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Abstract

Let F be an arbitrary local field. Consider the standard embedding GLn(F ) ↪→ GLn+1(F )
and the two-sided action of GLn(F )×GLn(F ) on GLn+1(F ).

In this paper we show that any GLn(F )×GLn(F )-invariant distribution on GLn+1(F )
is invariant with respect to transposition.

We show that this implies that the pair (GLn+1(F ), GLn(F )) is a Gelfand pair. Namely,
for any irreducible admissible representation (π,E) of GLn+1(F ),

dimHomGLn(F )(E,C) 6 1.

For the proof in the archimedean case we develop several tools to study invariant
distributions on smooth manifolds.

1. Introduction

Let F be an arbitrary local field. Consider the standard imbedding GLn(F ) ↪→ GLn+1(F ). We
consider the two-sided action of GLn(F )×GLn(F ) on GLn+1(F ) defined by (g1, g2)h := g1hg−1

2 . In
this paper we prove the following theorem:

Theorem A. Any GLn(F )×GLn(F ) invariant distribution on GLn+1(F ) is invariant with respect
to transposition.

Theorem A has the following consequence in representation theory.

Theorem B. Let (π, E) be an irreducible admissible representation of GLn+1(F ). Then

dimHomGLn(F )(E,C) 6 1. (1)

In the non-archimedean case admissible refers to admissible smooth representation (see [BZ]).
In the archimedean case admissible refers to admissible smooth Fréchet representation (see section
2).

Since any character of GLn(F ) can be extended to GLn+1(F ), we obtain

Corollary. Let (π, E) be an irreducible admissible representation of GLn+1(F ) and let χ be a
character of GLn(F ). Then

dimHomGLn(F )(π, χ) 6 1.

Theorem B has some application to the theory of automorphic forms, more specifically to the
factorizability of certain periods of automorphic forms on GLn (see [Fli] and [FN]).

We deduce Theorem B from Theorem A using an argument due to Gelfand and Kazhdan adapted
to the archimedean case. In our approach we use two deep results: the globalization theorem of
Casselman-Wallach (see [Wal2]), and the regularity theorem of Harish-Chandra ([Wal1], chapter 8).
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Clearly, Theorem B implies in particular that (1) holds for unitary irreducible representations
of GLn+1(F ). That is, the pair (GLn+1(F ), GLn(F )) is a generalized Gelfand pair in the sense of
[vD] and [BvD].

The notion of Gelfand pair was studied extensively in the literature both in the setting of
real groups and p-adic groups (e.g. [GK], [vD], [vDP], [BvD], [Gro], [Pra] and [JR] to mention
a few). In [vD], the notion of generalized Gelfand pair is defined by requiring a condition of the
form (1) for irreducible unitary representations. The definition suggested in [Gro] refers to the
non-archimedean case and to a property satisfied by all irreducible admissible representations. In
both cases, the verification of the said condition is achieved by means of a theorem on invariant
distributions. However, the required statement on invariant distributions needed to verify condition
(1) for unitary representation concerns only positive definite distributions. We elaborate on these
issues in section 2.

1.1 Related results
Several existing papers study related problems.

The case of non-archimedean fields of zero characteristic is covered in [AG2] (see also [AGRS])
where it is proven that the pair (GLn+1(F ), GLn(F )) is a strong Gelfand pair i.e. dimH(π, σ) 6 1
for any irreducible admissible representation π of G and any irreducible admissible representation
σ of H. Here H = GLn(F ) and G = GLn+1(F ).

In [JR], it is proved that (GLn+1(F ),GLn(F ) × GL1(F )) is a Gelfand pair, where F is a local
non-archimedean field of zero characteristic.

In [vDP] it is proved that for n > 2 the pair (SLn+1(R), GLn(R)) is a generalized Gelfand
pair and a similar result is obtained in [BvD] for the p-adic case, for n > 3. We emphasize that
these results are proved in the realm of unitary representations. Another difference between these
works and the present paper is that the embedding GLn(F ) ⊂ GLn+1(F ) studied here does not
factor through the embedding GLn(F ) ↪→ SLn+1(F ) of [vDP]. In particular, (GL2(R), GL1(R))
is a generalized Gelfand pair, and the pair (SL2(R), GL1(R)) is not a generalized Gelfand pair
([Mol],[vD]).

1.2 Content of the Paper
We now briefly sketch the structure and content of the paper.

In section 2 we prove that theorem A implies theorem B. For this we clarify the relation between
the theory of Gelfand pairs and the theory of invariant distributions both in the setting of [vD] and
in the setting of [Gro].

In section 3 we present the proof of theorem A in the non-archimedean case. This section gives
a good introduction to the rest of the paper since it contains many of the ideas but is technically
simpler.

In section 4 we provide several tools to study invariant distributions on smooth manifolds. We
believe that these results are of independent interest. In particular we introduce an adaption of a
trick due to Bernstein which is very useful in the study of invariant distributions on vector spaces
(proposition 4.3.2). In addition we prove that under certain conditions an equivariant distribution
is a-priori a Schwartz distribution (proposition 4.2.4). These results partly relay on [AG1].

In section 5 we prove Theorem A in the archimedean case. This is the main result of the paper.
The scheme of the proof is similar to the non-archimedean case. However, it is complicated by the
fact that distributions on real manifolds do not behave as nicely as distributions on `-spaces (see
[BZ]).

We now explain briefly the main difference between the study of distributions on `-spaces and
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distributions on real manifolds.
The space of distributions on an `-space X supported on a closed subset Z ⊂ X coincides with

the space of distributions on Z. In the presence of group action on X, one can frequently use this
property to reduce the study of distributions on X to distributions on orbits, that is on homogenous
spaces. Although this property fails for distributions on real manifolds, one can still reduce problems
to orbits. In the case of finitely many orbits this is studied in [Bru], [CHM], [AG1].

We mention that unlike the p-adic case, after the reduction to the orbits one needs to analyze
generalized sections of symmetric powers of the normal bundles to the orbits, and not just distri-
butions on those orbits. Here we employ a trick, proposition 4.3.1, which allows us to recover this
information from a study of invariant distributions on a larger space.

In section 6 we provide the proof for the Frobenius reciprocity. The proof follows the proof in
[Bar] (section 3).

In section 7 we prove the rest of the statements of section 4.
In [vD] only unitary representations are studied and therefore the relevant distributions are

positive definite. This allows the usage of different tools (e.g. convexity, differential operators) which
are not available to us.

