VANISHING AT INFINITY ON HOMOGENEOUS SPACES OF REDUCTIVE TYPE

BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

ABSTRACT. Let G be a real reductive group and $Z = G/H$ a unimodular homogeneous G space. The space Z is said to satisfy VAI if all smooth vectors in the Banach representations $L^p(Z)$ vanish at infinity, $1 \leq p < \infty$. For H connected we show that Z satisfies VAI if and only if it is of reductive type.

Date: March 7, 2014.

²⁰⁰⁰ Mathematics Subject Classification. 22F30, 22E46, 53C35. The second author was partially supported by ISF grant N. 1138/10.

1. INTRODUCTION

In many applications of harmonic analysis of Lie groups it is important to study the decay of functions on the group. For example for a simple Lie group G, the fundamental discovery of Howe and Moore $([10],$ $([10],$ $([10],$ Thm. 5.1), that the matrix coefficients of non-trivial irreducible unitary representations vanish at infinity, is often seen to play an important role. In a more general context it is of interest to study matrix coefficients formed by a smooth vector and a distribution vector. If the distribution vector is fixed by some closed subgroup H of G , these generalized matrix coefficients will be smooth functions on the quotient manifold G/H . This leads to the question which is studied in the present paper, the decay of smooth functions on homogeneous spaces. More precisely, we are concerned with the decay of smooth L^p -functions on G/H .

Let G be a real Lie group and $H \subset G$ a closed subgroup. Consider the homogenous space $Z = G/H$ and assume that it is unimodular, that is, it carries a G-invariant measure μ_Z . Note that such a measure is unique up to a scalar multiple.

For a Banach representation (π, E) of G we denote by E^{∞} the space of smooth vectors. In the special case of the left regular representation of G on $E = L^p(Z)$ with $1 \leq p < \infty$, it follows from the local Sobolev lemma that E^{∞} is the space of smooth functions on Z, all of whose derivatives belong to $L^p(Z)$ (see [\[15\]](#page-15-1), Thm. 5.1). Let $C_0^{\infty}(Z)$ be the space of smooth functions on Z that vanish at infinity. Motivated by the decay of eigenfunctions on symmetric spaces (17) , the following definition was taken in [\[12\]](#page-15-3):

Definition 1.1. We say Z has the property VAI (vanishing at infinity) if for all $1 \leq p < \infty$ we have

$$
L^p(Z)^\infty \subset C_0^\infty(Z).
$$

By [\[15\]](#page-15-1) Lemma 5.1, $Z = G$ has the VAI property for G unimodular and $H = \{1\}$. The main result of [\[12\]](#page-15-3) establishes that all reductive symmetric spaces admit VAI. On the other hand, it is easy to find examples of homogeneous spaces without this property. For example, it is clear that a non-compact homogeneous space with finite volume cannot have VAI.

The main result of this article is as follows.

Theorem 1.2. Let G be a connected real reductive group and $H \subset G$ a closed connected subgroup such that $Z = G/H$ is unimodular. Then VAI holds for Z if and only if it is of reductive type.

Here we recall the following definitions.

Definition 1.3. Let G be a real reductive group (see [\[19\]](#page-15-4)). We say that H is a reductive subgroup and that Z is of reductive type, if H is real reductive and the adjoint representation of H in the Lie algebra $\mathfrak g$ of G is completely reducible.

Note that Z is unimodular in that case. If Z is of reductive type and $B \subset G$ is a compact ball, then we show in Section [4](#page-4-0) (see also [\[13\]](#page-15-5)) that

$$
\inf_{z\in Z}\text{vol}_Z(Bz)>0.
$$

In view of the invariant Sobolev lemma of Bernstein (see Lemma [3.1\)](#page-3-0) this readily implies that Z has VAI.

The converse implication is established in Proposition [5.1.](#page-6-0) The main lemma shows that in the non-reductive case the volume of the above mentioned sets Bz can be made exponentially small.

Acknowledgement We are greatful to an anonymous referee for comments which have lead to a substantial improvement of the exposition.

2. NOTATION

Throughout G is a connected real reductive group and $H \subset G$ is a closed connected subgroup such that $Z := G/H$ is unimodular. We write μ_Z for a fixed G-invariant measure and vol_Z for the corresponding volume function.

Let g be the Lie algebra of G. We fix a Cartan involution θ of G. The derived involution $\mathfrak{g} \to \mathfrak{g}$ will also be called θ . The fixed point set of θ is a maximal compact subgroup K of G whose Lie algebra will be denoted \mathfrak{k} . Let \mathfrak{p} denote the -1 -eigenspace of θ on \mathfrak{g} , then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Let κ be a non-degenerate invariant symmetric bilinear form on $\mathfrak g$ such that

$$
\kappa|_{\mathfrak{p}}>0,\quad \kappa|_{\mathfrak{k}}<0,\quad \mathfrak{k}\perp\mathfrak{p}.
$$

Having chosen κ we define an inner product on $\mathfrak g$ by

$$
\langle X, Y \rangle = -\kappa(\theta(X), Y).
$$

We denote by $\mathfrak h$ the Lie algebra of H and by $\mathfrak q$ be its orthogonal complement in g.

Lemma 2.1. The space Z is of reductive type if and only if there exists a Cartan involution θ of G which preserves H. With such a choice we $have$ [h, q] \subset q.

Proof. See [\[9\]](#page-15-6) Exercise VI A8 or [\[20\]](#page-15-7) Thm. 12.1.4. The last statement follows easily. **Remark 2.2.** Let Z be of reductive type and choose θ and κ as above. Then $[q, q] \subset \mathfrak{h}$ if and only if the pair (g, \mathfrak{h}) is symmetric, that is, if and only if

$$
\mathfrak{h} = \{ X \in \mathfrak{g} \mid \sigma(X) = X \}
$$

for an involution σ of $\mathfrak g$. When $\mathfrak g$ is semisimple it then follows that

$$
\mathfrak{q} = \{ X \in \mathfrak{g} \mid \sigma(X) = -X \}.
$$

3. VAI versus volume growth

By a ball we will understand a compact symmetric neighborhood B of 1 in G. Every ball B determines a weight function v_B on Z given by

$$
\mathbf{v}_B(z) := \text{vol}_Z(Bz) \qquad (z \in Z).
$$

The precise shape of the ball B does not matter, as for any two balls B_1, B_2 the quotient $\frac{\mathbf{v}_{B_1}}{\mathbf{v}_{B_2}}$ is bounded from above and below by positive constants (see [\[1\]](#page-14-0), p. 683).

