {0}. But

Uα
1 = {(v, u)|Q(v) = α, Q(u) = 4 − α, Q(v, u) = 0}

Let Wα = {w ∈ W |Q(w) = α} and let p1 : Uα
1 → Wα be given by p1(v, u) = v.

On Wα our group acts transitively. Fix a vector v0 ∈ Wα.

Denote H(v0) := H(Q|
v⊥
0

) and H̃(v0) := H̃(Q|
v⊥
0

).

The stabilizer in H̃Q of v0 is H̃(v0). The fiber p−1
1 (v0) = {a ∈ v⊥0 |Q(a) = 4−α}.

Frobenius reciprocity implies that

D(Uα
1 )

gHQ,χ = D(p−1
1 (v0))

eH(v0),χ

But clearly D(p−1
1 (v0))

eH(v0),χ = 0 as −Id ∈ H(v0). �

Proof for archimedean F . Now let us consider the archimedean case. Define U :=
{(v, u) ∈ U1|u 6= 0}. Note that the map ℓ1|U is a submersion, so the same argu-

ment as in the non-archimedean case shows that D(U)
gHQ,χ = 0. Let Y := {(v ∈

W |Q(v) = 4} × {0} be the complement to U in U1. By theorem 3.2, it is enough

to prove D(Y, Symk(CNU1

Y ))
gHQ,χ = 0.

Note that the action of H̃Q on Y is transitive, and fix a point (v, 0) ∈ Y . The

stabilizer in H̃Q of (v, 0) is H̃(v), and the normal space to Y at (v, 0) is v⊥. So
Frobenius reciprocity (theorem 3.4) implies that

D(Y, Symk(CNU1

Y ))
gHQ,χ = Symk(v⊥)

eH(v),χ

But clearly Symk(v⊥)
eH(v),χ = 0 as −Id ∈ H(v). �
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