2. Generalized Gelfand pairs and invariant distributions

In this section we show that Theorem A implies Theorem B. When F is non-archimedean this is
a well known argument of Gelfand and Kazhdan (see [GK, Pra]). When F is archimedean and
the representations in question are unitary such a reduction is due to [Tho]. We wish to consider
representations which are not necessarily unitary and present here an argument which is valid in the
generality of admissible smooth Fréchet representations. Our treatment is close in spirit to [Sha]
(where multiplicity one result of Whittaker model is obtained for unitary representation) but at a
crucial point we need to use the globalization theorem of Casselman-Wallach.

2.1 Smooth Fréchet representations
The theory of representations in the context of Fréchet spaces is developed in [Cas2] and [Wal2].
We present here a well-known slightly modified version of that theory.

Definition 2.1.1. Let V be a complete locally convex topological vector space. A representation
(π, V, G) is a continuous map G × V → V . A representation is called Fréchet if there exists a
countable family of semi-norms ρi on V defining the topology of V and such that the action of G
is continuous with respect to each ρi.

Remark 2.1.2. Evidently, the underlying topological vector space of a Fréchet representation is
Fréchet . In the literature, the term ”Fréchet representation” sometimes refers to a weaker no-
tion, namely just ”a continuous representation on a Fréchet space”. In such cases our notion of
Fréchet representation is called ”Fréchet representations of moderate growth” and this is the class
of representations that is considered.

Definition 2.1.3. We will say that a Fréchet representation (π, V,G) is smooth Fréchet rep-
resentation if all its vectors are smooth and for any X ∈ g the differentiation map v 7→ π(X)v is a
continuous linear map from V to V .

An important class of examples of smooth Fréchet representations is obtained from continuous
Hilbert representations (π,H) by considering the subspace of smooth vectors H∞ as a Fréchet space
(see [Wal1] section 1.6 and [Wal2] 11.5).
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We will consider mostly smooth Fréchet representations.
For a smooth Fréchet representation (π, E) we define the smooth dual (π̃, Ẽ) by

Ẽ = E∗∞,

where E∗ is the space of all continuous functionals on E. Here E∗∞ is a Fréchet space consisting
of the smooth vectors of E∗.

Definition 2.1.4. By admissible representation of a real reductive group we mean smooth Fréchet
representation such that its underlying (g,K)-module is admissible.

We will require the following corollary of the globalization theorem of Casselman and Wallach
(see [Wal2] , chapter 11).

Theorem 2.1.5. Let E be an admissible representation of a real reductive group. Then there exists
a continuous Hilbert space representation (π, H) such that E = H∞.

This theorem follows easily from the embedding theorem of Casselman combined with Casselman-
Wallach globalization theorem.

Fréchet representations of G can be lifted to representations of S(G), the Schwartz space of G.
This is a space consisting of functions on G which, together with all their derivatives, are rapidly
decreasing (see [Cas]. For an equivalent definition see section 4.1).

For a Fréchet representation (π,E) of G, the algebra S(G) acts on E through

π(φ) =
∫

G
φ(g)π(g)dg (2)

(see [Wal1], section 8.1.1).
The following lemma is straitforward:

Lemma 2.1.6. Let (π, E) be an admissible representation of G and let λ ∈ E∗. Then φ → π(φ)λ is
a continuous map S(G) → Ẽ.

The following proposition follows from Schur’s lemma for (g,K) modules (see [Wal1] page 80)
in light of Casselman-Wallach theorem.

Proposition 2.1.7. Let G be a real reductive group. Let W be a Fréchet representation of G and
let E be an irreducible admissible representation of G. Let T1, T2 : W ↪→ E be two embeddings of
W into E. Then T1 and T2 are proportional.

We need to recall the basic properties of characters of representations.

Proposition 2.1.8. Let (π, E) be an admissible representation of a real reductive group G. Then
π(φ) is of trace class, and the assignment φ → trace(π(φ)) defines a continuous functional on S(G)
i.e. a Schwartz distribution. Moreover, the distribution χπ(φ) = trace(π(φ)) is given by a locally
integrable function on G.

The result is well known for continuous Hilbert representations (see [Wal1] chapter 8). The case
of admissible representation follows from the case of Hilbert space representation and theorem 2.1.5.

Another useful property of the character (see loc. cit.) is the following proposition:

Proposition 2.1.9. If two irreducible admissible representations have the same character then they
are isomorphic.

Corollary 2.1.10. Let (π, E) be an admissible representation. Then
˜̃
E ∼= E.
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2.2 Three notions of Gelfand pair
Let G be a real reductive group and H ⊂ G be a subgroup. Let (π,E) be an admissible representation
of G as in the previous section. We are interested in representations (π,E) which admit a continuous
H-invariant linear functional. Such representations of G are called H-distinguished.

Put differently, let HomH(E,C) be the space of continuous functionals λ : E → C satisfying

∀e ∈ E,∀h ∈ H : λ(he) = λ(e)

The representation (π, E) is called H-distinguished if HomH(E,C) is non-zero. We now introduce
three notions of Gelfand pair and study their inter-relations.

Definition 2.2.1. Let H ⊂ G be a pair of reductive groups.

– We say that (G,H) satisfy GP1 if for any irreducible admissible representation (π,E) of G
we have

dimHomH(E,C) 6 1

– We say that (G,H) satisfy GP2 if for any irreducible admissible representation (π,E) of G
we have

dimHomH(E,C) · dimHomH(Ẽ,C) 6 1

– We say that (G,H) satisfy GP3 if for any irreducible unitary representation (π,W ) of G on
a Hilbert space W we have

dimHomH(W∞,C) 6 1

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see [GK]).
Property GP2 was introduced by [Gro] in the p-adic setting. Property GP3 was studied extensively
by various authors under the name generalized Gelfand pair both in the real and p-adic settings
(see e.g. [vDP], [BvD]).

We have the following straitforward proposition:

Proposition 2.2.2. GP1 ⇒ GP2 ⇒ GP3.

Remark 2.2.3. One could formulate a property stronger than GP1 by demanding uniqueness for
H-invariant functionals on any admissible (g,K)-module. In particular, it would imply uniqueness
for functionals on the space of analytic vectors of an admissible representation. It is an interesting
question in what cases this property can be deduced from GP1.

2.3 Gelfand pairs and invariant distributions
The theory of generalized Gelfand pairs as developed in [vDP] and [Tho] provides the following
criterion to verify GP3.

