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VANISHING AT INFINITY ON HOMOGENEOUS

SPACES OF REDUCTIVE TYPE

BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

Abstract. Let G be a real reductive group and Z = G/H a
unimodular homogeneous G space. The space Z is said to satisfy
VAI if all smooth vectors in the Banach representations Lp(Z)
vanish at infinity, 1 ≤ p < ∞. For H connected we show that Z
satisfies VAI if and only if it is of reductive type.

Date: March 7, 2014.
2000 Mathematics Subject Classification. 22F30, 22E46, 53C35.
The second author was partially supported by ISF grant N. 1138/10.

1

http://arxiv.org/abs/1211.2781v2


2

1. Introduction

In many applications of harmonic analysis of Lie groups it is impor-
tant to study the decay of functions on the group. For example for
a simple Lie group G, the fundamental discovery of Howe and Moore
([10], Thm. 5.1), that the matrix coefficients of non-trivial irreducible
unitary representations vanish at infinity, is often seen to play an im-
portant role. In a more general context it is of interest to study matrix
coefficients formed by a smooth vector and a distribution vector. If
the distribution vector is fixed by some closed subgroup H of G, these
generalized matrix coefficients will be smooth functions on the quo-
tient manifold G/H . This leads to the question which is studied in the
present paper, the decay of smooth functions on homogeneous spaces.
More precisely, we are concerned with the decay of smooth Lp-functions
on G/H .
Let G be a real Lie group and H ⊂ G a closed subgroup. Consider

the homogenous space Z = G/H and assume that it is unimodular,
that is, it carries a G-invariant measure µZ . Note that such a measure
is unique up to a scalar multiple.
For a Banach representation (π, E) of G we denote by E∞ the space

of smooth vectors. In the special case of the left regular representation
of G on E = Lp(Z) with 1 ≤ p < ∞, it follows from the local Sobolev
lemma that E∞ is the space of smooth functions on Z, all of whose
derivatives belong to Lp(Z) (see [15], Thm. 5.1). Let C∞

0 (Z) be the
space of smooth functions on Z that vanish at infinity. Motivated by
the decay of eigenfunctions on symmetric spaces ([17]), the following
definition was taken in [12]:

Definition 1.1. We say Z has the property VAI (vanishing at infinity)
if for all 1 ≤ p <∞ we have

Lp(Z)∞ ⊂ C∞
0 (Z).

By [15] Lemma 5.1, Z = G has the VAI property for G unimodular
and H = {1}. The main result of [12] establishes that all reductive
symmetric spaces admit VAI. On the other hand, it is easy to find
examples of homogeneous spaces without this property. For example,
it is clear that a non-compact homogeneous space with finite volume
cannot have VAI.
The main result of this article is as follows.

Theorem 1.2. Let G be a connected real reductive group and H ⊂ G
a closed connected subgroup such that Z = G/H is unimodular. Then
VAI holds for Z if and only if it is of reductive type.
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Here we recall the following definitions.

Definition 1.3. Let G be a real reductive group (see [19]). We say
that H is a reductive subgroup and that Z is of reductive type, if H
is real reductive and the adjoint representation of H in the Lie algebra
g of G is completely reducible.

Note that Z is unimodular in that case. If Z is of reductive type and
B ⊂ G is a compact ball, then we show in Section 4 (see also [13]) that

inf
z∈Z

volZ(Bz) > 0 .

In view of the invariant Sobolev lemma of Bernstein (see Lemma 3.1)
this readily implies that Z has VAI.
The converse implication is established in Proposition 5.1. The main

lemma shows that in the non-reductive case the volume of the above
mentioned sets Bz can be made exponentially small.

Acknowledgement We are greatful to an anonymous referee for
comments which have lead to a substantial improvement of the expo-
sition.

2. Notation

Throughout G is a connected real reductive group and H ⊂ G is
a closed connected subgroup such that Z := G/H is unimodular. We
write µZ for a fixed G-invariant measure and volZ for the corresponding
volume function.
Let g be the Lie algebra of G. We fix a Cartan involution θ of G.

