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DECAY OF MATRIX COEFFICIENTS ON REDUCTIVE

HOMOGENEOUS SPACES OF SPHERICAL TYPE

BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

Abstract. Let Z be a homogeneous space Z = G/H of a real
reductive Lie group G with a reductive subgroup H . The investi-
gation concerns the quantitative decay of matrix coefficients on Z
under the assumption that Z is of spherical type, that is, minimal
parabolic subgroups have open orbits on Z.
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1. Introduction

Representation theory provides a concrete way to construct functions
on a topological group G via matrix coefficients. For a continuous
linear representation (π, E), say on a Banach space E, and for a vector
v ∈ E and a continuous linear functional η ∈ E∗ one defines the matrix
coefficient

mv,η(g) := η(π(g−1)v) (g ∈ G) .

One of the first results on matrix coefficients is the Gel’fand-Raikov
theorem which asserts that the matrix coefficients of irreducible unitary
representations separate points on G.
If H is a closed subgroup of G and η is fixed by H , then the matrix

coefficient mv,η descends to a function on the homogeneous space Z :=
G/H . Our interest is to obtain sharp upper bounds for such matrix
coefficients on Z, under some natural assumptions on G,H and the
representation π.
On the geometric side we assume in addition that Z is of spherical

type, that is, the set PH is open in G for some minimal parabolic
subgroup P of G. Standard examples of spaces of spherical type are
symmetric spaces, but there are others, for instance triple spaces Z =
G/H with H = SO(1, n) diagonally embedded into G = H ×H ×H .
On the analytic side we assume that E = V ∞ is the smooth globaliza-

tion of a Harish-Chandra module V (according to Casselman-Wallach).
Then E is a smooth representation whose dual V −∞ := E∗ is rather
large and can accommodate non-trivial H-fixed vectors η.
The first main result, Theorem 3.2, concerns a bound for mv,η on

the subset PH ⊂ G. To be more explicit, let K ⊂ G be a maximal
compact subgroup, P = MAN the Langlands decomposition of the
minimal parabolic group P , and A+

P := A+ ⊂ A the Weyl chamber
associated to P . Then for every v ∈ V there is a constant C > 0 such
that

(1.1) |mv,η(a)| ≤ CaΛV (1 + ‖ log a‖)dV (a ∈ A+) .

Here ΛV ∈ a∗ (with a = Lie(A)) and dV ∈ N are determined by V .
To obtain a bound on the whole of Z a further geometric assumption

on Z is needed. Specifically, let P1, . . . , Pl ⊃ A be the finitely many
minimal parabolic subgroups containing A so that PjH is open, then
clearly the geometric condition

(1.2) G =

l⋃

j=1

KA+
Pj
H
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allows us to deduce from (1.1) a global bound on Z = G/H (see Corol-
lary 5.3). Homogeneous spaces for which there is a choice of A such
that (1.2) holds true we call strongly spherical. Symmetric spaces are
strongly spherical and likewise the aforementioned triple spaces. It is
an open problem whether all spherical spaces are strongly spherical.
Let us mention that strongly spherical spaces satisfy the so-called

wave-front lemma (see Lemma 5.4), and are thus well-suited for lattice
counting problems along the lines of [12].
Strong sphericity combined with a sufficient supply of finite dimen-

sional H-spherical representations (see condition 5.12) now allows us
to obtain a stronger bound in (1.1), in which the constant C is uni-
form with respect to v. Our second main result, Theorem 5.11, is thus
that under these additional assumptions on Z, there exists for each
η ∈ (V −∞)H a continuous norm q on V ∞ such that

(1.3) |mv,η(aH)| ≤ q(v)aΛV (1 + ‖ log a‖)dV (a ∈ A+
j )

for all v ∈ V ∞ and j = 1, . . . , l. In particular, the assumptions on
Z are satisfied in the case of symmetric spaces (see Theorem 5.8). It
is interesting to observe that even for the ‘group case’, where Z =
G × G/G ≃ G is a reductive group, the bound improves on known
bounds by allowing v ∈ V ∞ rather than v ∈ V , see Remark 5.10.
Let us comment about some historical developments and the nature

of proof of our main results. In the group case the bound (1.1) goes
back to Harish-Chandra. There are two different proofs to obtain (1.1)
for Z = G: one by Casselman-Milicic in [8], which uses that the matrix
coefficients satisfy a regular singular system of differential equations
on AC ≃ (C∗)n, and an approach by Wallach in [20], just using ODE-
techniques which is of stunning simplicity and brevity. Using the first
method van den Ban obtained the bound (1.1) for symmetric spaces.
Our proof of (1.1) rests on the observation that the condition that PH
is open allows an adaptation of the proof of Wallach.
Combining the assumption of strong sphericity and the assump-

tion (5.12) about finite dimensional H-spherical representations, it
is possible to construct K-invariant weight functions w on Z with
w(aH) ≍ aΛV (1 + ‖ log a‖)dV on A+. Then one can deduce (1.3) from
(1.1) using the globalization theorem of Casselman-Wallach. In partic-
ular, for symmetric spaces we thus obtain with (1.3) an improvement
of van den Ban’s bounds on generalized matrix coefficients.
Finally, we mention that in [16] we have studied a more qualitative

property of decay of smooth Lp-functions which are not necessarily
matrix coefficients of a Harish-Chandra module. More precisely, we
showed that on a reductive homogeneous space the smooth vectors in
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the Banach representation Lp(Z) all belong to the space of continuous
functions vanishing at infinity. The results of the present paper, when
restricted to unitary representations, provide explicit decay results for
generalized matrix coefficients. Therefore, we expect these results to
be useful in extending the results of [11] beyond symmetric spaces to
the realm of strongly spherical spaces.

2. Homogeneous spaces of spherical type

We will denote Lie groups by upper case LATIN letters, e.g. A, B
etc., and their Lie algebras by lower case German letters, e.g. a, b etc.
Let G be a real reductive group in the sense of [20], Sect. 2.1. Further

let H < G be a subgroup which is reductive in G (as in [16]). With
these data we form the homogeneous space of reductive type Z := G/H .
We denote by z0 = H the standard base point of Z.
We fix a maximal compact subgroup K < G such that H ∩K is a

maximal compact subgroup of H and such that the associated Cartan
involution θ of G preserves H . We will frequently use the Cartan
decomposition g = k + s of the Lie algebra g = Lie(G). Here s is the
complement of k = Lie(K) with respect to a non-degenerate invariant
bilinear form on g, say κ(·, ·).
The form κ induces an orthogonal decomposition g = h+ q and the

space Z is topologically a vector bundle over K/H ∩K. Indeed, by the
Mostow decomposition

(2.1) K ×K∩H (s ∩ q) → Z, [k,X ] 7→ k exp(X) · z0

is a diffeomorphism. This decomposition is valid in the generality of
reductive homogeneous spaces. A smaller class of homogeneous spaces
with a richer geometry is introduced below.