Theorem 2.3.1. Let τ be an involutive anti-automorphism of G such that τ(H) = H. Suppose
τ(T ) = T for all bi H-invariant positive definite distributions T on G. Then (G,H) satisfies GP3.

This is a slight reformulation of Criterion 1.2 of [vD], page 583.
We now consider an analogous criterion which allows the verification of GP2. This is inspired

by the famous Gelfand-Kazhdan method in the p-adic case.

Theorem 2.3.2. Let τ be an involutive anti-automorphism of G and assume that τ(H) = H.
Suppose τ(T ) = T for all bi H-invariant distributions 1 on G. Then (G,H) satisfies GP2.

1In fact it is enough to check this only for Schwartz distributions.
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Proof. Let (π,E) be an irreducible admissible representation. If E or Ẽ are not distinguished by H
we are done. Thus we can assume that there exists a non-zero λ : E → C which is H-invariant. Now
let `1, `2 be two non-zero H-invariant functionals on Ẽ. We wish to show that they are proportional.
For this we define two distributions D1, D2 as follows

Di(φ) = `i(π(φ)λ)

for i = 1, 2. Here φ ∈ S(G). Note that Di are also Schwartz distributions. Both distributions are
bi-H-invariant and hence, by the assumption, both distributions are τ invariant. Now consider the
bilinear forms on S(G) defined by

Bi(φ1, φ2) = Di(φ1 ∗ φ2).

Since E is irreducible, the right kernel of B1 is equal to the right kernel of B2. We now use the
fact that Di are τ invariant. Denote by Ji the left kernels of Bi. Then J1 = J2 which we denote by

J . Consider the Fréchet representation W = S(G)/J and define the maps Ti : S(G) → ˜̃
E ∼= E by

Ti(φ) = π(φ)`i. These are well defined by Lemma 2.1.6 and we use the same letters to denote the
induced maps Ti : W → E. By proposition 2.1.7, T1 and T2 are proportional and hence `1 and `2

are proportional and the proof is complete.

2.4 Archimedean analogue of Gelfand-Kazhdan’s theorem
To finish the proof that Theorem A implies Theorem B we will show that in certain cases, the
property GP1 is equivalent to GP2.

Proposition 2.4.1. Let H < GLn(F ) be a transposition invariant subgroup. Then GP1 is equiva-
lent to GP2 for the pair (GLn(F ),H).

For the proof we need the following notation. For a representation (π, E) of GLn(F ) we let
(π̂, E) be the representation of GLn(F ) defined by π̂ = π ◦ θ, where θ is the (Cartan) involution
θ(g) = g−1t. Since

HomH(π,C) = HomH(π̂,C)
the following analogue of Gelfand-Kazhdan theorem is enough.

Theorem 2.4.2. Let (π,E) be an irreducible admissible representation of GLn(F ). Then π̂ is
isomorphic to π̃.

Remark 2.4.3. This theorem is due to Gelfand and Kazhdan in the p-adic case (they show that any
distribution which is invariant to conjugation is transpose invariant, in particular this is valid for the
character of an irreducible representation) and due to Shalika for unitary representations which are
generic ([Sha]). We give a proof in complete generality based on Harish-Chandra regularity theorem
(see chapter 8 of [Wal1]).

Proof of theorem 2.4.2. Consider the characters χπ̃ and χπ̂. These are locally integrable functions
on G that are invariant with respect to conjugation. Clearly,

χπ̂(g) = χπ(g−1t)

and
χπ̃(g) = χπ(g−1).

But for g ∈ GLn(F ), the elements g−1 and g−1t are conjugate. Thus, the characters of π̂ and π̃ are
identical. Since both are irreducible, Theorem 8.1.5 in [Wal1], implies that π̂ is isomorphic to π̃.

Corollary 2.4.4. Theorem A implies Theorem B.
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Remark 2.4.5. The above argument proves also that Theorem B follows from a weaker version of
Theorem A, where only Schwartz distributions are considered (these are continuous functionals on
the space S(G) of Schwartz functions).

Remark 2.4.6. The non-archimedean analogue of theorem 2.3.2 is a special case of Lemma 4.2 of
[Pra]. The rest of the argument in the non-archimedean case is identical to the above.

3. Non-archimedean case

In this section F is a non-archimedean local field of arbitrary characteristic. We will use the standard
terminology of l-spaces introduced in [BZ], section 1. We denote by S(X) the space of Schwartz
functions on an l-space X, and by S∗(X) the space of distributions on X equipped with the weak
topology.

We fix a nontrivial additive character ψ of F .

3.1 Preliminaries
Definition 3.1.1. Let V be a finite dimensional vector space over F . A subset C ⊂ V is called a
cone if it is homothety invariant.

Definition 3.1.2. Let V be a finite dimensional vector space over F . Note that F× acts on V by
homothety. This gives rise to an action ρ of F× on S∗(V ). Let α be a character of F×.

We call a distribution ξ ∈ D(V ) homogeneous of type α if for any t ∈ F×, we have ρ(t)(ξ) =
α−1(t)ξ. That is, for any function f ∈ S(V ), ξ(ρ(t−1)(f)) = α(t)ξ(f), where ρ(t−1)(f)(v) = f(tv).

Example 3.1.3. A Haar measure on V is homogeneous of type | · |dim V . The Dirac’s δ-distribution
is homogeneous of type 1.

The following proposition is straightforward.

Proposition 3.1.4. Let a l-group G act on an l-space X. Let X =
⋃l

i=0 Xi be a G-invariant
stratification of X. Let χ be a character of G. Suppose that for any i = 1 . . . l, S∗(Xi)G,χ = 0. Then
S∗(X)G,χ = 0.

Proposition 3.1.5. Let Hi ⊂ Gi be l-groups acting on l-spaces Xi for i = 1 . . . n. Suppose that
S∗(Xi)Hi = S∗(Xi)Gi for all i. Then S∗(∏ Xi)

∏
Hi = S∗(∏ Xi)

∏
Gi .

Proof. It is enough to prove the proposition for the case n = 2. Let ξ ∈ S∗(X1 × X1)H1×H2 . Fix
f1 ∈ S(X1) and f2 ∈ S(X1). It is enough to prove that for any g1 ∈ G1 and g2 ∈ G2 , we have
ξ(g1(f1)⊗ g2(f2)) = ξ(f1 ⊗ f2). Let ξ1 ∈ S∗(X1) be the distribution defined by ξ1(f) := ξ(f ⊗ f2).
It is H1-invariant. Hence also G1-invariant. Thus ξ(f1 ⊗ f2) = ξ(g1(f1)⊗ f2). By the same reasons
ξ(g1(f1)⊗ f2) = ξ(g1(f1)⊗ g2(f2)).