The derived involution g → g will also be called θ. The fixed point set
of θ is a maximal compact subgroup K of G whose Lie algebra will be
denoted k. Let p denote the −1-eigenspace of θ on g, then g = k ⊕ p.
Let κ be a non-degenerate invariant symmetric bilinear form on g such
that

κ|p > 0, κ|k < 0, k ⊥ p.

Having chosen κ we define an inner product on g by

〈X, Y 〉 = −κ(θ(X), Y ).

We denote by h the Lie algebra of H and by q be its orthogonal com-
plement in g.

Lemma 2.1. The space Z is of reductive type if and only if there exists
a Cartan involution θ of G which preserves H. With such a choice we
have [h, q] ⊂ q.

Proof. See [9] Exercise VI A8 or [20] Thm. 12.1.4. The last statement
follows easily. �
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Remark 2.2. Let Z be of reductive type and choose θ and κ as above.
Then [q, q] ⊂ h if and only if the pair (g, h) is symmetric, that is, if and
only if

h = {X ∈ g | σ(X) = X}

for an involution σ of g. When g is semisimple it then follows that

q = {X ∈ g | σ(X) = −X}.

3. VAI versus volume growth

By a ball we will understand a compact symmetric neighborhood B
of 1 in G. Every ball B determines a weight function vB on Z given
by

vB(z) := volZ(Bz) (z ∈ Z) .

The precise shape of the ball B does not matter, as for any two balls
B1, B2 the quotient

vB1

vB2

is bounded from above and below by positive

constants (see [1], p. 683).
Let 1 ≤ p < ∞. For every k ∈ N we let ‖ · ‖p,k be a k-th Sobolev

norm of ‖ · ‖p, the L
p-norm on Lp(Z) (see [2], Section 2). Note that the

collection {‖ · ‖p,k : k ∈ N} determine the Fréchet topology on Lp(Z)∞.
For a subset Ω ⊂ Z we write ‖ · ‖p,k,Ω the semi-norm on Lp(Z)∞

which is obtained by integrating the derivatives over Ω.
In this context we recall the invariant Sobolev lemma of Bernstein:

Lemma 3.1 ([1], “Key lemma” on p. 686). Fix k > dimG
p

. Then for

every ball B there is a constant CB > 0 such that

(3.1) |f(z)| ≤ CBvb(z)
− 1

p‖f‖p,k,Bz (z ∈ Z)

for all smooth functions f on Z.

For v ∈ U(g) and f ∈ Lp(Z)∞, as Lvf belongs to Lp(Z), its norm
over Bz will be arbitrarily small for z outside a sufficiently large com-
pact set. Hence, for f ∈ Lp(Z)∞ with 1 ≤ p <∞ we obtain that

lim
z→∞

‖f‖p,k,Bz = 0 .

Hence we have shown that:

Proposition 3.2. Suppose that there is constant c > 0 such that
vB(z) > c for all z ∈ Z. Then VAI holds true.
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4. Reductive Spaces are VAI

For G and H both semisimple it was shown with analytic methods
in [13] that the assumption of Proposition 3.2 is valid for G/H . In
this section we give a geometric proof, which is valid for all spaces
of reductive type. Combined with Proposition 3.2 this completes the
proof of the implication ‘if’ of Theorem 1.2.

Lemma 4.1. Let Z = G/H be of reductive type. Then there exists a
constant c > 0 such that

(4.1) vB(z) ≥ c

for all z ∈ Z.

Proof. We begin by recalling the Mostow-decomposition of Z. As Z
is of reductive type we can and will identify g/h with q in an H-
equivariant way (see Lemma 2.1). Note that q is θ-stable and in par-
ticular q = q ∩ k + q ∩ p. We denote by prq : g → q the orthogonal
projection. The polar or Mostow decomposition asserts that the polar
map

(4.2) π : K ×H∩K (q ∩ p) → Z, [k, Y ] 7→ k exp(Y )z0

is a homeomorphism (see [14] or [4], p. 74).
It is no loss of generality to request the balls B to have two additional

properties:

θ(B) = B.(4.3)

KBK = B.(4.4)

Note that θ induces an automorphism on Z which is measure pre-
serving. Hence (4.3) implies

(4.5) vB(z) = vB(θ(z)) (z ∈ Z).