Let $1 \leq p < \infty$. For every $k \in \mathbb{N}$ we let $\|\cdot\|_{p,k}$ be a k-th Sobolev norm of $\|\cdot\|_p$, the L^p-norm on $L^p(Z)$ (see [\[2\]](#page-14-1), Section 2). Note that the collection $\{ \| \cdot \|_{p,k} : k \in \mathbb{N} \}$ determine the Fréchet topology on $L^p(Z)^\infty$.

For a subset $\Omega \subset Z$ we write $\|\cdot\|_{p,k,\Omega}$ the semi-norm on $L^p(Z)^\infty$ which is obtained by integrating the derivatives over Ω .

In this context we recall the invariant Sobolev lemma of Bernstein:

Lemma 3.1 ([\[1\]](#page-14-0), "Key lemma" on p. 686). Fix $k > \frac{\dim G}{p}$. Then for every ball B there is a constant $C_B > 0$ such that

(3.1)
$$
|f(z)| \leq C_B \mathbf{v}_b(z)^{-\frac{1}{p}} \|f\|_{p,k,Bz} \qquad (z \in Z)
$$

for all smooth functions f on Z.

For $v \in \mathcal{U}(\mathfrak{g})$ and $f \in L^p(Z)^\infty$, as $L_v f$ belongs to $L^p(Z)$, its norm over Bz will be arbitrarily small for z outside a sufficiently large compact set. Hence, for $f \in L^p(\mathbb{Z})^{\infty}$ with $1 \leq p < \infty$ we obtain that

$$
\lim_{z \to \infty} \|f\|_{p,k,Bz} = 0.
$$

Hence we have shown that:

Proposition 3.2. Suppose that there is constant $c > 0$ such that $\mathbf{v}_B(z) > c$ for all $z \in Z$. Then VAI holds true.

HOMOGENEOUS SPACES 5

4. Reductive Spaces are VAI

For G and H both semisimple it was shown with analytic methods in [\[13\]](#page-15-5) that the assumption of Proposition [3.2](#page-3-1) is valid for G/H . In this section we give a geometric proof, which is valid for all spaces of reductive type. Combined with Proposition [3.2](#page-3-1) this completes the proof of the implication 'if' of Theorem [1.2.](#page-1-0)

Lemma 4.1. Let $Z = G/H$ be of reductive type. Then there exists a constant $c > 0$ such that

$$
(4.1) \t\t\t \mathbf{v}_B(z) \ge c
$$

for all $z \in Z$.

Proof. We begin by recalling the Mostow-decomposition of Z. As Z is of reductive type we can and will identify g/f with q in an H-equivariant way (see Lemma [2.1\)](#page-2-0). Note that q is θ -stable and in particular $\mathfrak{q} = \mathfrak{q} \cap \mathfrak{k} + \mathfrak{q} \cap \mathfrak{p}$. We denote by $pr_{\mathfrak{q}} : \mathfrak{g} \to \mathfrak{q}$ the orthogonal projection. The polar or Mostow decomposition asserts that the polar map

(4.2)
$$
\pi: K \times_{H \cap K} (\mathfrak{q} \cap \mathfrak{p}) \to Z, \quad [k, Y] \mapsto k \exp(Y) z_0
$$

is a homeomorphism (see [\[14\]](#page-15-8) or [\[4\]](#page-15-9), p. 74).

It is no loss of generality to request the balls B to have two additional properties:

(4.3) θ(B) = B.

$$
(4.4) \t\t KBK = B.
$$

Note that θ induces an automorphism on Z which is measure preserving. Hence [\(4.3\)](#page-4-1) implies

(4.5)
$$
\mathbf{v}_B(z) = \mathbf{v}_B(\theta(z)) \qquad (z \in Z).
$$

Furthermore, it follows from [\(4.4\)](#page-4-2) and the polar decomposition [\(4.2\)](#page-4-3) that it is sufficient to establish [\(4.1\)](#page-4-4) for all $z = \exp(tX) \cdot z_0 \in Z$ where $t \in \mathbb{R}$ and $X \in \mathfrak{q} \cap \mathfrak{p}$ has unit length.

Now for every $X \in \mathfrak{q} \cap \mathfrak{p}$ we choose an ad X-stable vector complement $V_X \subset \mathfrak{g}$ to \mathfrak{h} , i.e. $\mathfrak{g} = \mathfrak{h} \oplus V_X$. There is a neighborhood $U_X \subset V_X$ of 0 such that $\exp(U_X) \subset B$ and such that

$$
U_X \to Z, \quad Y \mapsto \exp(Y) \cdot z_0
$$

is a diffeomorphism onto its image, with a Jacobian which is bounded below by a positive number d_X . Let $t \in \mathbb{R}$ and note that

$$
\mathbf{v}_B(\exp(tX) \cdot z_0) \ge \text{vol}_Z(\exp(U_X) \exp(tX) \cdot z_0)
$$

= $\text{vol}_Z(\exp(e^{-t \text{ ad } X} U_X) \cdot z_0)$
 $\ge \text{vol}_Z(\exp(U_X \cap e^{-t \text{ ad } X} U_X) \cdot z_0).$

We decompose V_X into eigenspaces for ad X and choose U_X to be a box along these coordinates. Then $e^{-t \cdot \text{ad} X}$ is an anisotropic scaling along the edges of the box. This shows that there is a $\lambda_X \in \mathbb{R}$ such that for all $t \in \mathbb{R}$ one has

(4.6)
$$
\mathbf{v}_B(\exp(tX)\cdot z_0) \ge c_X e^{\lambda_X t}
$$

where $c_X = d_X \text{vol}(U_X)$. As $\theta(X) = -X$ we finally obtain from [\(4.5\)](#page-4-5) that

$$
\mathbf{v}_B(\exp(tX)\cdot z_0) \ge c_X \cosh(t\lambda_X) \ge c_X
$$

for all $t \in \mathbb{R}$.