We will use the following important theorem proven in [Ber1], section 1.5.

Theorem 3.1.6 Frobenius reciprocity. Let a unimodular l-group G act transitively on an l-space Z.
Let ϕ : X → Z be a G-equivariant continuous map. Let z ∈ Z. Suppose that its stabilizer StabG(z)
is unimodular. Let Xz be the fiber of z. Let χ be a character of G. Then S∗(X)G,χ is canonically
isomorphic to S∗(Xz)StabG(z),χ.

The next proposition formalizes an idea from [Ber2]. The key tool used in its proof is Fourier
Transform.
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Proposition 3.1.7. Let G be an l-group. Let V be a finite dimensional representation of G over

F . Suppose that the action of G preserves some non-degenerate bilinear form on V . Let V =
n⋃

i=1
Ci

be a stratification of V by G-invariant cones.

Let X be a set of characters of F× such that the set X ·X does not contain the character | · |dimV .
Let χ be a character of G. Suppose that for any i, the space S∗(Ci)G,χ consists of homogeneous
distributions of type α for some α ∈ X. Then S∗(V )G,χ = 0.

In section 7.4 we prove an archimedean analog of this proposition, and the same proof is appli-
cable in this case.

3.2 Proof of Theorem A for non-archimedean F

We need some further notations.

Notation 3.2.1. Denote H := Hn := GLn := GLn(F ). Denote

G := Gn := {(h1, h2) ∈ GLn ×GLn| |det(h1)| = |det(h2)|}.
We consider H to be diagonally embedded to G.

Consider the action of the 2-element group S2 on G given by the involution (h1, h2) 7→ (h−1
2

t
, h−1

1
t).

It defines a semidirect product G̃ := G̃n := Go S2. Denote also H̃ := H̃n := Hn o S2.
Let V = Fn and X := Xn := gln(F )× V × V ∗.
The group G̃ acts on X by

(h1, h2)(A, v, φ) := (h1Ah−1
2 , h1v, h−1

2
t
φ) and

σ(A, v, φ) := (At, φt, vt)
where (h1, h2) ∈ G and σ is the generator of S2. Note that G̃ acts separately on gln and on V ×V ∗.
Define a character χ of G̃ by χ(g, s) := sign(s).

We will show that the following theorem implies Theorem A.

Theorem 3.2.2. S∗(X)G̃,χ = 0.

3.2.1 Proof that theorem 3.2.2 implies theorem A
We will divide this reduction to several propositions.

Consider the action of G̃n on GLn+1 and on gln+1, where Gn acts by the two-sided action and the
generator of S2 acts by transposition.

Proposition 3.2.3. If S∗(GLn+1)G̃n,χ = 0 then theorem A holds.

The proof is straightforward.

Proposition 3.2.4. If S∗(gln+1)G̃n,χ = 0 then S∗(GLn+1)G̃n,χ = 0.

Proof.2 Let ξ ∈ S∗(GLn+1)G̃n,χ. We have to prove ξ = 0. Assume the contrary. Take p ∈ Supp(ξ).
Let t = det(p). Let f ∈ S(F ) be such that f vanishes in a neighborhood of zero and f(t) 6= 0.
Consider the determinant map det : GLn+1 → F . Consider ξ′ := (f ◦det) · ξ. It is easy to check that
ξ′ ∈ S∗(GLn+1)G̃n,χ and p ∈ Supp(ξ′). However, we can extend ξ′ by zero to ξ′′ ∈ S∗(gln+1)G̃n,χ,
which is zero by the assumption. Hence ξ′ is also zero. Contradiction. 2

2This proposition is an adaption of a statement in [Ber1], section 2.2.
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Proposition 3.2.5. If S∗(Xn)G̃n,χ = 0 then S∗(gln+1)G̃n,χ = 0.

Proof. Note that gln+1 is isomorphic as a G̃n-equivariant l-space to Xn × F where the action on F
is trivial. This isomorphism is given by

(
An×n vn×1

φ1×n t

)
7→ ((A, v, φ), t).

The proposition now follows from proposition 3.1.5.

This finishes the proof that theorem 3.2.2 implies Theorem A.

3.2.2 Proof of theorem 3.2.2
We will now stratify X(= gln × V × V ∗) and deal with each strata separately.

Notation 3.2.6. Denote W := Wn := Vn ⊕ V ∗
n . Denote by Qi := Qi

n ⊂ gln the set of all matrices of
rank i. Denote Zi := Zi

n := Qi
n ×Wn.

Note that X =
⋃

Zi. Hence by proposition 3.1.4, it is enough to prove the following proposition.

Proposition 3.2.7. S∗(Zi)G̃,χ = 0 for any i = 0, 1, ..., n.

We will use the following key lemma.

Lemma 3.2.8 Non-archimedean Key Lemma. S∗(W )H̃,χ = 0.

For proof see section 3.3 below.

Corollary 3.2.9. Proposition 3.2.7 holds for i = n.

Proof. Clearly, one can extend the actions of G̃ on Qn and on Zn to actions of ˜GLn ×GLn :=
(GLn ×GLn)o S2 in the obvious way.

Step 1. S∗(Zn) ˜GLn×GLn,χ = 0.
Consider the projection on the first coordinate from Zn to the transitive ˜GLn ×GLn-space Qn =
GLn. Choose the point Id ∈ Qn. Its stabilizer is H̃ and its fiber is W . Hence by Frobenius reciprocity
(theorem 3.1.6), S∗(Zn) ˜GLn×GLn,χ ∼= S∗(W )H̃,χ which is zero by the key lemma.

Step 2. S∗(Zn)G̃,χ = 0.
Consider the space Y := Zn × F× and let the group GLn × GLn act on it by (h1, h2)(z, λ) :=
((h1, h2)z, deth1 det h−1

2 λ). Extend this action to action of ˜GLn ×GLn by σ(z, λ) := (σ(z), λ).
Consider the projection Zn × F× → F×. By Frobenius reciprocity (theorem 3.1.6),

S∗(Y ) ˜GLn×GLn,χ ∼= S∗(Zn)G̃,χ.

Let Y ′ be equal to Y as an l-space and let ˜GLn ×GLn act on Y ′ by (h1, h2)(z, λ) := ((h1, h2)z, λ)
and σ(z, λ) := (σ(z), λ). Now Y is isomorphic to Y ′ as a ˜GLn ×GLn space by ((A, v, φ), λ) 7→
((A, v, φ), λ detA−1).