Furthermore, it follows from (4.4) and the polar decomposition (4.2)
that it is sufficient to establish (4.1) for all z = exp(tX) · z0 ∈ Z where
t ∈ R and X ∈ q ∩ p has unit length.
Now for every X ∈ q∩p we choose an adX-stable vector complement

VX ⊂ g to h, i.e. g = h⊕ VX . There is a neighborhood UX ⊂ VX of 0
such that exp(UX) ⊂ B and such that

UX → Z, Y 7→ exp(Y ) · z0
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is a diffeomorphism onto its image, with a Jacobian which is bounded
below by a positive number dX . Let t ∈ R and note that

vB(exp(tX) · z0) ≥ volZ(exp(UX) exp(tX) · z0)

= volZ(exp(e
−t adXUX) · z0)

≥ volZ(exp(UX ∩ e−t adXUX) · z0).

We decompose VX into eigenspaces for adX and choose UX to be
a box along these coordinates. Then e−t adX is an anisotropic scaling
along the edges of the box. This shows that there is a λX ∈ R such
that for all t ∈ R one has

(4.6) vB(exp(tX) · z0) ≥ cXe
λX t

where cX = dX vol(UX). As θ(X) = −X we finally obtain from (4.5)
that

vB(exp(tX) · z0) ≥ cX cosh(tλX) ≥ cX

for all t ∈ R.
The constant cX can be chosen to be locally uniform with respect

to X . To see this, let X ∈ a where a is maximal abelian in p. Then
we can assume that the complementary subspace VX has been chosen
such that it is ad(a)-stable. Thus the same subspace VX can be used
for all X ∈ a. The map K × a → p given by (k,X) 7→ Ad(k)X
is open, and Ad(k)VX complements h for k ∈ K small as well. This
shows that VX can be chosen so that it depends locally uniformly on X .
Moreover it also follows by conjugation with K that local uniformity
can be attained for UX and dX . By compactness we obtain (4.1). �

Remark 4.2. If G/H is a semisimple symmetric space (see Remark
2.2) then by the same method one obtains strong volume bounds, both
below and above, as follows. In this case the polar decomposition (4.2)
can be given the more explicit form

G = KA+
q H

(see [18] Proposition 7.1.3) where A+
q = exp a+q for a positive Weyl

chamber in a maximal abelian subspace aq ⊂ q ∩ p. In the proof
above it then suffices to consider elements X ∈ aq. For such elements
the complementary subspace VX can be chosen independently of X .
Indeed, if U is the unipotent radical of a minimal σθ-stable parabolic
subgroup containing Aq, then VX = qaq+u ⊂ g will be such a subspace.
The scalings of the box UX are then exactly determined by the roots
of u, and it follows as in (4.6) that there exists a constant C1 > 0 such
that

volZ(Ba · z0) ≥ C1a
2ρ, (a ∈ A+

q )
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where 2ρ = tr adu. For an upper bound we use that g = k+ gaq + u, so
that B ⊂ K exp(UX)H

aq for some ball B. Then by a similar argument
we obtain the existence of a constant C2 > 0 such that

volZ(Ba · z0) ≤ C2a
2ρ, (a ∈ A+

q ).

Similar bounds can be obtained for all real spherical spaces by using
the results of [11].

Remark 4.3. For a semisimple symmetric space the wave front lemma,
Theorem 3.1 of [8], shows that there exists an open neighberhood V
of z0, such that Bz contains a G-translate of V for all z ∈ Z. This
implies (4.1) for this case.

5. Non-reductive spaces are not VAI

In this section we prove that VAI does not hold on any homogeneous
space Z = G/H of G, which is not of reductive type. We maintain the
assumption that G is a connected real reductive group and establish
the following result.