2.1. Spaces of spherical type. Recall (see [7]) that a complex ho-
mogeneous space GC/HC is said to be spherical if there exists a Borel
subgroup BC such that BCHC is open in GC. The following definition
is analogous. Let Z = G/H be a reductive homogeneous space.

Definition 2.1. The space Z is of spherical type if there exists a min-

imal parabolic subgroup P such that PH is open in G. If in addition

dim(P ∩H) = 0 then we say that Z is of pure spherical type.

Remark 2.2. For two closed subgroups A,B of a Lie group G, the set
AB is open in G if and only if a+b = g. Hence the condition that PH
is open allows the obvious infinitesimal characterization g = h+ p.

Note that the main intention behind the concept in [7] is the clas-
sification of Gel’fand pairs. With that intention one should add to
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Definition 2.1 the condition that (M,M ∩H) is a Gel’fand pair. Here
M = ZK(a) is the centralizer of a inK. However this is not our purpose.
The non-symmetric space Sp(n, 1)/ Sp(n), for example, is of spherical
type but fails the Gel’fand pair condition.

Definition 2.3. Let P ⊂ G be a parabolic subgroup. The pair (P,H)
is called spherical if PH is open in G and for some Langlands decom-

position P = MPAPNP we have mP ∩ s ⊂ h. For future reference we

write these conditions:

(1) mP ∩ s ⊂ h,

(2) PH is open in G.

Equivalently, for some Levi decomposition P = LNP , the largest
non-compact semisimple ideal of L = Lie(L) belongs to h.

Lemma 2.4. Let (P,H) be a spherical pair, and let P0 ⊂ P be minimal

parabolic. Then P0H is open. In particular, Z is spherical.

Proof. Write mP as a direct sum of a compact ideal and non-compact
ideal. It follows from condition (1) that all non-compact ideals of mP

belong to h. Now if P0 = M0A0N0 ⊂ P is a minimal parabolic, then
the compact ideals of mP centralize a0, hence lie in m0. It follows that
MP ⊂ M0H and hence P0H = PH . The result follows from condition
(2). �

2.2. Examples.

2.2.1. Symmetric spaces. In a symmetric space Z, all minimal σθ-
stable parabolic subgroups P satisfy (1) and (2), see [3]. Hence by
Lemma 2.4, Z is of spherical type and P0H is open for every minimal
parabolic P0 ⊂ P . For more details see remark 3.6.

2.2.2. Gross-Prasad spaces. We let G0 be a reductive group and H0 <
G0 a reductive subgroup. Set G = G0 ×H0 and H = diag(H0). Note
that Z = G/H ≃ G0, viewed as a left×right homogeneous space for
G0 ×H0.
We consider the following choices for G0 and H0, with which we refer

to Z as a Gross-Prasad space (cf. [13]):

• G0 = GL(n + 1,F) and H0 = GL(n,F) for n ≥ 0.
• G0 = U(p, q + 1,F) and H0 = U(p, q,F) for p+ q ≥ 2.

Here F = R or C.
For a parabolic subgroup P = P1 × P2 of G the condition that PH

is open is equivalent to P1P2 is open in G0, or p1+p2 = g0. The simple
verification that this is possible for the above spaces is omitted. The
spaces in the first item are pure, but in the second item not in general.
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2.2.3. Triple spaces. Let G0 be a reductive group and let G = G3
0 :=

G0 ×G0 ×G0 and H = diag(G0). The corresponding reductive homo-
geneous space Z = G/H will be referred to as a triple space. In general
this space is not spherical as an easy dimension count will show. For
G0 locally SO(1, n) however, one obtains a spherical space. Dimension
count shows that it is pure if and only if n = 2 or 3.

2.2.4. Complex spherical spaces. Let GC/HC be a complex spherical
space with open Borel orbit BCHC. When we regard the complex
groups as real Lie groups, GC/HC is of spherical type and (BC, HC) is a
spherical pair. The complex spherical spaces have been classified (see
the lists in [15] and [7]). For example, the triple space of G0 = SL(2,C)
is a complex spherical space ([15] p. 152).

2.2.5. Real forms of spherical spaces. Let GC, HC, BC be as above,
and assume that G is a quasisplit real form of GC. Then BC is the
complexification of a minimal parabolic P in G, for which PH is open.
Hence G/H is of spherical type. The triple space with G0 = SL(2,R)
is obtained in this fashion.

2.2.6. LetGC/HC = SL(2n+1,C)/ Sp(n,C) or SO(2n+1,C)/GL(n,C).
According to [15] p. 143, these are complex spherical spaces as in 2.2.4.
Dimension count shows they are pure. The corresponding split or qua-
sisplit real forms in 2.2.5 are

SL(2n+ 1,R)/ Sp(n,R)

SU(n, n+ 1)/ Sp(k, k), n = 2k

SO(n, n + 1)/U(k, k), n = 2k

SU(n, n+ 1)/ Sp(k, k + 1), n = 2k + 1

SO(n, n + 1)/U(k, k + 1), n = 2k + 1.

Notice that for n > 3 the triple spaces with G0 = SOe(n, 1) do not
correspond to any spaces in 2.2.4 or 2.2.5.

3. Bounds for generalized matrix coefficients

In this section we prove a fundamental bound for generalized matrix
coefficients for spaces of spherical type.
To begin with we need to recall a few notions from basic represen-

tation theory. Let (π, E) be a Banach representation of G, and let E∞

denote its space of smooth vectors. As usual we topologize E∞ by the



DECAY OF MATRIX COEFFICIENTS 7

family of Sobolev norms ‖.‖k for k = 0, 1, 2, . . . , given by

‖v‖k =
∑

m1+···+mn≤k

‖π(Xm1

1 · · ·Xmk
n )v‖

with respect to a fixed basis X1, . . . , Xn for g. Then

E∞ = ∩k∈NEk

is an intersection Banach spaces, where Ek is the completion of E∞

with respect to ‖.‖k. Likewise the space E−∞ of distribution vectors
(i.e. continuous linear forms on E∞) is the union

E−∞ = ∪k∈NE−k,

where (E−k, ‖.‖−k) is the Banach space dual to (Ek, ‖.‖k). For each
k ∈ N we thus have

(3.1) |η(v)| ≤ ‖η‖−k‖v‖k, (η ∈ E−∞, v ∈ E∞),

with ‖η‖−k < ∞ if and only if η ∈ E−k.
By continuity of the G-action, we conclude that for each k ∈ N there

exists Ck > 0 and r > 0 such that

(3.2) |η(π(g)v)| ≤ Ck‖η‖−k‖v‖k‖g‖
r, (g ∈ G),

for all v ∈ E∞, η ∈ E−∞. Here ‖ · ‖ is a norm on G in the sense of [20]
Section 2.A.2, from which Lemma 2.A.2.2 is used. We recall also that
if a ⊂ s is a maximal abelian subspace and a+ ⊂ a a Weyl chamber,
then by [20], Lemma 2.A.2.3, there exist δ ∈ a∗ and C > 0 such that

(3.3) ‖a‖ ≤ Caδ

for all a ∈ A+, the closure of A+ = exp(a+).
If V is a Harish-Chandra module for (g, K), then we call a Banach

representation (π, E) of G a Banach globalization of V provided that
the K-finite vectors of E are isomorphic to V as (g, K)-modules. The
Casselman-Wallach theorem asserts that E∞ does not depend on the
particular globalization (π, E) of V and thus we may define

V ∞ := E∞ and V −∞ := E−∞.