Since S∗(Zn) ˜GLn×GLn,χ = 0, proposition 3.1.5 implies that S∗(Y ′) ˜GLn×GLn,χ = 0 and hence
S∗(Y ) ˜GLn×GLn,χ = 0 and thus S∗(Zn)G̃n,χ = 0.

Corollary 3.2.10. We have

S∗(Wi ×Wn−i)Hi×Hn−i = S∗(Wi ×Wn−i)H̃i×H̃n−i .

Proof. It follows from the key lemma and proposition 3.1.5.
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Now we are ready to prove proposition 3.2.7.

Proof of proposition 3.2.7. Fix i < n. Consider the projection pr1 : Zi → Qi. It is easy to see that
the action of G̃ on Qi is transitive. We are going to use Frobenius reciprocity.

Denote

Ai :=
(

Idi×i 0
0 0

)
∈ Qi.

Denote by GAi := StabG(Ai) and G̃Ai := Stab
G̃
(Ai).

It is easy to check by explicit computation that

– GAi and G̃Ai are unimodular.
– Hi ×Gn−i can be canonically embedded into GAi .
– W is isomorphic to Wi ×Wn−i as Hi ×Gn−i-spaces.

By Frobenius reciprocity (theorem 3.1.6),

S∗(Zi)G̃,χ = S∗(W )G̃Ai
,χ.

Hence it is enough to show that S∗(W )GAi = S∗(W )G̃Ai . Let ξ ∈ S∗(W )GAi . By the previous
corollary, ξ is H̃i × H̃n−i-invariant. Since ξ is also GAi-invariant, it is G̃Ai-invariant.

3.3 Proof of the key lemma (lemma 3.2.8)
Our key lemma is proved in section 10.1 of [RS]. The proof below is slightly different and more
convenient to adapt to the archimedean case.

Proposition 3.3.1. It is enough to prove the key lemma for n = 1.

Proof. Consider the subgroup Tn ⊂ Hn consisting of diagonal matrices, and T̃n := Tn o S2 ⊂ H̃n.
It is enough to prove S∗(Wn)T̃n,χ = 0.

Now, by proposition 3.1.5 it is enough to prove S∗(W1)H̃1,χ = 0.

From now on we fix n := 1, H := H1, H̃ := H̃1 and W := W1. Note that H = F× and
W = F 2. The action of H is given by ρ(λ)(x, y) := (λx, λ−1y) and extended to the action of H̃ by
the involution σ(x, y) = (y, x).

Let Y := {(x, y) ∈ F 2|xy = 0} ⊂ W be the cross and Y ′ := Y \ {0}.
By proposition 3.1.7, it is enough to prove the following proposition.

Proposition 3.3.2.
(i) S∗({0})H̃,χ = 0.

(ii) Any distribution ξ ∈ S∗(Y ′)H̃,χ is homogeneous of type 1.

(iii) S∗(W \ Y )H̃,χ = 0.

Proof. (i) and (ii) are trivial.
(iii) Denote U := W \ Y . We have to show S∗(U)H̃,χ = 0. Consider the coordinate change U ∼=
F× × F× given by (x, y) 7→ (xy, x/y). It is an isomorphism of H̃-spaces where the action of H̃ on
F× × F× is only on the second coordinate, and given by λ(w) = λ2w and σ(w) = w−1. Clearly,
S∗(F×)H̃,χ = 0 and hence by proposition 3.1.5 S∗(F× × F×)H̃,χ = 0.

4. Preliminaries on equivariant distributions in the archimedean case

From now till the end of the paper F denotes an archimedean local field, that is R or C. Also, the
word smooth means infinitely differentiable.

10
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4.1 Notations
4.1.1 Distributions on smooth manifolds
Here we present basic notations on smooth manifolds and distributions on them.

Definition 4.1.1. Let X be a smooth manifold. Denote by C∞
c (X) the space of test functions on

X, that is smooth compactly supported functions, with the standard topology, i.e. the topology of
inductive limit of Fréchet spaces.

Denote D(X) := C∞
c (X)∗ equipped with the weak topology.

For any vector bundle E over X we denote by C∞
c (X,E) the space of smooth compactly sup-

ported sections of E and by D(X, E) its dual space. Also, for any finite dimensional real vector
space V we denote C∞

c (X, V ) := C∞
c (X,X × V ) and D(X, V ) := D(X, X × V ), where X × V is a

trivial bundle.

Definition 4.1.2. Let X be a smooth manifold and let Z ⊂ X be a closed subset. We denote
DX(Z) := {ξ ∈ D(X)|Supp(ξ) ⊂ Z}.

For locally closed subset Y ⊂ X we denote DX(Y ) := DX\(Y \Y )(Y ). In the same way, for any
bundle E on X we define DX(Y, E).

Notation 4.1.3. Let X be a smooth manifold and Y be a smooth submanifold. We denote by
NX

Y := (TX |Y )/TY the normal bundle to Y in X. We also denote by CNX
Y := (NX

Y )∗ the conormal
bundle. For a point y ∈ Y we denote by NX

Y,y the normal space to Y in X at the point y and by
CNX

Y,y the conormal space.

We will also use notions of a cone in a vector space and of homogeneity type of a distribution
defined in the same way as in non-archimedean case (definitions 3.1.1 and 3.1.2).

4.1.2 Schwartz distributions on Nash manifolds
Our proof of Theorem A uses a trick (proposition 4.3.2) involving Fourier Transform which

cannot be directly applied to distributions. For this we require a theory of Schwartz functions and
distributions as developed in [AG1]. This theory is developed for Nash manifolds. Nash manifolds
are smooth semi-algebraic manifolds but in the present work only smooth real algebraic manifolds
are considered (section 7 is a minor exception). Therefore the reader can safely replace the word
Nash by smooth real algebraic.

Schwartz functions are functions that decay, together with all their derivatives, faster than any
polynomial. On Rn it is the usual notion of Schwartz function. For precise definitions of those
notions we refer the reader to [AG1]. We will use the following notations.

Notation 4.1.4. Let X be a Nash manifold. Denote by S(X) the Fréchet space of Schwartz functions
on X.

Denote by S∗(X) := S(X)∗ the space of Schwartz distributions on X.
For any Nash vector bundle E over X we denote by S(X,E) the space of Schwartz sections of

E and by S∗(X, E) its dual space.