Proposition 5.1. Assume that H ⊂ G is a closed connected subgroup
such that Z = G/H is unimodular and not of reductive type. Then for
all 1 ≤ p < ∞ there exists an unbounded function f ∈ Lp(Z)∞. In
particular, VAI does not hold.

The idea is to show that there is a compact ball B ⊂ G and a
sequence (gn)n∈N such that

volZ(Bgnz0) ≤ e−n for all n ∈ N.

Out of these data it is straightforward to construct an unbounded
smooth Lp-function.
Before we give a general proof we first discuss the case of unipotent

subgroups. The argument in the general case, although more technical,
will be modeled after that.

5.1. Unipotent subgroups. Let H = N be a unipotent subgroup,
that is, n := h is an ad-nilpotent subalgebra of [g, g]. Now, the situation
where n is normalized by a particular semi-simple element is fairly
straightforward and we shall begin with a discussion of that case.
If X ∈ g is a real semi-simple element, i.e., adX is semi-simple

with real spectrum, then we denote by gλX ⊂ g its eigenspace for the
eigenvalue λ ∈ R, and by g±X the sum of these eigenspaces for λ posi-
tive/negative. We record the triangular decomposition

g = g+X + zg(X) + g−X .

Here zg(X) =: g0X is the centralizer of X in g.
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Lemma 5.2. Assume that n is normalized by a non-zero real semisim-
ple element X ∈ g such that n ⊂ g+X . Set at := exp(tX) for all t ∈ R.
Let B ⊂ G be a compact ball around 1. Then there exists c > 0 and
γ > 0 such that

volZ(Batz0) = c · etγ (t ∈ R)

Proof. Let A = expRX and note that A normalizes N . Thus for all
a ∈ A the prescription

µZ,a(Bz0) := µZ(Baz0) (B ⊂ G measurable)

defines a G-invariant measure on Z. By the uniqueness of the Haar
measure we obtain that

µZ,a = J(a)µZ

where J : A → R+
0 is the group homomorphism J(a) = detAd(a)|n.

The assertion follows. �

Having obtained this volume bound we can proceed as follows. Let
us denote by χk the characteristic function of Ba−kz0 ⊂ Z. We claim
that the non-negative function

(5.1) χ :=
∑

k∈N

kχk

lies in Lp(G/H). In fact

‖χ‖p ≤
∑

k∈N

k‖χk‖p ≤ c
∑

k∈N

ke−γk/p .

Finally we have to smoothen χ: For that let φ ∈ Cc(G)
∞ with φ ≥ 0,∫

G
φ = 1 and suppφ ⊂ B. Then χ̃ := φ ∗χ ∈ Lp(Z)∞ with χ̃(a−kz0) ≥

k. Hence χ̃ is unbounded.

In general, given a unipotent subalgebra n, there does not necessarily
exist a semisimple element which normalizes n. For example if U ∈ g =
sl(5,C) is a principal nilpotent element, then n = span{U, U2 + U3} is
a 2-dimensional abelian unipotent subalgebra which is not normalized
by any semi-simple element of g. The next lemma offers a remedy out
of this situation by finding an ideal n1 ⊳ n which is normalized by a
real semisimple element X with n ⊂ g+X + g0X .

Lemma 5.3. Let n ⊂ [g, g] be an ad-nilpotent subalgebra and let 0 6=
U ∈ z(n). Then there exists a real semi-simple element X ∈ g such
that [X,U ] = 2U and n ⊂ g+X + g0X .
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Proof. According to the Jacobson-Morozov theorem one finds elements
X, V ∈ g such that {X,U, V } form an sl2-triple, i.e. satisfy the com-
mutator relations [X,U ] = 2U , [X, V ] = −2V , [U, V ] = X . Note that
n ⊂ zg(U) and that zg(U) is adX-stable. It is known and in fact easy
to see that zg(U) ⊂ g+X + g0X . All assertions follow. �

Within the notation of Lemma 5.3 we set n1 = RU andN1 = exp(n1).
Furthermore we set Z1 = G/N1 and consider the contractive averaging
map

L1(Z1) → L1(Z), f 7→ f̂ ; f̂(gN) =

∫

N/N1

f(gnN1) d(nN1).