The constant c_X can be chosen to be locally uniform with respect to X. To see this, let $X \in \mathfrak{a}$ where \mathfrak{a} is maximal abelian in \mathfrak{p} . Then we can assume that the complementary subspace V_X has been chosen such that it is ad(α)-stable. Thus the same subspace V_X can be used for all $X \in \mathfrak{a}$. The map $K \times \mathfrak{a} \to \mathfrak{p}$ given by $(k, X) \mapsto \text{Ad}(k)X$ is open, and $\text{Ad}(k)V_X$ complements $\mathfrak h$ for $k \in K$ small as well. This shows that V_X can be chosen so that it depends locally uniformly on X. Moreover it also follows by conjugation with K that local uniformity can be attained for U_X and d_X . By compactness we obtain [\(4.1\)](#page-4-4). \Box

Remark 4.2. If G/H is a semisimple symmetric space (see Remark [2.2\)](#page-3-2) then by the same method one obtains strong volume bounds, both below and above, as follows. In this case the polar decomposition [\(4.2\)](#page-4-3) can be given the more explicit form

$$
G = K \overline{A_q^+} H
$$

(see [\[18\]](#page-15-10) Proposition 7.1.3) where $A_q^+ = \exp \mathfrak{a}_q^+$ for a positive Weyl chamber in a maximal abelian subspace $\mathfrak{a}_q \subset \mathfrak{q} \cap \mathfrak{p}$. In the proof above it then suffices to consider elements $X \in \mathfrak{a}_q$. For such elements the complementary subspace V_X can be chosen independently of X. Indeed, if U is the unipotent radical of a minimal $\sigma\theta$ -stable parabolic subgroup containing A_q , then $V_X = \mathfrak{q}^{\mathfrak{a}_q} + \mathfrak{u} \subset \mathfrak{g}$ will be such a subspace. The scalings of the box U_X are then exactly determined by the roots of **u**, and it follows as in [\(4.6\)](#page-5-0) that there exists a constant $C_1 > 0$ such that

$$
\text{vol}_Z(Ba \cdot z_0) \ge C_1 a^{2\rho}, \qquad (a \in \overline{A_q^+})
$$

where $2\rho = \text{tr } ad_u$. For an upper bound we use that $\mathfrak{g} = \mathfrak{k} + \mathfrak{g}^{\mathfrak{a}_q} + \mathfrak{u}$, so that $B \subset K \exp(U_X) H^{a_q}$ for some ball B. Then by a similar argument we obtain the existence of a constant $C_2 > 0$ such that

$$
\text{vol}_Z(Ba \cdot z_0) \le C_2 a^{2\rho}, \qquad (a \in \overline{A_q^+}).
$$

Similar bounds can be obtained for all real spherical spaces by using the results of [\[11\]](#page-15-11).

Remark 4.3. For a semisimple symmetric space the wave front lemma, Theorem 3.1 of [\[8\]](#page-15-12), shows that there exists an open neighberhood V of z_0 , such that Bz contains a G-translate of V for all $z \in Z$. This implies [\(4.1\)](#page-4-4) for this case.

5. Non-reductive spaces are not VAI

In this section we prove that VAI does not hold on any homogeneous space $Z = G/H$ of G, which is not of reductive type. We maintain the assumption that G is a connected real reductive group and establish the following result.

Proposition 5.1. Assume that $H \subset G$ is a closed connected subgroup such that $Z = G/H$ is unimodular and not of reductive type. Then for all $1 \leq p < \infty$ there exists an unbounded function $f \in L^p(\mathbb{Z})^{\infty}$. In particular, VAI does not hold.

The idea is to show that there is a compact ball $B \subset G$ and a sequence $(g_n)_{n\in\mathbb{N}}$ such that

 $\mathrm{vol}_Z(Bg_n z_0) \leq e^{-n}$ for all $n \in \mathbb{N}$.

Out of these data it is straightforward to construct an unbounded smooth L^p -function.

Before we give a general proof we first discuss the case of unipotent subgroups. The argument in the general case, although more technical, will be modeled after that.

5.1. Unipotent subgroups. Let $H = N$ be a unipotent subgroup, that is, $\mathfrak{n} := \mathfrak{h}$ is an ad-nilpotent subalgebra of $[\mathfrak{g}, \mathfrak{g}]$. Now, the situation where $\mathfrak n$ is normalized by a particular semi-simple element is fairly straightforward and we shall begin with a discussion of that case.

If $X \in \mathfrak{g}$ is a real semi-simple element, i.e., ad X is semi-simple with real spectrum, then we denote by $\mathfrak{g}_X^{\lambda} \subset \mathfrak{g}$ its eigenspace for the eigenvalue $\lambda \in \mathbb{R}$, and by \mathfrak{g}^{\pm}_X the sum of these eigenspaces for λ positive/negative. We record the triangular decomposition

$$
\mathfrak{g} = \mathfrak{g}_X^+ + \mathfrak{z}_{\mathfrak{g}}(X) + \mathfrak{g}_X^-.
$$

Here $\mathfrak{z}_{\mathfrak{g}}(X) =: \mathfrak{g}_X^0$ is the centralizer of X in \mathfrak{g} .

Lemma 5.2. Assume that $\mathfrak n$ is normalized by a non-zero real semisimple element $X \in \mathfrak{g}$ such that $\mathfrak{n} \subset \mathfrak{g}_X^+$. Set $a_t := \exp(tX)$ for all $t \in \mathbb{R}$. Let $B \subset G$ be a compact ball around 1. Then there exists $c > 0$ and $\gamma > 0$ such that

$$
\text{vol}_Z(Ba_t z_0) = c \cdot e^{t\gamma} \qquad (t \in \mathbb{R})
$$

Proof. Let $A = \exp \mathbb{R}X$ and note that A normalizes N. Thus for all $a \in A$ the prescription

$$
\mu_{Z,a}(Bz_0) := \mu_Z(Baz_0)
$$
 $(B \subset G$ measurable)

defines a G-invariant measure on Z. By the uniqueness of the Haar measure we obtain that

$$
\mu_{Z,a} = J(a)\mu_Z
$$

where $J: A \to \mathbb{R}_0^+$ is the group homomorphism $J(a) = \det \text{Ad}(a)|_{\mathfrak{n}}$. The assertion follows.