Definition 4.1.5. Let X be a smooth manifold, and let Y ⊂ X be a locally closed (semi-)algebraic
subset. Let E be a Nash bundle over X. We define S∗X(Y ) and S∗X(Y, E) in the same way as DX(Y )
and DX(Y, E).

Remark 4.1.6. All the classical bundles on a Nash manifold are Nash bundles. In particular the
normal and conormal bundle to a Nash submanifold of a Nash manifold are Nash bundles. For
proof see e.g. [AG1], section 6.1.

11
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Remark 4.1.7. For any Nash manifold X, we have C∞
c (X) ⊂ S(X) and S∗(X) ⊂ D(X).

Remark 4.1.8. Schwartz distributions have the following two advantages over general distributions:
(i) For a Nash manifold X and an open Nash submanifold U ⊂ X, we have the following exact
sequence

0 → S∗X(X \ U) → S∗(X) → S∗(U) → 0.

(see theorem 7.2.5 in Appendix B).
(ii) Fourier transform defines an isomorphism F : S∗(Rn) → S∗(Rn).

4.2 Basic tools
We present here basic tools on equivariant distributions that we will use in this paper. All the proofs
are given in the appendixes.

Theorem 4.2.1. Let a Lie group G act on a smooth manifold X. Let X =
⋃l

i=0 Xi be a smooth G-
invariant stratification of X. Let χ be a character of G. Suppose that for any k ∈ Z>0,D(Xi, Symk(CNX

Xi
))G,χ =

0. Then D(X)G,χ = 0.

For proof see section 7.2, corollary 7.2.3.

Proposition 4.2.2. Let Hi ⊂ Gi be Lie groups acting on smooth manifolds Xi for i = 1 . . . n.
Let Ei → Xi be (finite dimensional) Gi-equivariant vector bundles. Suppose that D(Xi, Ei)Hi =
D(Xi, Ei)Gi for all i. Then D(

∏
Xi,£Ei)

∏
Hi = D(

∏
Xi, £Ei)

∏
Gi , where £ denotes the external

product of vector bundles.

The proof of this proposition is the same as of its non-archimedean analog (proposition 3.1.5).

Theorem 4.2.3 Frobenius reciprocity. Let a unimodular Lie group G act transitively on a smooth
manifold Z. Let ϕ : X → Z be a G-equivariant smooth map. Let z ∈ Z. Suppose that its stabilizer
StabG(z) is unimodular. Let Xz be the fiber of z. Let χ be a character of G. Then D(X)G,χ

is canonically isomorphic to D(Xz)StabG(z),χ. Moreover, for any G-equivariant bundle E on X
and a closed Gz-invariant subset Y ⊂ Xz, the space DX(GY,E)G,χ is canonically isomorphic to
DXz(Y,E|Xz)StabG(z),χ.

In section 6 we formulate and prove a more general version of this theorem.
The next proposition shows that in certain cases equivariant distributions are a-priory Schwartz

distributions. This will allow us to use Fourier transform.

Proposition 4.2.4. Let X be a Nash manifold. Let G be a Nash group acting on X. Let Y ⊂ X
be a locally closed subset which is a finite union of G-orbits. Let χ be a character of G. Then
DX(Y )G,χ = S∗X(Y )G,χ.

For proof see subsection 7.3.

4.3 Specific tools
We present here tools on equivariant distributions which are more specific to our problem. All the
proofs are given in appendix B (section 7).

Proposition 4.3.1. Let a Lie group G act on a smooth manifold X. Let V be a real finite dimen-
sional representation of G. Suppose that G preserves the Haar measure on V . Let U ⊂ V be an
open non-empty G-invariant subset. Let χ be a character of G. Suppose that D(X × U)G,χ = 0.
Then D(X, Symk(V ))G,χ = 0 for any k > 0.
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For proof see section 7.5.

Proposition 4.3.2. Let G be a Nash group. Let V be a finite dimensional representation of G over

F . Suppose that the action of G preserves some non-degenerate bilinear form on V . Let V =
n⋃

i=1
Ci

be a stratification of V by G-invariant Nash cones.

Let X be a set of characters of F× such that the set X ·X does not contain the character | · |dimV .
Let χ be a character of G. Suppose that for any i and k, the space S∗(Ci, Symk(CNV

Ci
))G,χ consists

of homogeneous distributions of type α for some α ∈ X. Then S∗(V )G,χ = 0.

For proof see section 7.4.
In order to prove homogeneity of invariant distributions we will use the following corollary of

Frobenius reciprocity.

Proposition 4.3.3 Homogeneity criterion. Let G be a Lie group. Let V be a real finite dimensional
representation of G. Let C ⊂ V be a G-invariant G-transitive smooth cone. Consider the actions
of G × F× on V , C and CNV

C , where F× acts by homotheties. Let χ be a character of G. Let α
be a character of F×. Consider the character χ′ := χ × α−1 of G × F×. Let x0 ∈ C and denote
H := StabG(x0) and H ′ := StabG×F×(x0). Suppose that G,H, H ′ are unimodular. Fix k ∈ Z>0.

Then the space D(C,Symk(CNV
C ))G,χ consists of homogeneous distributions of type α if and

only if

(Symk(NV
C,x0

)⊗R C)H,χ = (Symk(NV
C,x0

)⊗R C)H′,χ′ .

5. Proof of Theorem A for archimedean F

We will use the same notations as in the non-archimedean case (see notation 3.2.1). Again, the
following theorem implies Theorem A.

Theorem 5.0.1. D(X)G̃,χ = 0.

The implication is proven exactly in the same way as in the non-archimedean case (subsection
3.2.1).

5.1 Proof of theorem 5.0.1
We will now stratify X(= gln × V × V ∗) and deal with each strata separately.

Notation 5.1.1. Denote W := Wn := Vn ⊕ V ∗
n . Denote by Qi := Qi

n ⊂ gln the set of all matrices of
rank i. Denote Zi := Zi

n := Qi
n ×Wn.

Note that X =
⋃

Zi. Hence by theorem 4.2.1, it is enough to prove the following proposition.

Proposition 5.1.2. D(Zi, Symk(CNX
Zi))G̃,χ = 0 for any k and i.

We will use the following key lemma.

Lemma 5.1.3 Key Lemma. D(W )H̃,χ = 0.

For proof see subsection 5.2 below.

Corollary 5.1.4. Proposition 5.1.2 holds for i = n.

The proof is the same as in the non-archimedean case (corollary 3.2.9).
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Corollary 5.1.5. D(Wn, Symk(gl∗n))G̃,χ = 0 for any k > 0.