Let B ⊂ G be a compact ball around 1, of sufficiently large size to be
determined later, and let B1 = B · B ⊂ G. Let χ be the function on
Z1 constructed as in (5.1), using the element X from Lemma 5.3 and
the compact set B1. Let χ̂ ∈ L1(Z) be the average of χ. We claim
that χ̂(Ba−kz0) ≥ k for all k. In fact let Q ⊂ N/N1 be a compact
neighborhood of 1 in N/N1 with volN/N1

(Q) = 1. Then for B large
enough we have a−kQak ⊂ B for all k (Lemma 5.3). Hence for b ∈ B,

χ̂(ba−kz0) ≥

∫

Q

χ(ba−knN1) d(nN1) ≥ k,

proving our claim.

To continue we conclude that fp := (χ̂)
1

p ∈ Lp(Z) is a function
with fp(Ba−kz0) ≥ k for all k. Finally we smoothen fp as before and
conclude that VAI does not hold true.

5.2. The general case of a non-reductive unimodular space.

Finally we shall prove Proposition 5.1 in the general situation where H
is a closed and connected subgroup for which Z = G/H is unimodular
and not of reductive type.
We fix a Levi-decomposition h = r ⋊ s of h. As in Section 2 we fix

a Cartan involution θ of g, and by Lemma 2.1 we may assume that it
restricts to a Cartan involution of s.

Proof of Proposition 5.1.
We will argue by induction on dim g, the base of the induction being

clear. We will perform a number of reduction steps (which may involve
the induction hypothesis) that will lead us to a simplified situation
which is described in Step 9 of the proof.

Step 1: h is not contained in any reductive proper subalgebra of g.
Indeed, otherwise h is contained in a proper subalgebra h̃ of g, which

is reductive in g. Then h is not reductive in h̃ ([6], §6.6 Cor. 2). By
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induction H̃/H is not VAI, in the strong sense that for every 1 ≤ p <∞

there exists an unbounded function f ∈ Lp(H̃/H)∞. We claim that
G/H is not VAI in the same strong sense. Let q̃ ⊂ g be the orthogonal

complement to h̃ in g. Then for a small neighborhood V ⊂ q̃ of 0 the
tubular map

V × H̃ → G, (X, h) 7→ exp(X)h

is diffeomorphic. The Haar measure on G is expressed by J(X)dXdh

with J > 0 a bounded positive function. Since H̃ normalizes q̃, this
allows us to extend smooth Lp-functions from H̃/H to G/H and we
see that G/H is not VAI in the strict sense. Hence we may assume as
stated in Step 1.

Step 2: h is contained in a maximal parabolic subalgebra p0.
Indeed, by the characterization of maximal subalgebras of g (see [7],

Ch. 8, §10, Cor. 1), a maximal subalgebra is either a maximal parabolic
subalgebra or it is a maximal reductive subalgebra. Hence it follows
from Step 1 that h is contained in a maximal parabolic subalgebra p0.

Step 3: s ⊂ l0, the Levi part of p0
We write p0 = n0 ⋊ l0 where n0 is the unipotent radical of p0. Note

that l0 is reductive in g and hence h is not contained in l0. In addition
we may assume that s ⊂ l0 ([6] §6.8 Cor. 1).

Step 4: z(l0) is not contained in h. We may assume that g is semi-
simple. Then, as p0 is maximal, we have z(l0) = RX0 and the spectrum
of adX0 on n0 is either entirely negative or positive. Suppose that
X0 ∈ h. Since G/H is unimodular, | detAd(h)|h| = 1 for h ∈ H
and in particular | det eadX0 |r| = 1. This would imply that h ⊂ l0,
contradicting Step 1.

Step 5: Decomposition p0 = l1 ⊕ (h+ n0).
Indeed, define the subspace l1 ⊂ l0 by

l1 = prl0(h)
⊥

where prl0 : p0 → l0 is the projection along n0. Then l1⊕ (h+n0) = p0.