Let Z = G/H be a reductive homogeneous space and V a Harish-
Chandra module. For v ∈ V ∞ and η ∈ (V −∞)H anH-fixed distribution
vector we denote by

(3.4) mv,η(gH) := η(π(g)−1v), (g ∈ G),

the corresponding generalized matrix coefficient. It is a smooth func-
tion on Z.



8 BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

Let P ⊂ G be a minimal parabolic subgroup of G. In this situation,
there exists a maximal abelian subalgebra a ⊂ s which is contained in
p = Lie(P ).
We also use the following notations:

• Π ⊂ a∗ the set of simple roots.
• p the Lie algebra of P
• Σ+ ⊂ a∗ for the positive system attached to P.
• P = MAN is a Langlands decomposition of P.
• A+

P := A+ ⊂ A the Weyl chamber associated to P.
• P̄ = θ(P ), an opposite parabolic subgroup.

We will use Iwasawa decomposition in the form G = KAN.
More generally, for a subset F ⊂ Π one defines a standard parabolic

subalgebra pF ⊃ p. Let aF := {X ∈ a | (∀α ∈ F )α(X) = 0} and mF :=
zg(aF ) be the centralizer of aF in g. Further let Σ+\〈F 〉 be the set of
positive roots which do not vanish on aF and let nF :=

⊕
α∈Σ+\〈F 〉 g

α

be the corresponding subalgebra of n. Then pF := mF ⋉ nF defines a
parabolic subalgebra of g containing p. In particular p∅ = p.
Given a Harish-Chandra module V , the quotient V/nFV is non-

zero and a Harish-Chandra module for the pair (mF , KF ) with KF =
ZK(aF ), see [20], Lemma 4.3.1. As Harish-Chandra modules are finite
under the center of the enveloping algebra, we obtain for every F ⊂ Π
a finite subset E(F, V ) ⊂ a∗F and an integer dF ∈ N0 such that

V/nFV =
⊕

λ∈E(F,V )

(V/nF )λ

with the generalized eigenspaces:

(V/nFV )λ = {v ∈ V/nFV | ∀H ∈ aF : (H − λ(H))dF v = 0} .

We set E(V ) := E(∅, V ) and record ([20] 4.3.4(2))

E(V )|aF = E(F, V ) .

Now label Π = {α1, . . . , αr} and define {H1, . . . , Hr} the correspond-
ing dual basis in a. We follow [20], 4.3.5, and define ΛV ∈ a∗ by

(3.5) ΛV (Hj) := max{−Reλ(Hj) | λ ∈ E(V )} .

Furthermore, we let Fj := Π\{αj} for j = 1, . . . r and put

dV :=

r∑

j=1

dFj
.

Remark 3.1. The definition of ΛV can be motivated as follows. By
[8] Thm. 8.22 the leading (with respect to ordering by positive roots)



DECAY OF MATRIX COEFFICIENTS 9

exponents for V belong to −E(V ), and hence by [8] Thm. 8.11 every K-
finite matrix coefficient of V is bounded on A+ by a constant multiple of
aΛV (1 + ‖ log a‖)d for some d ∈ N. Furthermore, [17] Thm. 2.1 ensures
that ΛV is sharp for the K-finite matrix coefficients. However, these
results from [8] and [17] are not used in what follows.

Theorem 3.2. Let G be a real reductive group and let H ⊂ G be

reductive in G. Suppose that PH is open in G for a minimal parabolic

subgroup P ⊂ G. Let V be a Harish-Chandra module. Then for each

v ∈ V and each s ∈ N there exists a constant C > 0 such that

(3.6) |mv,η(ka)| ≤ C‖η‖−s a
ΛV (1 + ‖ log a‖)dV

for all k ∈ K, a ∈ A+
P and η ∈ (V −∞)H ∩ E−s.

Remark 3.3. Note that (3.6) is uniform with respect to η but not with
respect to v. Under some additional hypotheses we give in Section 5
an improvement providing uniformity also with respect to v.

Remark 3.4. The proof will be an adaptation of the proof of Thm. 4.3.5
in [20] to the present situation of generalized matrix coefficients. Note
that we have mv,η(a) = η(π(a)−1v) with a K-finite vector v, whereas
[20] considers µ(π(a)v) with µ being K-finite. The main difference is
then that [20] has v ∈ V ∞ arbitrary, whereas we have η ∈ V −∞ but
H-fixed.

Proof. Since H is invariant under the Cartan involution, the assumed
openness of PH is equivalent with the same property for P̄H . We
shall use the property in this form. The number s ∈ N will be fixed
throughout the proof.
We first provide the central step where the proof differs from [20].

Our starting point is the following estimate, which follows from (3.2)
and (3.3). Let (π, E) be a Banach globalization of V . Then by (3.2)
there exists δ ∈ a∗ and C > 0 such that

(3.7) |mv,η(a)| ≤ C‖η‖−s‖v‖s a
δ, (a ∈ A+)

for v ∈ V and η ∈ (V −∞)H . If δ happens to be ≤ ΛV on a+ we are
done. Otherwise we need to improve the estimate. The proof will be
by downwards induction along a+.
The key ingredient is as follows. Suppose that v ∈ V is of the form

(3.8) v = dπ(X)u

for some normalized positive root vector X ∈ gα ⊂ n and some u ∈ V
(this corresponds to the assumption µ ∈ nFV

∼ in [20] p.116, where
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V ∼ is the contragredient of V ). As P̄H is open in G we can write
X = X1 +X2 with X1 ∈ h and X2 ∈ a+m+ n. Now observe that

mv,η(a) = η(π(a)−1dπ(X)u) = a−αη(dπ(X)π(a)−1u)

= a−αη(dπ(X2)π(a)
−1u) = a−αη(π(a)−1dπ(Ad(a)X2)u) .

As Ad(a) is contractive on a+m+ n we can write dπ(Ad(a)X2)u as a
linear combination of elements from V with a-dependent coefficients,
which are bounded. For vectors of the form (3.8) we thus obtain with
(3.7) an improved bound

|mv,η(a)| ≤ C ′‖η‖−s a
δ−α (a ∈ A+)

with a constant C ′ depending on u.
Having established the key step, the proof will follow as in [20],

p. 117-118. For the sake of completeness we provide the adaptation to
the present situation. The argument is based on the following simple
lemma.