Having obtained this volume bound we can proceed as follows. Let us denote by χ_k the characteristic function of $Ba_{-k}z_0 \subset Z$. We claim that the non-negative function

(5.1)
$$
\chi := \sum_{k \in \mathbb{N}} k \chi_k
$$

lies in $L^p(G/H)$. In fact

$$
\|\chi\|_p \le \sum_{k \in \mathbb{N}} k \|\chi_k\|_p \le c \sum_{k \in \mathbb{N}} k e^{-\gamma k/p}.
$$

Finally we have to smoothen χ : For that let $\phi \in C_c(G)^\infty$ with $\phi \geq 0$, $\int_G \phi = 1$ and supp $\phi \subset B$. Then $\tilde{\chi} := \phi * \chi \in L^p(Z)^\infty$ with $\tilde{\chi}(a_{-k}z_0) \ge$ k. Hence $\tilde{\chi}$ is unbounded.

In general, given a unipotent subalgebra n, there does not necessarily exist a semisimple element which normalizes **n**. For example if $U \in \mathfrak{g} =$ $\mathfrak{sl}(5,\mathbb{C})$ is a principal nilpotent element, then $\mathfrak{n} = \text{span}\{U, U^2 + U^3\}$ is a 2-dimensional abelian unipotent subalgebra which is not normalized by any semi-simple element of g. The next lemma offers a remedy out of this situation by finding an ideal $\mathfrak{n}_1 \triangleleft \mathfrak{n}$ which is normalized by a real semisimple element X with $\mathfrak{n} \subset \mathfrak{g}_X^+ + \mathfrak{g}_X^0$.

Lemma 5.3. Let $\mathfrak{n} \subset [\mathfrak{g},\mathfrak{g}]$ be an ad-nilpotent subalgebra and let $0 \neq$ $U \in \mathfrak{z(n)}$. Then there exists a real semi-simple element $X \in \mathfrak{g}$ such that $[X, U] = 2U$ and $\mathfrak{n} \subset \mathfrak{g}^+_X + \mathfrak{g}^0_X$.

HOMOGENEOUS SPACES 9

Proof. According to the Jacobson-Morozov theorem one finds elements $X, V \in \mathfrak{g}$ such that $\{X, U, V\}$ form an \mathfrak{sl}_2 -triple, i.e. satisfy the commutator relations $[X, U] = 2U, [X, V] = -2V, [U, V] = X$. Note that $\mathfrak{n} \subset \mathfrak{z}_{\mathfrak{g}}(U)$ and that $\mathfrak{z}_{\mathfrak{g}}(U)$ is ad X-stable. It is known and in fact easy to see that $\mathfrak{z}_{\mathfrak{g}}(U) \subset \mathfrak{g}_X^+ + \mathfrak{g}_X^0$. All assertions follow.

Within the notation of Lemma [5.3](#page-7-0) we set $\mathfrak{n}_1 = \mathbb{R}U$ and $N_1 = \exp(\mathfrak{n}_1)$. Furthermore we set $Z_1 = G/N_1$ and consider the contractive averaging map

$$
L^1(Z_1) \to L^1(Z), \quad f \mapsto \hat{f}; \quad \hat{f}(gN) = \int_{N/N_1} f(gnN_1) \ d(nN_1).
$$

Let $B \subset G$ be a compact ball around 1, of sufficiently large size to be determined later, and let $B_1 = B \cdot B \subset G$. Let χ be the function on Z_1 constructed as in [\(5.1\)](#page-7-1), using the element X from Lemma [5.3](#page-7-0) and the compact set B_1 . Let $\hat{\chi} \in L^1(\mathbb{Z})$ be the average of χ . We claim that $\widehat{\chi}(Ba_{-k}z_0) \geq k$ for all k. In fact let $Q \subset N/N_1$ be a compact neighborhood of 1 in N/N_1 with $vol_{N/N_1}(Q) = 1$. Then for B large enough we have $a_{-k}Qa_k \subset B$ for all k (Lemma [5.3\)](#page-7-0). Hence for $b \in B$,

$$
\widehat{\chi}(ba_{-k}z_0) \ge \int_Q \chi(ba_{-k}nN_1) d(nN_1) \ge k,
$$

proving our claim.

To continue we conclude that $f_p := (\widehat{\chi})^{\frac{1}{p}} \in L^p(Z)$ is a function with $f_p(Ba_{-k}z_0) \geq k$ for all k. Finally we smoothen f_p as before and conclude that VAI does not hold true.

5.2. The general case of a non-reductive unimodular space. Finally we shall prove Proposition [5.1](#page-6-0) in the general situation where H is a closed and connected subgroup for which $Z = G/H$ is unimodular and not of reductive type.

We fix a Levi-decomposition $\mathfrak{h} = \mathfrak{r} \rtimes \mathfrak{s}$ of \mathfrak{h} . As in Section [2](#page-2-1) we fix a Cartan involution θ of \mathfrak{g} , and by Lemma [2.1](#page-2-0) we may assume that it restricts to a Cartan involution of s.

Proof of Proposition [5.1.](#page-6-0)

We will argue by induction on dim **g**, the base of the induction being clear. We will perform a number of reduction steps (which may involve the induction hypothesis) that will lead us to a simplified situation which is described in Step 9 of the proof.

Step 1: $\mathfrak h$ is not contained in any reductive proper subalgebra of $\mathfrak g$.