Step 6: The case p0 = l1 ⊕ h⊕ n0.
In this case h ∩ n0 = {0} and thus the projection prl0 |h : h → l0,

which is a Lie-algebra homomorphism, is injective. Write h0 for the
homomorphic image of h in l0. The analysis will be separated in two
subcases.
Case 6a: h0 is not reductive in l0. Let H0 and L0 be the connected

subgroups of G corresponding to h0 and l0. As G/H is unimodular
and H is homomorphic to H0, it follows that G/H0 and thus L0/H0 is
unimodular. By induction we find for every 1 ≤ p <∞ an unbounded
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function f ∈ Lp(L0/H0)
∞. As before in the case of H̃/H we extend f

to a smooth vector in Lp(G/H) (note that P0/H → L0/H0 is a fibre
bundle, and we first extend f to a function on P0/H and then to a
function on G/H).
Case 6b: h0 is reductive in l0. In particular it is a reductive Lie

algebra, hence so is h. In the Levi decomposition h = s ⊕ r we now
know that r is the center of h. Let u be the subalgebra of g generated
by r and θ(r), then s+u is a direct Lie algebra sum. Moreover, s+u is
θ-invariant, hence reductive in g, and hence in fact = g by our previous
assumption on h. Thus s is an ideal in g which we may as well assume
is 0. Now h = r is an abelian subalgebra which together with θ(r)
generates g. We shall reduce to the case where r is nilpotent in g,
which we already treated in Section 5.1.
Every element X ∈ r has a Jordan decomposition Xn + Xs (in g),

and we let o1, o2 be the subalgebras generated by the Xn’s and Xs’s,
respectively. Then o = o1 ⊕ o2 is abelian and o2 consists of semisimple
elements. The centralizer of o2 is reductive in g and contains r, hence
equal to g. Hence o2 is central in g, and we may assume that it is
θ-stable. Let g1 be the subalgebra of g generated by o1 and θ(o1). It
is reductive in g, and (g1, o1) is of the type already treated, hence not
VAI. Since g = g1 + o2 we can now conclude that (g, r) = (g, h) is not
VAI either.

Step 7: An element X ∈ z(l0).
Using the result of Step 4, there existsX ∈ z(l0)\h such that n0 ⊂ g+X .

As before we set at := exp(tX) and observe that atz0 → ∞ in Z for
|t| → ∞ (this is because at[L0, L0]N0 tends to infinity in G/[L0, L0]N0.)

Step 8: A decomposition p0 = l1 ⊕ h⊕ n1
We construct an adX-invariant subspace n1 ⊂ n0 such that h+n0 =

h ⊕ n1, as follows. If n0 ⊂ h, then n1 = {0}. Otherwise we choose an
adX-eigenvector, say Y1, in n0 with largest possible eigenvalue, such
that h+RY1 is a direct sum. If this sum contains n0, we set n1 = RY1.
Otherwise we continue that procedure until a complementary subspace
is reached. Now l1⊕h⊕n1 = p0 and by Step 6 we can assume n1 ( n0.

Step 9: We summarize the situation we have reduced to:

• h = r⋊ s is a Levi decomposition of h.
• h ⊂ p0 = n0 ⋊ l0, a maximal parabolic subalgebra of g.
• s ⊂ l0, the Levi part of p0.
• l1 := prl0(h)

⊥ ⊂ l0 with prl0 : p0 → l0 the projection along n0.
• p0 = l1 ⊕ h⊕ n1 with l1 ⊂ l0 and n1 ( n0.
• X ∈ z(l0) and

(1) n0 ⊂ g+X .
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(2) n1 is invariant with respect to ad(X).
(3) With at = exp(tX) we have atz0 → ∞ in Z for |t| → ∞.

We will construct (for any 1 ≤ p < ∞) a smooth function χ in
Lp(Z) which does not decay. For this we need some auxilary functions
Φt which we now construct.
Let n0 be the nilradical of the parabolic opposite to p0 and consider

the adX-invariant vector space

v := n0 × l1 × n1 ⊂ g

which is complementary to h. For fixed t ∈ R we define the differen-
tiable map

Φ = Φt : v → Z,

by the formula

Φ(Y −, Y 0, Y +) = exp(Y −) exp(Y 0) exp(Y +)atz0 .