Lemma 3.5. Let A be a complex n × n-matrix. There exists C > 0
such that the following holds. Let f : R → Cn be differentiable and

define g : R → Cn by

(3.9)
df

dt
− Af = g

Assume

‖f(0)‖ ≤ 1, ‖g(t)‖ ≤ eνt (t ≥ 0),

for some ν ∈ R. Let

µ = max{Reλ | λ an eigenvalue of A}

and let p ∈ N be the maximal algebraic multiplicity of the eigenvalues

with Reλ = µ. Then

‖f(t)‖ ≤ C(1 + t)pemax{µ,ν}t

for all t ≥ 0.

Proof. This is easily obtained from the solution formula for (3.9) and
the Jordan form of A. �

For the proof of Theorem 3.2 let us assume that for some δ ∈ a∗ and
d ∈ N we have established for all v ∈ V a bound

(3.10) |mv,η(a)| ≤ C‖η‖−s a
δ(1 + ‖ log a‖)d (a ∈ A+).

For elements of the form (3.8) we can then improve to

(3.11) |mv,η(a)| ≤ C ′‖η‖−s a
δ−α(1 + ‖ log a‖)d (a ∈ A+)
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by the key argument above. The constants C and C ′ are allowed to
depend on v.
Let us write δ =

∑r

j=1 δjαj with δj = δ(Hj) ∈ R. We fix an index
1 ≤ j ≤ r. Note that

a+ =

r⊕

k=1

R≥0Hk.

We consider F = Fj = Π\{αj} and note that aF = RHj . We decom-

pose elements a ∈ A
+
as a = a′at with a′αj = 1 and at = exp(tHj).

Let now v ∈ V and v ∈ V/nFV its coset. Let v1, . . . , vp be a basis of
the finite dimensional space U(aF )v with v = v1. Define a p×p-matrix
B = (bkl) by Hjvk =

∑
bklvl. Let vk ∈ V be representatives of vk and

define wk := Hjvk −
∑

bklvl ∈ nFV .

Fix a′ ∈ A+ and consider the Cp-valued functions

F (t) :=



mv1,η(a

′at)
...

mvp,η(a
′at)


 , G(t) :=



mw1,η(a

′at)
...

mwp,η(a
′at)


 .

Then
d

dt
F (t) = −BF (t)−G(t)

and we can apply Lemma 3.5. By (3.5) the eigenvalues of −B have real
part ≤ Λj and multiplicity ≤ dF . Furthermore, by our a priori bound
(3.10) we have

‖F (0)‖ ≤ C1‖η‖−s (a
′)δ(1 + ‖ log a′‖)d

for a constant C1 > 0, independent of a′. To estimate ‖G(t)‖ we note
that wk is of the form (3.8) so that the improved estimate (3.11) can be
applied. Since any root of nF restricted to Hj coincides with a positive
integer multiple of αj this yields that

‖G(t)‖ ≤ C2‖η‖−s (a
′)δ(1 + ‖ log a′‖)det(δj−1)

for a constant C2 > 0, also independent of a′. Combining matters we
arrive at

‖F (t)‖ ≤ C3‖η‖−s (a
′)δ(1 + ‖ log a′‖)d(1 + t)dF etmax{Λj ,δj−1}.

In particular, we conclude that for every v ∈ V there exists C > 0 such
that

(3.12) |mv,η(a
′at)| ≤ C‖η‖−s (a

′)δ(1+ ‖ log a′‖)d(1+ t)dF etmax{Λj ,δj−1}

for all t ≥ 0 and all a′. We consider now two cases:
If δj −1 ≤ Λj it follows that we can replace δj by Λj and d by d+dF

in our initial bound (3.10).
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If δj − 1 > Λj we remove the logarithms and find

(3.13) |mv,η(a
′at)| ≤ C‖η‖−s (a

′)δ(1 + ‖ log a‖)det(δj−
1

2
).

Thus we may replace δ by δ − 1
2
αj in our initial estimate. In a finite

number of steps we arrive in the first case.
After repeating this process for all j, the theorem is proved. �

Remark 3.6. The theorem applies to symmetric spaces. Suppose that
Z is symmetric and let aq ⊂ s∩ q be a maximal abelian subspace (it is
unique up to conjugation by K ∩H), and let a ⊂ s be maximal abelian
with aq ⊂ a. Then

a = aq ⊕ ah := (a ∩ q)⊕ (a ∩ h).

We choose a positive system for the roots of aq in g, and a compatible

ordering for the roots of a so that a+q ⊂ a+ for the positive chambers.
Then PH is open for the corresponding minimal parabolic P . Thus
(3.6) applies to all a ∈ A+

q . In this situation bounds as (3.6) have
previously been established in [2], [5].

4. Homogeneous spaces of polar type

In order to obtain global bounds for the matrix coefficients we need
to assume some further properties of Z = G/H . First of all we require
that it allows a generalized polar decomposition. We recall that for a
Riemannian symmetric space Z = G/K the KAK-decomposition of G
implies that Z = KA.z0.

Definition 4.1. Let Z = G/H be a homogeneous space of reductive

type. A polar decomposition of Z consists of an abelian subspace a ⊂ s

and a surjective proper map

(4.1) K × A ∋ (k, a) 7→ kaH ∈ Z,

where A = exp a. We say that Z is of polar type if such a polar

decomposition exists.

Notice that we do not require a ⊂ q in Definition 4.1. In general this
is not possible with a abelian. According to (2.1) every element z ∈ Z
allows a decomposition z = k exp(X)H with k ∈ K and X ∈ q∩ s, but
in general the orbits of K ∩H on q∩ s do not allow a parametrization
by an abelian subspace (for instance in Example 4.2.2 below).
Neither do we insist that a is maximal abelian, since in general that

would conflict with the properness of (4.1).
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4.1. About properness. By replacing a with a subspace complemen-
tary to a ∩ h, we can arrange a ∩ h = {0} without affecting the sur-
jectivity of (4.1). It follows from the corollary below that then the
assumption of properness in Definition 4.1 is superfluous.

Lemma 4.2. Let G/H be a reductive homogeneous space. There exists

a finite dimensional representation (π, V ) of G and a vector vh ∈ V
such that h = {X ∈ g | dπ(X)vh = 0}.

Proof. Follows from Sect. 5.6, Th. 3 in [1]. �

Let a ⊂ s be an abelian subspace.

Lemma 4.3. The set AH is closed in G. Furthermore, if a ∩ h = {0}
then (a, h) 7→ ah is proper A×H → AH.

Proof. We may assume a∩ h = {0} for the entire lemma. We argue by
contradiction. Suppose that AH were not closed in G or that (a, h) 7→
ah were not proper. Then there would exist sequences (an)n∈N in A
and (hn)n∈N in H , both leaving every compact subset, such that p =
limn→∞ anhn exists in G.
Let (π, V ) be a finite dimensional representation as in Lemma 4.2.