Indeed, otherwise $\mathfrak h$ is contained in a proper subalgebra $\mathfrak h$ of $\mathfrak g$, which is reductive in $\mathfrak g$. Then $\mathfrak h$ is not reductive in $\mathfrak h$ ([\[6\]](#page-15-13), §6.6 Cor. 2). By induction H/H is not VAI, in the strong sense that for every $1 \leq p \leq \infty$ there exists an unbounded function $f \in L^p(\tilde{H}/H)^\infty$. We claim that G/H is not VAI in the same strong sense. Let $\tilde{\mathfrak{q}} \subset \mathfrak{g}$ be the orthogonal complement to $\mathfrak h$ in $\mathfrak g$. Then for a small neighborhood $V \subset \tilde{\mathfrak q}$ of 0 the tubular map

$$
V \times \tilde{H} \to G, \ \ (X, h) \mapsto \exp(X)h
$$

is diffeomorphic. The Haar measure on G is expressed by $J(X)dXdh$ with $J > 0$ a bounded positive function. Since \tilde{H} normalizes \tilde{q} , this allows us to extend smooth L^p -functions from \tilde{H}/H to G/H and we see that G/H is not VAI in the strict sense. Hence we may assume as stated in Step 1.

Step 2: h is contained in a maximal parabolic subalgebra \mathfrak{p}_0 .

Indeed, by the characterization of maximal subalgebras of \mathfrak{g} (see [\[7\]](#page-15-14), Ch. 8, §10, Cor. 1), a maximal subalgebra is either a maximal parabolic subalgebra or it is a maximal reductive subalgebra. Hence it follows from Step 1 that $\mathfrak h$ is contained in a maximal parabolic subalgebra $\mathfrak p_0$.

Step 3: $\mathfrak{s} \subset \mathfrak{l}_0$, the Levi part of \mathfrak{p}_0

We write $\mathfrak{p}_0 = \mathfrak{n}_0 \rtimes \mathfrak{l}_0$ where \mathfrak{n}_0 is the unipotent radical of \mathfrak{p}_0 . Note that \mathfrak{l}_0 is reductive in g and hence \mathfrak{h} is not contained in \mathfrak{l}_0 . In addition we may assume that $\mathfrak{s} \subset \mathfrak{l}_0$ ([\[6\]](#page-15-13) §6.8 Cor. 1).

Step 4: $\mathfrak{z}(\mathfrak{l}_0)$ is not contained in \mathfrak{h} . We may assume that \mathfrak{g} is semisimple. Then, as \mathfrak{p}_0 is maximal, we have $\mathfrak{z}(\mathfrak{l}_0) = \mathbb{R}X_0$ and the spectrum of ad X_0 on \mathfrak{n}_0 is either entirely negative or positive. Suppose that $X_0 \in \mathfrak{h}$. Since G/H is unimodular, $|\det \mathrm{Ad}(h)|_{\mathfrak{h}}| = 1$ for $h \in H$ and in particular $|\det e^{adX_0}|_{\mathfrak{r}}| = 1$. This would imply that $\mathfrak{h} \subset \mathfrak{l}_0$, contradicting Step 1.

Step 5: Decomposition $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus (\mathfrak{h} + \mathfrak{n}_0).$ Indeed, define the subspace $\mathfrak{l}_1 \subset \mathfrak{l}_0$ by

 $\mathfrak{l}_1 = \mathrm{pr}_{\mathfrak{l}_0}(\mathfrak{h})^{\perp}$

where $\text{pr}_{\mathfrak{l}_0} : \mathfrak{p}_0 \to \mathfrak{l}_0$ is the projection along \mathfrak{n}_0 . Then $\mathfrak{l}_1 \oplus (\mathfrak{h} + \mathfrak{n}_0) = \mathfrak{p}_0$.

Step 6: The case $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_0$.

In this case $\mathfrak{h} \cap \mathfrak{n}_0 = \{0\}$ and thus the projection $\text{pr}_{\mathfrak{l}_0} |_{\mathfrak{h}} : \mathfrak{h} \to \mathfrak{l}_0$, which is a Lie-algebra homomorphism, is injective. Write \mathfrak{h}_0 for the homomorphic image of $\mathfrak h$ in $\mathfrak l_0$. The analysis will be separated in two subcases.

Case 6a: \mathfrak{h}_0 is not reductive in \mathfrak{l}_0 . Let H_0 and L_0 be the connected subgroups of G corresponding to \mathfrak{h}_0 and \mathfrak{l}_0 . As G/H is unimodular and H is homomorphic to H_0 , it follows that G/H_0 and thus L_0/H_0 is unimodular. By induction we find for every $1 \leq p < \infty$ an unbounded

function $f \in L^p(L_0/H_0)^\infty$. As before in the case of \tilde{H}/H we extend f to a smooth vector in $L^p(G/H)$ (note that $P_0/H \to L_0/H_0$ is a fibre bundle, and we first extend f to a function on P_0/H and then to a function on G/H).

Case 6b: \mathfrak{h}_0 is reductive in \mathfrak{l}_0 . In particular it is a reductive Lie algebra, hence so is \mathfrak{h} . In the Levi decomposition $\mathfrak{h} = \mathfrak{s} \oplus \mathfrak{r}$ we now know that $\mathfrak r$ is the center of $\mathfrak h$. Let $\mathfrak u$ be the subalgebra of $\mathfrak g$ generated by **r** and $\theta(\mathbf{r})$, then $\mathfrak{s}+\mathfrak{u}$ is a direct Lie algebra sum. Moreover, $\mathfrak{s}+\mathfrak{u}$ is θ -invariant, hence reductive in \mathfrak{g} , and hence in fact $=\mathfrak{g}$ by our previous assumption on $\mathfrak h$. Thus $\mathfrak s$ is an ideal in $\mathfrak g$ which we may as well assume is 0. Now $\mathfrak{h} = \mathfrak{r}$ is an abelian subalgebra which together with $\theta(\mathfrak{r})$ generates $\mathfrak g$. We shall reduce to the case where $\mathfrak r$ is nilpotent in $\mathfrak g$, which we already treated in Section [5.1.](#page-6-1)

Every element $X \in \mathfrak{r}$ has a Jordan decomposition $X_n + X_s$ (in \mathfrak{g}), and we let $\mathfrak{o}_1, \mathfrak{o}_2$ be the subalgebras generated by the X_n 's and X_s 's, respectively. Then $\mathfrak{o} = \mathfrak{o}_1 \oplus \mathfrak{o}_2$ is abelian and \mathfrak{o}_2 consists of semisimple elements. The centralizer of \mathfrak{o}_2 is reductive in \mathfrak{g} and contains **r**, hence equal to $\mathfrak g$. Hence $\mathfrak o_2$ is central in $\mathfrak g$, and we may assume that it is θ-stable. Let \mathfrak{g}_1 be the subalgebra of g generated by \mathfrak{o}_1 and $\theta(\mathfrak{o}_1)$. It is reductive in \mathfrak{g} , and $(\mathfrak{g}_1, \mathfrak{o}_1)$ is of the type already treated, hence not VAI. Since $\mathfrak{g} = \mathfrak{g}_1 + \mathfrak{o}_2$ we can now conclude that $(\mathfrak{g}, \mathfrak{r}) = (\mathfrak{g}, \mathfrak{h})$ is not VAI either.