The main property which we need of these functions Φt is expressed
in the following lemma. For Y = (Y −, Y 0, Y +) ∈ v we put

y±,0 = exp(Y ±,0) ∈ G

and y = y−y0y+, and we identify the tangent space TΦt(Y )Z with v via
the map

TΦt(Y )Z → v, dτyat(z0)(X + h) 7→ πv(X + h), (X ∈ g)

where πv : g → v is the projection along h.

Lemma 5.4. Let the data summarized under Step 9 above be given.
Then there exists a constant γ > 0 with the following property. For
every sufficiently small compact neighborhood Q of 0 in v, there exist
constants cQ, CQ > 0 such that

cQe
tγ ≤ sup

Y ∈Q
| det dΦt(Y )| ≤ CQe

tγ (t ≤ 0).

In particular Φt|Q is a chart for all t ≤ 0.

The proof, which is computational, is postponed to the end of this
section. The construction of the function χ is now easy to describe.
Let Q ⊂ v be as above. We fix a function ψ ∈ C∞

c (Q) with 0 ≤ ψ ≤ 1
and ψ(0) = 1. For all t < 0 define χt ∈ C∞

c (Z) by χt(z) = ψ(Φ−1
t (z))

and set
χ :=

∑

n∈N

nχ−n .

It is clear that χ ∈ C∞(Z) and that χ is unbounded. We claim that
χ ∈ Lp(Z)∞.
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It follows immediately from the definition that χt ∈ Lp(Z) for all
1 ≤ p <∞ and t ≤ 0, and it follows from the estimate of the differential
of Φ in Lemma 5.4 that ‖χt‖p ≤ Cetγ/p for some C > 0 not depending
on t (but possibly on p). Hence

χ =
∑

n∈N

nχ−n ∈ Lp(Z)

for all 1 ≤ p <∞, and it only remains to be seen that also the deriva-
tives of χ belong to Lp(Z). The proof of this fact depends in addition on
the following estimate, which will be proved together with Lemma 5.4.

Lemma 5.5. Define

Mt := sup
U∈g,‖U‖=1

‖Ad(at)πv Ad(at)
−1U‖

Then supt<0(Mt) <∞.

We now complete the proof of the Proposition 5.1 by proving that
the left derivatives of χ by elements U ∈ g, up to all orders, belong to
Lp(Z).
We first show this for first order derivatives. Let U ∈ g and consider

the derivative L(U)χt. At z = Φt(Y ) this is given by

L(U)χt(z) = d/ds|s=0 χt(exp(sU)yatz0).

For Y in a compact set, we can replace U by its conjugate by y without
loss of generality, and thus we may as well consider the derivatives of

χt(y exp(sU)atz0).

We rewrite this as

χt(yat exp(sAd(at)
−1U)z0)

and apply the projection along h. It follows that the derivative can be
rewritten as

d/ds|s=0 χt(yat exp(sπv Ad(at)
−1U)z0)

and then finally also as

d/ds|s=0 χt(y exp(sAd(at)πv Ad(at)
−1U)atz0).

Note that Ad(at)πv Ad(at)
−1U ∈ v. We conclude that the derivative

is a linear combination of derivatives of ψ on Q, with coefficients that
depend smoothly on Y . Furthermore, it follows from Lemma 5.5 that
the coefficients are bounded for t < 0. As before we conclude L(U)χt ∈
Lp(Z) for all t ≤ 0, with exponentially decaying p-norms. It follows
that L(U)χ ∈ Lp(Z).
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By repeating the argument for higher derivatives we finally see that
χ ∈ Lp(Z)∞. �

It remains to verify Lemmas 5.4 and 5.5. We first prove the latter.