Then the limit limn→∞ π(an)vh exists. Let Xn = log(an). Passing to a
subsequence we may assume that

X := lim
n→∞

Xn

‖Xn‖
∈ a− {0}

exists and limn→∞ ‖Xn‖ = ∞. We will show that vh is fixed under
dπ(X) contradicting the assumption that a ∩ h = {0} and X 6= 0.
Indeed, write vh as a sum of joint eigenvectors for a, say

vh =
∑

µ∈a∗

vµ

Applying π(an) yields

π(an)vh =
∑

µ

eµ(Xn)vµ

Since π(an)vh is convergent, it follows that supn µ(Xn) < ∞ for every
µ for which vµ 6= 0. With limn→∞ ||Xn|| = ∞ we get that

µ(X) = lim
n→∞

µ(Xn)

||Xn||
≤ 0

for all such µ.
Applying the same argument to the convergent sequence θ(anhn) we

find likewise that µ(X) ≥ 0 for all µ with vµ 6= 0. Thus we obtain that
vh is fixed under dπ(X) which finishes the proof.
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�

Corollary 4.4. The set KAH is closed in G, and if a ∩ h = {0} then

(k, a, h) 7→ kah is proper K ×A×H → KAH.

4.2. Examples. We provide some examples of homogeneous spaces of
polar type.

4.2.1. Symmetric spaces. Symmetric spaces are of polar type. In fact
let aq ⊂ s∩q be maximal abelian, as in Remark 3.6. Then G = KAqH
(see [19] p. 117).

4.2.2. Triple spaces. Let G/H = G3
0/ diag(G0) with G0 reductive, as

in Example 2.2.3. Let K0 < G0 be a maximal compact subgroup. We
fix an Iwasawa decomposition G0 = K0A0N0 and let P0 = M0A0N0 be
the associated minimal parabolic subgroup. Set K = K0 ×K0 ×K0.

Proposition 4.5. Suppose that B0 ⊂ G0 is a subset such that

G0 = A0M0B0K0.

Then, for A = A0 × A0 ×B0, one has G = KAH.

Proof. Let (g1, g2, g3) ∈ G. From the KAH-decomposition of the sym-
metric space G0 ×G0/ diag(G0) we obtain

(g1, g2) = (g, g)(a1, a2)(k1, k2)

for some g ∈ G0, a1, a2 ∈ A0 and k1, k2 ∈ K0. Now choose m ∈ M0,
a0 ∈ A0, b0 ∈ B0 and k0 ∈ K0 such that g−1g3 = a0m0b0k0. Then

(g1, g2, g3) = (ga0m0, ga0m0, ga0m0)(a
−1
0 a1, a

−1
0 a2, b0)(m

−1
0 k1, m

−1
0 k2, k0)

as asserted. �

The proposition applies in the following cases:

• G0 = SL(2,R) and

A0 =
{(

et 0
0 e−t

)
| t ∈ R

}
, B0 =

{(
cosh s sinh s
sinh s cosh s

)
| s ∈ R

}

• G0 = SOe(1, n) and B0 = exp(RX) for some 0 6= X ∈ s0 ∩ a⊥0 .

Note that it also applies to B0 = N0 for general G0,

Corollary 4.6. Let G0 = SL(2,R) or G0 = SOe(1, n) for n ≥ 2 and

Z = G3
0/ diag(G0). Then Z is of polar type.
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4.2.3. Gross-Prasad spaces. Let G/H = G0 × H0/ diag(H0) be one of
the Gross-Prasad spaces considered in Example 2.2.2.

Lemma 4.7. G/H is of polar type.

Proof. We first treat the case (G0, H0) = (GL(n+1,F),GL(n,F)) where
F = R or C. Let us embed H0 in G0 as the lower right corner.
We define a two-dimensional non-compact torus of GL(2,F) by

B =
{(a b

b a

)
| a, b ∈ R, a > |b|

}

In GL(2k,F) we define a 2k-dimensional non-compact torus A2k by
k block matrices of form B along the diagonal. Explicitly,

A2k = {diag(b1, ..., bk) : bj ∈ B}

In GL(2k+1,F) we define A2k+1 to consist of similar blocks together
with a positive number in the last diagonal entry. Explicitly,

A2k+1 = {diag(b1, ..., bk, b) : bj ∈ B, b ∈ R
∗}

With these choices, when we consider A2k ⊂ H0 as a subgroup of G0

using the lower right corner embedding, we get A2k ∩ A2k+1 = {1}.
Finally we let

A = An+1 × An ⊂ G = GL(n+ 1,F)×GL(n,F).

With K = U(n+ 1,F)× U(n,F) we claim that

G = KAH ,

or, equivalently,

GL(n+ 1,F) = U(n+ 1,F)An+1AnU(n,F) .

We proceed by induction on n. The case n = 0 is clear. We shall use
the known polar decomposition for the almost symmetric pair (GL(n+
1,F),GL(n,F)):

GL(n+ 1,F) = U(n+ 1,F)B1GL(n,F)

where B1 is the two-dimensional torus of form B located in in the upper
left corner. Now insert for GL(n,F) by induction, but in opposite order:

GL(n,F) = U(n− 1,F)An−1AnU(n,F)

and observe that U(n− 1,F) commutes with B1.
The case with G0 = U(p, q + 1,F) where F = R, C or H is similar.

Choose non-compact Cartan subspaces for g0 and h0 along antidiago-
nals, and note that the overlap between these, as subspaces of g0, is
trivial. Now proceed by induction as before. �
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4.2.4. The spaces G/H = Sp(n,R)/(Sp(n− 1,R)× U(1)).
Consider G = Sp(n,R) with maximal compact subgroup K = U(n).

Let H ⊂ L ⊂ G, where

L = L1 × L2 := Sp(n− 1,R)× Sp(1,R),

and H1 = L1, H2 = U(1) ⊂ L2. The intermediate quotients G/L and
L/H = L2/H2 are both symmetric.
We use the standard model

sp(n,R) =
{
[X1, X2, X3] :=

(
X1 X2

X3 −X t
1

) ∣∣∣X1, X2, X3 ∈ M(n,R)
X2, X3 symmetric

}

for g. Then l1 consists of similar blocks of size one less, embedded
as the upper left corners of X1, X2 and X3 . Likewise, l2 = sp(1,R)
consists of the matrices from sl(2,R) of which the entries embed in the
lower right corners of X1,X2 and X3.
Let a ⊂ s be the two-dimensional abelian space of matrices [X1, 0, 0]

with X1 ∈ 〈E11 + Enn, En1 + E1n〉. We claim that

(4.2) G = KAH

holds for A = exp a. Since [E11, 0, 0] ∈ h it is equivalent that (4.2) holds
for the non-abelian space of matrices [X1, 0, 0], with X1 ∈ 〈Enn, En1 +
E1n〉. Let

Y1 = [En1 + En1, 0, 0], Y2 = [Enn, 0, 0]

and Ai = expRYi, then our claim amounts to G = KA1A2H .
The intermediate symmetric spaces both allow a polar decomposi-

tion. Specifically, G = KA1L and L = (L ∩K)A2H . Hence

G = KA1(L ∩K)A2H,

and it remains to remove the middle factor. This is accomplished by
showing that it allows the product decomposition

L ∩K = (L ∩K)a1(L ∩K ∩H)a2.