Step 7: An element $X \in \mathfrak{z}(\mathfrak{l}_0)$.

Using the result of Step 4, there exists $X \in \mathfrak{z}(\mathfrak{l}_0) \backslash \mathfrak{h}$ such that $\mathfrak{n}_0 \subset \mathfrak{g}_X^+$. As before we set $a_t := \exp(tX)$ and observe that $a_t z_0 \to \infty$ in Z for $|t| \to \infty$ (this is because $a_t[L_0, L_0]N_0$ tends to infinity in $G/[L_0, L_0]N_0$.)

Step 8: A decomposition $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1$

We construct an ad X-invariant subspace $\mathfrak{n}_1 \subset \mathfrak{n}_0$ such that $\mathfrak{h}+\mathfrak{n}_0 =$ $\mathfrak{h} \oplus \mathfrak{n}_1$, as follows. If $\mathfrak{n}_0 \subset \mathfrak{h}$, then $\mathfrak{n}_1 = \{0\}$. Otherwise we choose an ad X-eigenvector, say Y_1 , in \mathfrak{n}_0 with largest possible eigenvalue, such that $\mathfrak{h} + \mathbb{R}Y_1$ is a direct sum. If this sum contains \mathfrak{n}_0 , we set $\mathfrak{n}_1 = \mathbb{R}Y_1$. Otherwise we continue that procedure until a complementary subspace is reached. Now $\mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1 = \mathfrak{p}_0$ and by Step 6 we can assume $\mathfrak{n}_1 \subsetneq \mathfrak{n}_0$.

Step 9: We summarize the situation we have reduced to:

- $\mathfrak{h} = \mathfrak{r} \rtimes \mathfrak{s}$ is a Levi decomposition of \mathfrak{h} .
- $\mathfrak{h} \subset \mathfrak{p}_0 = \mathfrak{n}_0 \rtimes \mathfrak{l}_0$, a maximal parabolic subalgebra of \mathfrak{g} .
- $\mathfrak{s} \subset \mathfrak{l}_0$, the Levi part of \mathfrak{p}_0 .
- $\mathfrak{l}_1 := \mathrm{pr}_{\mathfrak{l}_0}(\mathfrak{h})^{\perp} \subset \mathfrak{l}_0$ with $\mathrm{pr}_{\mathfrak{l}_0} : \mathfrak{p}_0 \to \mathfrak{l}_0$ the projection along \mathfrak{n}_0 .
- $\mathfrak{p}_0 = \mathfrak{l}_1 \oplus \mathfrak{h} \oplus \mathfrak{n}_1$ with $\mathfrak{l}_1 \subset \mathfrak{l}_0$ and $\mathfrak{n}_1 \subsetneq \mathfrak{n}_0$.
- $X \in \mathfrak{z}(\mathfrak{l}_0)$ and
	- (1) $\mathfrak{n}_0 \subset \mathfrak{g}_X^+$.

12 BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

(2) \mathfrak{n}_1 is invariant with respect to ad(X).

(3) With $a_t = \exp(tX)$ we have $a_t z_0 \to \infty$ in Z for $|t| \to \infty$.

We will construct (for any $1 \leq p < \infty$) a smooth function χ in $L^p(Z)$ which does not decay. For this we need some auxilary functions Φ_t which we now construct.

Let $\overline{\mathfrak{n}}_0$ be the nilradical of the parabolic opposite to \mathfrak{p}_0 and consider the ad X -invariant vector space

$$
\mathfrak{v}:=\overline{\mathfrak{n}}_0\times\mathfrak{l}_1\times\mathfrak{n}_1\subset\mathfrak{g}
$$

which is complementary to h. For fixed $t \in \mathbb{R}$ we define the differentiable map

$$
\Phi = \Phi_t : \mathfrak{v} \to Z,
$$

by the formula

$$
\Phi(Y^-, Y^0, Y^+) = \exp(Y^-) \exp(Y^0) \exp(Y^+) a_t z_0.
$$

The main property which we need of these functions Φ_t is expressed in the following lemma. For $Y = (Y^-, Y^0, Y^+) \in \mathfrak{v}$ we put

$$
y^{\pm,0} = \exp(Y^{\pm,0}) \in G
$$

and $y = y^{-}y^{0}y^{+}$, and we identify the tangent space $T_{\Phi_{t}(Y)}Z$ with \mathfrak{v} via the map

$$
T_{\Phi_t(Y)}Z \to \mathfrak{v}, \quad d\tau_{\mathfrak{ya}_t}(z_0)(X + \mathfrak{h}) \mapsto \pi_{\mathfrak{v}}(X + \mathfrak{h}), \quad (X \in \mathfrak{g})
$$

where $\pi_{\mathfrak{v}} : \mathfrak{g} \to \mathfrak{v}$ is the projection along \mathfrak{h} .

Lemma 5.4. Let the data summarized under Step 9 above be given. Then there exists a constant $\gamma > 0$ with the following property. For every sufficiently small compact neighborhood Q of 0 in \mathfrak{v} , there exist constants $c_Q, C_Q > 0$ such that

$$
c_{Q}e^{t\gamma} \le \sup_{Y \in Q} |\det d\Phi_t(Y)| \le C_{Q}e^{t\gamma} \qquad (t \le 0).
$$

In particular $\Phi_t|_Q$ is a chart for all $t \leq 0$.