Proof. Consider the Killing form K : gl∗n → gln. Let U := K−1(Qn
n). In the same way as in the previ-

ous corollary one can show thatD(Wn×U)G̃,χ = 0. Hence by proposition 4.3.1,D(Wn, Symk(gl∗n))G̃,χ =
0.

Corollary 5.1.6. We have

D(Wi ×Wn−i, Symk(0× gl∗n−i))
Hi×Gn−i = D(Wi ×Wn−i, Symk(0× gl∗n−i))

H̃i×G̃n−i .

Proof. It follows from the key lemma, the last corollary and proposition 4.2.2.

Now we are ready to prove proposition 5.1.2.

Proof of proposition 5.1.2. Fix i < n. Consider the projection pr1 : Zi → Qi. It is easy to see that
the action of G̃ on Qi is transitive. Denote

Ai :=
(

Idi×i 0
0 0

)
∈ Qi.

Denote by GAi := StabG(Ai) and G̃Ai := Stab
G̃
(Ai). Note that they are unimodular. By Frobenius

reciprocity (theorem 4.2.3),

D(Zi, Symk(CNX
Zi))G̃,χ = D(W,Symk(CN

gln
Qi,Ai

))G̃Ai
,χ.

Hence it is enough to show that

D(W,Symk(CN
gln
Qi,Ai

))GAi = D(W,Symk(CN
gln
Qi,Ai

))G̃Ai .

It is easy to check by explicit computation that

– Hi ×Gn−i is canonically embedded into GAi ,

– W is isomorphic to Wi ×Wn−i as Hi ×Gn−i-spaces

– CN
gln
Qi,Ai

is isomorphic to 0× gl∗n−i as Hi ×Gn−i representations.

Let ξ ∈ D(W,Symk(CN
gln
Qi,Ai

))GAi . By the previous corollary, ξ is H̃i × G̃n−i-invariant. Since ξ is

also GAi-invariant, it is G̃Ai-invariant.

5.2 Proof of the key lemma (lemma 5.1.3)
As in the non-archimedean case, it is enough to prove the key lemma for n = 1 (see proposition
3.3.1).

From now on we fix n := 1, H := H1, H̃ := H̃1 and W := W1. Note that H = F× and
W = F 2. The action of H is given by ρ(λ)(x, y) := (λx, λ−1y) and extended to the action of H̃ by
the involution σ(x, y) = (y, x).

Let Y := {(x, y) ∈ F 2|xy = 0} ⊂ W be the cross and Y ′ := Y \ {0}.
Lemma 5.2.1. Every (H̃, χ)-equivariant distribution on W is supported inside the cross Y .

The proof of this lemma is identical to the proof of proposition 3.3.2, (iii).
To apply proposition 4.3.2 (which uses Fourier transform) we need to restrict our consideration to

Schwartz distributions. To allow that we use proposition 4.2.4 that insures DW (Y )G,χ = S∗W (Y )G,χ.
Hence it is enough to show that S∗(W )G,χ = 0. By proposition 4.3.2, it is enough to prove the

following proposition.
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Proposition 5.2.2. (i) S∗(W \ Y )H̃,χ = 0.

(ii) For all k ∈ Z>0, any distribution ξ ∈ S∗(Y ′, Symk(CNW
Y ′ ))

H̃,χ is homogeneous of type αk where
αk(λ) := λ−2k.

(iii) S∗({0}, Symk(CNW
{0}))

H̃,χ = 0.

Proof. We have proven (i) in the proof of the previous lemma.
(ii) Fix x0 := (1, 0) ∈ Y ′. Now we want to use the homogeneity criterion (proposition 4.3.3). Note
that Stab

H̃
(x0) is trivial and Stab

H̃×F×(x0) ∼= F×. Note that NW
Y ′,x0

∼= F and Stab
H̃×F×(x0) acts

on it by ρ(λ)a = λ2a. So we have

Symk(NW
Y ′,x0

) = Symk(NW
Y ′,x0

)F×,α−1
k .

So by the homogeneity criterion any distribution ξ ∈ S∗(Y ′, Symk(CNW
Y ′ ))

H̃,χ is homogeneous of
type αk.
(iii) is a simple computation. Also, it can be deduced from (i) using proposition 4.3.1.

6. Appendix A: Frobenius reciprocity

In this section we obtain a slight generalization of Frobenius reciprocity proven in [Bar] (section 3).
The proof will go along the same lines and is included for the benefit of the reader. To simplify the
formulation and proof of Frobenius reciprocity we pass from distributions to generalized functions.
Note that the space of smooth functions embeds canonically into the space of generalized functions
but there is no canonical embedding of smooth functions to the space of distributions.

Notation 6.0.1. Let X be a smooth manifold. We denote by DX the bundle of densities on X. For
a point x ∈ X we denote by DX,x its fiber in the point x. If X is a Nash manifold then the bundle
DX has a natural structure of a Nash bundle. For its description see [AG1], section 6.1.1.

Notation 6.0.2. Let X be a smooth manifold. We denote by C−∞(X) the space C−∞(X) :=
D(X,DX) of generalized functions on X. Let E be a vector bundle on X. We also denote
by C−∞(X, E) the space C−∞(X, E) := D(X, DX ⊗E∗) of generalized sections of E. For a locally
closed subset Y ⊂ X we denote C−∞

X (Y ) := DX(Y, DX) and C−∞
X (Y, E) := DX(Y, DX ⊗ E∗).

We will prove the following version of Frobenius reciprocity.

Theorem 6.0.3 Frobenius reciprocity. Let a Lie group G act transitively on a smooth manifold
Z. Let ϕ : X → Z be a G-equivariant smooth map. Let z0 ∈ Z. Denote by Gz0 the stabilizer of
z0 in G and by Xz0 the fiber of z0. Let E be a G-equivariant vector bundle on X. Then there
exists a canonical isomorphism Fr : C−∞(Xz0 , E|Xz0

)Gz0 → C−∞(X,E)G. Moreover, for any closed

Gz-invariant subset Y ⊂ Xz0 , Fr maps C−∞
Xz0

(Y, E|Xz0
)Gz0 to C−∞

X (GY, E)G.

First we will need the following version of Harish-Chandra’s submersion principle.

Theorem 6.0.4 Harish-Chandra’s submersion principle. Let X, Y be smooth manifolds. Let E → X
be a vector bundle. Let ϕ : Y → X be a submersion. Then the map ϕ∗ : C∞(X,E) → C∞(Y, ϕ∗(E))
extends to a continuous map ϕ∗ : C−∞(X, E) → C−∞(Y, ϕ∗(E)).