As L1 ⊂ Ha2, it suffices to decompose elements from L2 ∩K. This is
done on the level of Lie algebras as follows

[0, Enn,−Enn] = [0,−E11 + Enn, E11 − Enn] + [0, E11,−E11].

An elementary computation shows that the two terms commute with
Y1 and Y2, respectively. Hence (4.2) follows and thus G/H is of polar
type with a 2-dimensional A.

Remark 4.8. Note that in 4.2.2 and 4.2.3 all polar decompositions
G = KAH are with a a full Cartan subspace in s. In 4.2.4 this is only
the case when n = 2.
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4.3. Relation to spherical spaces. It seems that there is a close
connection between spherical spaces and polar spaces. Here we provide
an indicator why spherical might imply polar.

Lemma 4.9. Let (P,H) be a spherical pair with Langlands decompo-

sition P = MAN of P . Then there exists a ∈ A such that

(4.3) ka + a+ h = g

where ka := Ad(a−1)(k).

Note that in view of Sard’s theorem an equivalent formulation of the
conclusion is that KAH has an interior point.

Proof. Otherwise L(a) := Ad(a)k + a + h is a proper subspace of g
for all a ∈ A. For t 7→ at a ray tending to infinity in A+ we note that
limt→∞ L(at) = m∩k+a+n+h in the Grassmann variety of all subspaces
of g. By (1) and (2) in Definition 2.3 we obtain limt→∞ L(at) = g. In
particular, for large enough t we have L(at) = g, a contradiction. �

5. Strongly spherical spaces

The estimate in Theorem 3.2 for matrix coefficients on Z = G/H

yields bounds for the mv,η on subsets of the form KA+
P .z0 ⊂ Z where

the associated minimal parabolic P ⊃ A satisfies PH is open. In order
to derive a global estimate on Z we therefore need that Z admits not
only the polar decomposition Z = KA.z0 but also the stronger

(5.1) Z =
⋃

P⊃A,PH open

KA+
P .z0 .

Unfortunately (5.1) is not true for every A which admits G = KAH .

Example 5.1. Let Z be the triple space of G0 = SL(2,R) and A =
A0×A0×B0, with A0 the diagonal matrices with positive diagonal en-
tries, and with B0 = SOe(1, 1). We have already seen in Proposition 4.5
that G = KAH . It is not hard to see that (5.1) fails for this A. Let P0

and Q0 be parabolics containing A0 and B0, respectively, and let P 0 be
opposite to P0. Then P ′ = P0×P 0×Q0 is a parabolic subgroup which
intersects H trivially, hence P ′H is open, whereas P ′′ := P0 × P0 ×Q0

intersects H in positive dimension and P ′′H is not open. However, to

attain that Z = ∪KA+
P .z0 we need the union to encompass parabolics

of both types P ′ and P ′′.

To remedy the situation we propose a new notion which combines
polar and spherical types compatibly.
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Definition 5.2. A reductive homogeneous space Z = G/H is of strong
spherical type if the following holds. There exists a maximal abelian

subspace a ⊂ s and minimal parabolic subgroups P1, . . . , Pl ⊃ A = exp a
such that PjH is open for all 1 ≤ j ≤ l and such that

(5.2) Z =

l⋃

j=1

KA+
Pj
.z0 .

In particular, Z is then both spherical and polar. The following is
now an immediate consequence of Theorem 3.2.
Let V be a Harish-Chandra module and let let Λj,V ∈ a∗ be de-

fined by (3.5) with respect to Pj , that is, if Pj = sjPs−1
j for sj in the

normalizer of a in K, then Λj,V = ΛV ◦ Ad(s−1
j ).

Corollary 5.3. Assume that Z = G/H is of strong spherical type.

Then for each v ∈ V and each s ∈ N there exists a constant C > 0
such that

(5.3) |mv,η(ka.z0)| ≤ C‖η‖−s a
Λj,V (1 + ‖ log a‖)dV ,

for all k ∈ K, a ∈ A+
Pj

and η ∈ (V −∞)H ∩ E−s.

5.1. Examples.

5.1.1. Symmetric spaces are strongly spherical. As in Remark 3.6 let
aq ⊂ s ∩ q and a ⊂ s be maximal abelian subspaces with aq ⊂ a, then
we have seen in Example 4.2.1 that

Z = KAq.z0.

Furthermore, let a+qj for j = 1, . . . , l be the Weyl chambers of aq cor-

responding to all (up to K ∩ H-conjugacy) the positive systems Σ+
qj

for the roots of aq in g. For each j we choose a compatible positive
system Σ+

j for the roots of a in g, and denote by Pj the corresponding
minimal parabolic subgroup of G. Then Pj is contained in the minimal
σθ-stable parabolic subgroup corresponding to Σ+

qj , and it follows from
Example 2.2.1 that PjH is open. Finally

(5.4) Aq =

l⋃

j=1

A+
qj ,

and since A+
qj ⊂ A+

Pj
, we obtain (5.2).
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5.1.2. Gross-Prasad spaces. The simplest of these spaces is

G/H = G0 ×H0/ diag(H0)

where G0 = GL(2,R) and H0 = GL(1,R) (see Sections 2.2.2, 4.2.3).
This space is strongly spherical with A chosen as in the proof of Lemma
4.7. We expect other Gross-Prasad spaces are strongly spherical.

5.1.3. Triple space. The triple space attached to G0 = SL(2,R) is
strongly spherical. In [10] we show that for any choice of a = a1⊕a2⊕a3
with ai ⊂ s0 one-dimensional subspaces and not all equal, one has
G = KAH . Furthermore, if all the one-dimensional subspaces are dif-
ferent from each other, then PH is open for all parabolics P containing
A. Thus Z is strongly spherical.

5.2. The wave front lemma. The following result was proved for
symmetric spaces in [12], Thm. 3.1, under the name of ”wavefront
lemma”. It plays a crucial role in that paper.
Let Z = G/H be of strong spherical type, and let P1, . . . , Pl ⊃ A be

as in Definition 5.2 so that G = ∪l
j=1KA+

Pj
H .

Lemma 5.4. For every neighborhood V of 1 in G, there exists a neigh-

borhood U of 1 such that

V g.z0 ⊃ gU.z0

for all g ∈ ∪l
j=1KA+

Pj
.

Proof. We may assume that V is Ad(K)-invariant. By (5.2) we reduce

to the case g = a ∈ A+
Pj

for a minimal parabolic Pj ⊃ A such that

PjH (and hence also P̄jH) is open. Let Uj be a neighborhood of 1 in
P̄j which is contained in V and which is stable under conjugation with

elements from A+
Pj
. As P̄jH is open, we see that Uj .z0 is a neighborhood

of z0. Then

V a.z0 ⊃ Uja.z0 = aUj .z0 ⊃ aU.z0

where U = ∩l
j=1UjH . �

5.3. Weights on Z. In this subsection we let Z = G/H be a reductive
homogeneous space. In the context of strongly spherical spaces we aim
for a more quantitative bound in Theorem 3.2, in which the constant
C depends continuously on v in the V ∞-topology. For that the concept
of weight will be useful.
We fix a norm ‖ · ‖ on G (see [20], Section 2.A.2). By a weight on

Z = G/H we shall understand a locally bounded function w : Z → R>0
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such that there exists constants C > 0, N ∈ N with

w(gz) ≤ C‖g‖Nw(z) (g ∈ G, z ∈ Z) .