The proof, which is computational, is postponed to the end of this section. The construction of the function χ is now easy to describe. Let $Q \subset \mathfrak{v}$ be as above. We fix a function $\psi \in C_c^{\infty}(Q)$ with $0 \le \psi \le 1$ and $\psi(0) = 1$. For all $t < 0$ define $\chi_t \in C_c^{\infty}(Z)$ by $\chi_t(z) = \psi(\Phi_t^{-1}(z))$ and set

$$
\chi:=\sum_{n\in\mathbb{N}}n\chi_{-n}\,.
$$

It is clear that $\chi \in C^{\infty}(Z)$ and that χ is unbounded. We claim that $\chi \in L^p(Z)^\infty$.

It follows immediately from the definition that $\chi_t \in L^p(Z)$ for all $1 \leq p < \infty$ and $t \leq 0$, and it follows from the estimate of the differential of Φ in Lemma [5.4](#page-11-0) that $\|\chi_t\|_p \le Ce^{t\gamma/p}$ for some $C > 0$ not depending on t (but possibly on p). Hence

$$
\chi=\sum_{n\in\mathbb{N}}n\chi_{-n}\in L^p(Z)
$$

for all $1 \leq p < \infty$, and it only remains to be seen that also the derivatives of χ belong to $L^p(Z)$. The proof of this fact depends in addition on the following estimate, which will be proved together with Lemma [5.4.](#page-11-0)

Lemma 5.5. Define

$$
M_t := \sup_{U \in \mathfrak{g}, ||U|| = 1} || \operatorname{Ad}(a_t) \pi_{\mathfrak{v}} \operatorname{Ad}(a_t)^{-1} U ||
$$

Then $\sup_{t < 0}(M_t) < \infty$.

We now complete the proof of the Proposition [5.1](#page-6-0) by proving that the left derivatives of χ by elements $U \in \mathfrak{g}$, up to all orders, belong to $L^p(Z)$.

We first show this for first order derivatives. Let $U \in \mathfrak{g}$ and consider the derivative $L(U)\chi_t$. At $z = \Phi_t(Y)$ this is given by

$$
L(U)\chi_t(z) = d/ds|_{s=0} \chi_t(\exp(sU)ya_tz_0).
$$

For Y in a compact set, we can replace U by its conjugate by η without loss of generality, and thus we may as well consider the derivatives of

$$
\chi_t(y \exp(sU)a_t z_0).
$$

We rewrite this as

$$
\chi_t(ya_t \exp(s \operatorname{Ad}(a_t)^{-1}U)z_0)
$$

and apply the projection along h. It follows that the derivative can be rewritten as

$$
d/ds|_{s=0} \chi_t(y a_t \exp(s \pi_{\mathfrak{v}} \operatorname{Ad}(a_t)^{-1} U) z_0)
$$

and then finally also as

$$
d/ds|_{s=0} \chi_t(y \exp(s \operatorname{Ad}(a_t)\pi_{\mathfrak{v}} \operatorname{Ad}(a_t)^{-1}U)a_t z_0).
$$

Note that $\text{Ad}(a_t)\pi_{\mathfrak{v}}\text{Ad}(a_t)^{-1}U \in \mathfrak{v}$. We conclude that the derivative is a linear combination of derivatives of ψ on Q , with coefficients that depend smoothly on Y . Furthermore, it follows from Lemma [5.5](#page-12-0) that the coefficients are bounded for $t < 0$. As before we conclude $L(U)\chi_t \in$ $L^p(Z)$ for all $t \leq 0$, with exponentially decaying p-norms. It follows that $L(U)\chi \in L^p(Z)$.

14 BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

By repeating the argument for higher derivatives we finally see that $\chi \in L^p(Z)$ [∞].

It remains to verify Lemmas [5.4](#page-11-0) and [5.5.](#page-12-0) We first prove the latter. *Proof of Lemma [5.5.](#page-12-0)* For $U \in \mathfrak{v}$ we have

$$
\operatorname{Ad}(a_t)\pi_{\mathfrak{v}}\operatorname{Ad}(a_t)^{-1}U=U,
$$

hence we may assume $U \in \mathfrak{h}$. Since $\mathfrak{h} \subset \mathfrak{p}_0$ we can write U as a combination of an element $Y_0 \in \mathfrak{l}_0$ and possibly some ad X-eigenvectors Y_{λ} with eigenvalues $\lambda > 0$. Then

$$
Ad(a_t)^{-1}U = Y_0 + \sum e^{-\lambda t}Y_\lambda = U + \sum (e^{-\lambda t} - 1)Y_\lambda
$$

(possibly with an empty sum). If $Y_{\lambda} \in \mathfrak{n}_1$ then

$$
Ad(a_t)\pi_{\mathfrak{v}}(e^{-\lambda t}-1)Y_{\lambda}=(1-e^{\lambda t})Y_{\lambda}\to Y_{\lambda}
$$

as $t \to -\infty$. On the other hand if Y_{λ} is not in h, then it is the sum of an element from h and some eigenvectors $V_\mu \in \mathfrak{n}_1$. If one of the eigenvalues μ of these vectors is strictly smaller than λ , then it follows from the definition of \mathfrak{n}_1 (see Step 8) that Y_λ must belong to \mathfrak{n}_1 (as it will have been preferred before this V_μ). Thus, if Y_λ is not in \mathfrak{n}_1 , then all the V_{μ} contributing to Y_{λ} must have eigenvalues $\mu \geq \lambda$. Then

$$
Ad(a_t)\pi_{\mathfrak{v}}(e^{-\lambda t}-1)Y_{\lambda} = \sum e^{\mu t}(e^{-\lambda t}-1)V_{\mu}
$$

(possibly with an empty sum), which stays bounded for $t \to -\infty$. Our claim is thus established.

To prepare the proof of Lemma [5.4](#page-11-0) we establish the following lemma. To simplify the main formula below we denote

$$
\beta(T) = \frac{1 - e^{-adT}}{adT} \in \text{End}(\mathfrak{g})
$$

for $T \in \mathfrak{g}$. Note that $\beta(0) = 1$.