Proof of Lemma 5.5. For U ∈ v we have

Ad(at)πv Ad(at)
−1U = U,

hence we may assume U ∈ h. Since h ⊂ p0 we can write U as a
combination of an element Y0 ∈ l0 and possibly some adX-eigenvectors
Yλ with eigenvalues λ > 0. Then

Ad(at)
−1U = Y0 +

∑
e−λtYλ = U +

∑
(e−λt − 1)Yλ

(possibly with an empty sum). If Yλ ∈ n1 then

Ad(at)πv(e
−λt − 1)Yλ = (1− eλt)Yλ → Yλ

as t → −∞. On the other hand if Yλ is not in h, then it is the sum
of an element from h and some eigenvectors Vµ ∈ n1. If one of the
eigenvalues µ of these vectors is strictly smaller than λ, then it follows
from the definition of n1 (see Step 8) that Yλ must belong to n1 (as it
will have been preferred before this Vµ). Thus, if Yλ is not in n1, then
all the Vµ contributing to Yλ must have eigenvalues µ ≥ λ. Then

Ad(at)πv(e
−λt − 1)Yλ =

∑
eµt(e−λt − 1)Vµ

(possibly with an empty sum), which stays bounded for t→ −∞. Our
claim is thus established. �

To prepare the proof of Lemma 5.4 we establish the following lemma.
To simplify the main formula below we denote

β(T ) =
1− e− adT

adT
∈ End(g)

for T ∈ g. Note that β(0) = 1.

Lemma 5.6. Let Y = (Y −, Y 0, Y +) ∈ v.

(1) Let X = (X−, X0, X+) ∈ v, then dΦt(Y )(X) ∈ v is given by

dΦt(Y )(X) = πv ◦ Ad(at)
−1(SY,X)

where SY,X ∈ g is the element

Ad(y0y
+)−1β(Y −)(X−) + Ad(y+)−1β(Y 0)(X0) + β(Y +)(X+).

(2) There exists a linear map L(Y ) : v → g such that

dΦt(Y ) = Ad(at)
−1(1v +Ad(at)πv Ad(at)

−1L(Y ))

for all t ≤ 0, and such that ‖L(Y )‖ → 0 for Y → 0.
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Proof. We get for the differential of Φ:

dΦ(Y −, Y 0, Y +)(X−, X0, X+) = dτy−y0y+at(z0) ◦ Ad(at)
−1(SY,X)

with SY,X as above. Using the identification of the tangent space with
v this is exactly the statement of item (1).
Defining L(Y ) by L(Y )(X) = SY,X − X for X ∈ v, we obtain the

expression in item (2). It is easily seen that ‖L(Y )‖ → 0 for Y → 0. �

Proof of Lemma 5.4. Finally, it follows from Lemma 5.5 that Ad(at)
−11v

dominates in the expression in item (2) above, for Y ∈ v sufficiently
small. Since n1 is proper in n0, it follows that

γ := tr(ad(X)|n0)− tr(ad(X)|n1) > 0

and with this we obtain Lemma 5.4. �

5.3. Final remarks. 1. We did not address here the case where G is
not reductive. One might expect for G and H algebraic and G general,
that Z has VAI if and only if the nilradical of H is contained in the
nilradical of G.
2. The following may be an alternative approach to Theorem 1.2

for algebraic groups G and H . To be more specific, assume G and
H < G to be complex algebraic groups and Z = G/H to be unimodular
and quasi-affine. Under these assumptions we expect that there is a
rationalG-module V , and an embedding Z → V such that the invariant
measure µZ , via pull-back, defines a tempered distribution on V . Note
that if Z is of reductive type, then there exists a V such that the image
of Z → V is closed, and hence µZ defines a tempered distribution
on V . If Z is not of reductive type, then by Matsushima’s criterion
([5], Thm. 3.5) all images Z → V are non-closed and the expected
embedding would imply that VAI does not hold. This is supported by
a result in [16], which asserts that for a reductive groupG andX ∈ g :=
Lie(G) the invariant measure on the adjoint orbit Z := Ad(G)(X) ⊂ g

defines a tempered distribution on g. Various particular results in the
theory of prehomogeneous vector spaces provide additional support (see
[3]).
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