The following is an easy way to construct a weight on Z.

Lemma 5.5. Let w(g.z0) := infh∈H ‖gh‖ for g ∈ G. Then w is a

weight on Z. Furthermore, there exist constants c1, c2, C1, C2 > 0 such

that

(5.5) C1e
c1‖X‖ ≤ w(k exp(X).z0) ≤ C2e

c2‖X‖

for all k ∈ K and X ∈ s ∩ q.

Note that (5.5) applies to every element in Z by (2.1).

Proof. We have w ≥ 1 since ‖g‖ ≥ 1 for all g ∈ G. As ‖xy‖ ≤ ‖x‖‖y‖
for x, y ∈ G the first statement follows.
There exist constants c1, c2, C1, C2 > 0 such that

C1e
c1‖Y ‖ ≤ ‖ exp(Y )‖ ≤ C2e

c2‖Y ‖

for all Y ∈ s. Hence the second inequality in (5.5) is clear. For the
first inequality we need to show that

C1e
c1‖X‖ ≤ ‖ exp(X)h‖

for all h ∈ H . By Cartan decomposition of H we reduce to h = exp(T )
where T ∈ s ∩ h. Let Y ∈ s be determined by exp(X) exp(T ) ∈
K exp(Y ), then ‖X‖ ≤ ‖Y ‖ since the sectional curvatures of K\G are
≤ 0 (see [14], p. 73) and X ⊥ Y . Now

C1e
c1‖X‖ ≤ C1e

c1‖Y ‖ ≤ ‖ exp(Y )‖ = ‖ exp(X) exp(T )‖

as claimed. �

Let w be a weight on Z. From the definition we readily obtain that
w−1 is a weight. More generally wα(z) := w(z)α defines a weight for all
α ∈ R. Further if w and w′ are weights then so is w · w′. If w(z) ≥ c
for some c > 1 and all z ∈ Z, then logw is a weight as well.
A more refined construction of weights than that of Lemma 5.5 goes

as follows. Let U be a finite dimensional G-module with a non-zero
H-fixed vector uH ∈ U (see Lemma 4.2). Such a representation will be
referred to as H-spherical. Set

(5.6) wU(g.z0) := ‖g · uH‖ (g ∈ G) ,

then wU is a weight.
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Lemma 5.6. Let U be H-spherical and irreducible. Let P = MPAPNP

be a parabolic subgroup of G for which PH is open. Let λ ∈ a∗P be the

highest aP -weight of U and A+
P ⊂ AP the positive chamber, both with

respect to P . Then there exist constants C1, C2 > 0 such that

(5.7) C1a
λ ≤ wU(ka.z0) ≤ C2a

λ (a ∈ A+
P , k ∈ K) .

Proof. We may choose an inner product on U such that

〈X.u, v〉 = 〈u,−θ(X).v〉

for X ∈ g. In particular, the norm is then K-invariant. Let Uλ ⊂ U
be the λ-weight space for aP , then U = U(n̄P )Uλ and hence all the
aP -weights µ in U are obtained from λ by subtracting positive combi-

nations of positive aP -roots. It follows that aµ ≤ aλ for all a ∈ A+
P .

By expanding uH into aP -weights we conclude the second inequality of
(5.7).
Note that uH cannot be orthogonal to Uλ. Otherwise, as Uλ is P -

invariant, π(g)uH would be orthogonal to Uλ for all g in the open set
P̄H , contradicting irreducibility. Hence 〈uH, u〉 6= 0 for some u ∈ Uλ.
Now

aλ|〈uH, u〉| = |〈uH, a · u〉| = |〈a · uH , u〉| ≤ ‖u‖wU(a).

for a ∈ AP , and the first inequality of (5.7) follows. �

5.4. Symmetric spaces. In this section we assume that Z = G/H
is a symmetric space and use the notation from Example 5.1.1. In
particular

(5.8) Aq = ∪l
j=1A

+
qj .

We fix a chamber A+
q (for example A+

q1) for reference, and choose Weyl

group elements sj such that A+
qj = Ad(sj)A

+
q for j = 1, . . . , l.

Lemma 5.7. Assume that G/H is a symmetric space. For each Λ ∈ a∗q
and all d ∈ Z there exists a weight w and a constant C > 0 such that

(5.9) asjΛ(1 + ‖ log a‖)d ≤ w(ka.z0) ≤ CasjΛ(1 + ‖ log a‖)d

for all k ∈ K, a ∈ A+
qj and j = 1, . . . , l.

Proof. It follows from the work of Hoogenboom (see [4], Section 5) that
a∗q is spanned by the restrictions of the highest weights of H-spherical
representations. Hence Λ = c1λ1 + · · · + ckλk for some c1, . . . , ck ∈
R, where λ1, . . . , λk ∈ a∗q, are highest weights with respect to A+

q of
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irreducible H-spherical representations U1, . . . , Uk. The highest weight
of Ui with respect to A+

qj is then sjλi. It follows from Lemma 5.6 that

C1a
sjλi ≤ wUi

(ka.z0) ≤ C2a
sjλi

for a ∈ A+
qj. With w a multiple of Πiw

ci
Ui

we obtain (5.9) for d = 0.
Select λ0 ∈ a∗q such that λ0(X) ≥ ‖X‖ for all X in the cone a+q . By

applying the proved version of (5.9) we see that there exist a weight
w0 and a constant C0 > 0 such that

asjλ0 ≤ w0(ka.z0) ≤ C0a
sjλ0

for a ∈ A+
qj and all j, and hence

e‖ log a‖ ≤ w0(ka.z0) ≤ C0e
‖λ0‖‖ log a‖

for all a ∈ A. In particular, w0 ≥ 1, hence log(cw0) is a weight for
every c > 1. Taking logarithms we thus find a weight w1 and a constant
C ′

0 > 0 for which

1 + ‖ log a‖ ≤ w1(ka.z0) ≤ C ′
0(1 + ‖ log a‖)

for all a ∈ A. Now (5.9) follows by multiplication of the previously
found weight with wd

1. �

To any weight w we associate the Banach space

Ew := {f ∈ C(Z) | ‖f‖w := sup
z∈Z

w(z)|f(z)| < ∞} .

The group G acts on Ew by left displacements in the arguments, say
π(g)f(z) := f(g−1z) and we have ‖π(g)‖ ≤ C‖g‖N . Thus the smooth
vectors E∞

w form an SF -representation of G in the sense of [6] (that is
a smooth Fréchet representation of moderate growth).
In the following theorem the linear form ΛV is defined by (3.5) with

respect to an open chamber of A, which is compatible with the fixed
chamber A+

q .