Lemma 5.6. Let $Y = (Y^-, Y^0, Y^+) \in \mathfrak{v}$. (1) Let $X = (X^-, X^0, X^+) \in \mathfrak{v}$, then $d\Phi_t(Y)(X) \in \mathfrak{v}$ is given by $d\Phi_t(Y)(X) = \pi_{\mathfrak{v}} \circ \text{Ad}(a_t)^{-1}(S_{Y,X})$ where $S_{Y,X} \in \mathfrak{g}$ is the element $\mathrm{Ad}(y_0 y^+)^{-1} \beta(Y^-) (X^-) + \mathrm{Ad}(y^+)^{-1} \beta(Y^0) (X^0) + \beta(Y^+) (X^+).$ (2) There exists a linear map $L(Y) : \mathfrak{v} \to \mathfrak{g}$ such that $d\Phi_t(Y) = \text{Ad}(a_t)^{-1}(\mathbf{1}_{\mathfrak{v}} + \text{Ad}(a_t)\pi_{\mathfrak{v}}\text{Ad}(a_t)^{-1}L(Y))$ for all $t \leq 0$, and such that $||L(Y)|| \rightarrow 0$ for $Y \rightarrow 0$.

Proof. We get for the differential of Φ :

$$
d\Phi(Y^-, Y^0, Y^+)(X^-, X^0, X^+) = d\tau_{y^-y^0y^+a_t}(z_0) \circ \text{Ad}(a_t)^{-1}(S_{Y,X})
$$

with $S_{Y,X}$ as above. Using the identification of the tangent space with v this is exactly the statement of item [\(1\)](#page-13-0).

Defining $L(Y)$ by $L(Y)(X) = S_{Y,X} - X$ for $X \in \mathfrak{v}$, we obtain the expression in item [\(2\)](#page-13-1). It is easily seen that $||L(Y)|| \rightarrow 0$ for $Y \rightarrow 0$. \Box

Proof of Lemma [5.4.](#page-11-0) Finally, it follows from Lemma [5.5](#page-12-0) that $\text{Ad}(a_t)^{-1} \mathbf{1}_{\mathfrak{v}}$ dominates in the expression in item [\(2\)](#page-13-1) above, for $Y \in \mathfrak{v}$ sufficiently small. Since \mathfrak{n}_1 is proper in \mathfrak{n}_0 , it follows that

$$
\gamma := \mathrm{tr}(\mathrm{ad}(X)|_{\mathfrak{n}_0}) - \mathrm{tr}(\mathrm{ad}(X)|_{\mathfrak{n}_1}) > 0
$$

and with this we obtain Lemma [5.4.](#page-11-0) \Box

5.3. Final remarks. 1. We did not address here the case where G is not reductive. One might expect for G and H algebraic and G general, that Z has VAI if and only if the nilradical of H is contained in the nilradical of G.

2. The following may be an alternative approach to Theorem [1.2](#page-1-0) for algebraic groups G and H . To be more specific, assume G and $H < G$ to be complex algebraic groups and $Z = G/H$ to be unimodular and quasi-affine. Under these assumptions we expect that there is a rational G-module V, and an embedding $Z \to V$ such that the invariant measure μ_Z , via pull-back, defines a tempered distribution on V. Note that if Z is of reductive type, then there exists a V such that the image of $Z \rightarrow V$ is closed, and hence μ_Z defines a tempered distribution on V . If Z is not of reductive type, then by Matsushima's criterion ([\[5\]](#page-15-15), Thm. 3.5) all images $Z \rightarrow V$ are non-closed and the expected embedding would imply that VAI does not hold. This is supported by a result in [\[16\]](#page-15-16), which asserts that for a reductive group G and $X \in \mathfrak{g} :=$ Lie(G) the invariant measure on the adjoint orbit $Z := \mathrm{Ad}(G)(X) \subset \mathfrak{g}$ defines a tempered distribution on g. Various particular results in the theory of prehomogeneous vector spaces provide additional support (see [\[3\]](#page-14-2)).

REFERENCES

- [1] J. Bernstein, On the support of Plancherel measures, Jour. of Geom. and Physics 5, No. 4 (1988), 663–710.
- [2] J. Bernstein and B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules, [arXiv:0812.1684,](http://arxiv.org/abs/0812.1684) Israel J. Math., to appear.
- [3] N. Bopp and H. Rubenthaler, Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. 174 (2005), no. 821.

16 BERNHARD KRÖTZ, EITAN SAYAG AND HENRIK SCHLICHTKRULL

- [4] A. Borel, *Travaux de Mostow sur les espaces homogènes*, Séminaire N. Bourbaki, 1956-1958, exp. n^o 142, 73-84.
- [5] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Annals of Math 75 (1962), 485–535.
- [6] N. Bourbaki, "Groupes et algèbres de Lie", Chapitre 1, Hermann 1960.
- [7] N. Bourbaki, "Groupes et algèbres de Lie", Chapitre 7-8, Hermann 1975.
- [8] A. Eskin and C. Mcmullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), 181–209.
- [9] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces", Academic Press 1978.
- [10] R. Howe and C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal., 32 (1979), 72–96.
- [11] F. Knop, B. Krötz, E. Sayag and H. Schlichtkrull, *Simple compactifications* and polar decomposition for real spherical spaces, [arXiv:1402.3467.](http://arxiv.org/abs/1402.3467)
- [12] B. Krötz and H. Schlichtkrull, On function spaces on symmetric spaces, Representation theory, complex analysis, and integral geometry, 1–8, Birkhäuser/Springer, New York, 2012.
- [13] N. Lohoué and S. Mustapha, Sur les transformées de Riesz sur les espaces homogènes des groupes de Lie semi-simples, Bull. Soc. Math. France $128 \ (4)$ (2000), 485–495.
- [14] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), 31–54.
- [15] N. S. Poulsen, On C^{∞} -vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal. 9 (1972), 87–120.
- [16] Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505–510.
- [17] Z. Rudnick and H. Schlichtkrull, Decay of eigenfunctions on semisimple symmetric spaces, Duke Math. J. 64 (1991), 445-450.
- [18] H. Schlichtkrull, "Hyperfunctions and harmonic analysis on symmetric spaces", Birkhäuser 1984.
- [19] N. Wallach, "Real Reductive Groups I", Academic Press, 1988.
- [20] J. Wolf, "Spaces of Constant Curvature", McGraw-Hill, 1967.