Theorem 5.8. Suppose that Z = G/H is symmetric. Let V be a

Harish-Chandra module and fix η ∈ (V −∞)H . Then there exists a con-

tinuous norm q on V ∞ such that

(5.10) |mv,η(a)| ≤ q(v)aΛV (1 + ‖ log a‖)dV

for all a ∈ A+
q , and v ∈ V ∞.

Note that for this case it is known that dim(V −∞)H < ∞ (see Corol-
lary 2.2 of [2]).
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Proof. We use the parametrization of the chambers of Aq from (5.8).

According to (5.3) we obtain for all k ∈ K, a ∈ A+
q,j and j = 1, . . . , l

that

(5.11) |mv,η(ka.z0)| ≤ Cva
s−1

j ΛV (1 + ‖ log a‖)dV .

It follows from Lemma 5.7 that there exists a weight w on Z such that

w(ka.z0) ≍ a−s−1

j ΛV (1 + ‖ log a‖)−dV (k ∈ K, a ∈ A+
q,j),

for all j, and hence the product wmv,η is bounded on Z for all v ∈ V .
Hence we obtain an embedding

V →֒ E∞
w , v 7→ mv,η .

By the Casselman-Wallach globalization theorem (see [20], Thm. 11.6.7
or [6]) this embedding extends to a continuous embedding of Fréchet
spaces V ∞ →֒ E∞

w . In particular, there exists a continuous norm q on
V ∞ such that

‖mv,η‖w ≤ q(v) (v ∈ V ∞) .

Unwinding the definition of the norm in Ew we retrieve (5.11) with Cv

replaced by q(v). Now (5.10) follows. �

5.5. Group Case. We explicate Theorem 5.8 for the group case Z =
G×G/G. For that let W be a Harish-Chandra module for (g, K) and
W̃ its contragredient. With that we form the Harish-Chandra module
V := W ⊗ W̃ for (g × g, K × K). We view V as a submodule of
End(W ) and identify V ∞ as a subspace of End(W∞). To be more
precise V ∞ identifies with the rapidly decreasing matrices as follows:
Choose a Hilbert globalization E of W and with respect to the Hilbert
structure an orthonormal basis v1, v2, . . . of E consisting of vectors vi
which belong to K-types τi ∈ K̂ with τi ≤ τj for i ≤ j. This identifies
W∞ with the standard nuclear Fréchet space

s(N) := {(xn)n∈N ∈ C
N | sup

n∈N
nk|xn| < ∞, ∀k ∈ N}

of rapidly decreasing sequences (see [9], p. 290). A continuous linear
map T : s(N) → s(N) is thus given by a matrix T = (tn,m)n,m and we
say that T is rapidly decreasing provided that ‖T‖k := supn,m |tn,m|(n+
m)k < ∞ for all k ∈ N. Now V ∞ is the space of such maps, and its
topology is defined by the norms ‖ . ‖k In particular the trace map

η : V ∞ → C, T 7→ tr(T ) =
∑

n

tnn

is a continuous linear functional on V ∞, which is fixed by the diagonal
subgroup H := diag(G) < G×G.
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Let a ⊂ s be maximal abelian, and put

aq = {(X,−X) ∈ g× g | X ∈ a}

then aq is a subspace for Z = G×G/G as chosen in Remark 3.6. The
element ΛV ∈ a∗ × a∗ is identified as ΛV = (ΛW ,−ΛW ), and likewise
dV = 2dW . If we write π for the action of G on W∞, then it follows
that the bound in Theorem 5.8 asserts for all a ∈ A+ and T ∈ V ∞ that

|tr(π(a−1)T )| ≤ aΛW (1 + ‖ log a‖)2dW q(T )

with q a continuous norm on V ∞. Let us specialize to the case where
T is a rank one operator T (w) := ũ(w)u for u, w ∈ W∞ and ũ ∈ W̃∞.
We conclude:

Corollary 5.9. Let W be a Harish-Chandra module for G. Then there

exist d ∈ N and continuous norms p on W∞ and p̃ on W̃∞ such that

|ũ(π(a−1)u)| ≤ aΛW (1 + ‖ log a‖)dp(u)p̃(ũ)

for all u ∈ W∞, ũ ∈ W̃∞ and a ∈ A+.

Remark 5.10. The corollary generalizes the estimate in [20], Thm. 4.3.5,
where the matrix coefficient is required to beK-finite on one side. How-
ever, it should be emphasized that our proof of Theorem 5.8 invokes
the globalization theorem, which is not available at that stage in the
exposition of [20].

5.6. Other strongly spherical spaces. We now return to the general
assumption that Z = G/H is a reductive homogeneous space with H
connected, and discuss the generalization of Theorem 5.8. We assume
that Z is strongly spherical, so that (5.2) is valid. Recall that a ⊂ s

is maximal abelian. We use the standard isomorphism between a and
its dual space a∗, and let ahw ⊂ a be the subspace such that a∗hw is the
span of all the H-spherical highest weights λ ∈ a∗.

Theorem 5.11. Let V be a Harish-Chandra module and let η ∈ (V −∞)H .
Let P1, ..., Pℓ be minimal parabolic subgroups that contains A = exp(a)

with PjH open for each 1 ≤ j ≤ ℓ and such that Z =
⋃ℓ

j=1KA+
Pj
.z0.

(1) Then for any v ∈ V ∞ there exists a constant Cv such that

|mv,η(a)| ≤ Cva
Λj,V (1 + ‖ log a‖)dV

for all a ∈ A+
Pj
.

(2) Suppose that

(5.12) Z = ∪l
j=1K(A+

Pj
∩ Ahw).z0 .
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Then there exists a continuous norm q on V ∞ such that

|mv,η(a)| ≤ q(v)aΛj,V (1 + ‖ log a‖)dV

for all a ∈ A+
Pj

∩ Ahw, v ∈ V ∞.

Proof. The first point in the theorem is a direct consequence of Corol-
lary 5.3. The second point follows from the first and the assumption
(5.12) using the arguments given in theorem 5.8. �

Remark 5.12. The triple space for SL(2,R) satisfies the assumptions
with ahw = a = a1⊕ a2⊕ a3. If we denote by δ the defining representa-
tion of SL(2,R), then δ× δ×1, δ×1× δ and 1× δ× δ are H-spherical
representations, and their highest weights span a.
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distribution vectors, Ann, Sci. Éc. Norm. Sup. 21 (1988), 359–412.
[4] E. van den Ban, The principal series for a reductive symmetric space II. Eisen-

stein integrals, J. Funct. Anal. 109 (1992), 331–441.
[5] E. van den Ban and H. Schlichtkrull, Asymptotic expansions on symmetric

spaces. Harmonic analysis on reductive groups (eds. W. Barker, P. Sally), pp.
79–87. Progr. Math., Birkhäuser 1991.
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