Proof. By partition of unity it is enough to show for the case of trivial E. In this case it can be
easily deduced from [Wal1], 8.A.2.5.

Also we will need the following fact that can be easily deduced from [Wal1], 8.A.2.9.
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Proposition 6.0.5. Let E → Z be a vector bundle and G be a Lie group. Then there is a canonical
isomorphism C−∞(Z,E) → C−∞(Z×G,pr∗(E))G, where pr : Z×G → Z is the standard projection
and the action of G on Z× G is the left action on the G coordinate.

The last two statements give us the following corollary.

Corollary 6.0.6. Let a Lie group G act on a smooth manifold X. Let E be a G-equivariant bundle
over X. Let Z ⊂ X be a submanifold such that the action map G × Z → X is submersive. Then
there exists a canonical map HC : C−∞(X, E)G → C−∞(Z, E|Z).

Now we can prove Frobenius reciprocity (Theorem 6.0.3).

Proof of Frobenius reciprocity.. We construct the map Fr : C−∞(Xz0 , E|Xz0
)Gz0 → C−∞(X, E)G

in the same way like in [Ber1] (1.5). Namely, fix a set-theoretic section ν : Z → G. It gives us
in any point z ∈ Z an identification between Xz and Xz0 . Hence we can interpret a generalized
function ξ ∈ C−∞(Xz0 , E|Xz0

) as a functional ξz : C∞
c (Xz, E

∗|Xz ⊗ DXz) → C, or as a map
ξz : C∞

c (Xz, (E∗ ⊗DX)|Xz) → DZ,z. Now define

Fr(ξ)(f) :=
∫

z∈Z
ξz(f |Xz).

It is easy to see that Fr is well-defined.
It is easy to see that the map HC : C−∞(X, E)G → C−∞(Xz0 , E|Xz0

) described in the last
corollary gives the inverse map.

The fact that for any closed Gz-invariant subset Y ⊂ Xz0 , Fr maps C−∞
Xz0

(Y,E|Xz0
)Gz0 to

C−∞
X (GY, E)G follows from the fact that Fr commutes with restrictions to open sets.

Corollary 6.0.7. Theorem 4.2.3 holds.

Proof. Without loss of generality we can assume that χ is trivial, since we can twist E by χ−1. We
have

D(X,E)G ∼= C−∞(X, E∗ ⊗DX)G ∼= C−∞(Xz0 , (E
∗ ⊗DX)|Xz0

)Gz0 ∼=
(D(Xz0 , E

∗|Xz0
)⊗DZ,z0)

Gz0 .

It is easy to see that in case that G and Gz0 are unimodular, the action of Gz on DZ,z0 is trivial.

Remark 6.0.8. For a Nash manifold X one can introduce the space of generalized Schwartz
functions by G(X) := S∗(X,DX). Given a Nash bundle E one may consider the generalized
Schwartz sections G(X, E) := S∗(X, DX⊗E∗). Frobenius reciprocity in the Nash setting is obtained
by restricting Fr and yields

Fr : G(X, E)G ∼= G(Xz, E|Xz)
Gz .

The proof goes along the same lines, but one has to prove that the corresponding integrals converge.
We will not give the proof here since we will not use this fact.

7. Appendix B: Filtrations on spaces of distributions

7.1 Filtrations on linear spaces
In what follows, a filtration on a vector space is always increasing and exhaustive. We make the
following definition:

Definition 7.1.1. Let V be a vector space. Let I be a well ordered set. Let F i be a filtration on V
indexed by i ∈ I. We denote Gri(V ) := F i/(

⋃
j<i F

j).
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The following lemma is obvious.

Lemma 7.1.2. Let V be a representation of an abstract group G. Let I be a well ordered set. Let
F i be a filtration of V by G invariant subspaces indexed by i ∈ I. Suppose that for any i ∈ I we
have Gri(V )G = 0. Then V G = 0. An analogous statement also holds if we replace the group G by
a Lie algebra g.

7.2 Filtrations on spaces of distributions
The following theorem is well known.

Theorem 7.2.1. Let X be a smooth manifold. Let E be a vector bundle on X. Let Z ⊂ X be a
smooth submanifold. Then the space DX(Z, E) has a natural filtration F k := F k(DX(Z, E)) such
that F k/F k−1 ∼= D(Z, E|Z ⊗ Symk(CNX

Z )).

Using the exact sequence

0 → DX(X \ U,E) → D(X, E) → D(U,E|U )

and a simple induction argument we easily obtain the following corollary.

Corollary 7.2.2. Let X be a smooth manifold and E be a vector bundle over X. Let Y ⊂ X be
locally closed G-invariant subset. Let Y =

⋃l
i=0 Yi be a G-invariant stratification of Y .

Then the spaceDX(Y, E) has a natural filtration F ik := F ik(DX(Y, E)) such that Grik(DX(Y, E))
is canonically embedded into D(Yi, E|Yi ⊗ Symk(CNX

Yi
)) for all i ∈ {1...l} and k ∈ Z>0. Here, the

ordering on {1...l} × Z>0 is lexicographical.

Now using lemma 7.1.2 we get the following corollary which is a generalization of theorem 4.2.1.

Corollary 7.2.3. Let a Lie group G act on a smooth manifold X. Let E be a G-equivariant vector
bundle over X. Let X =

⋃l
i=0 Xi be a smooth G-invariant stratification of X. Suppose that for any

0 6 i 6 l and any k ∈ Z>0, we have D(Xi, E|Xi ⊗ Symk(CNX
Xi

))G = 0. Then D(X,E)G = 0.

We will need the following version of theorem 7.2.1 for Schwartz distributions.

Theorem 7.2.4. Let X be a Nash manifold. Let E be a Nash bundle on X. Let Z ⊂ X be a
Nash submanifold. Then the space S∗X(Z, E) has a natural filtration F k := F k(S∗X(Z,E)) such that
F k/F k−1 ∼= S∗(Z, E|Z ⊗ Symk(CNX

Z )).

For proof see [AG1], corollary 5.5.4.
We will also need the following important theorem

Theorem 7.2.5. Let X be a Nash manifold, U ⊂ X be an open Nash submanifold and E be a Nash
bundle over X. Then we have the following exact sequence

0 → S∗X(X \ U,E) → S∗(X,E) → S∗(U,E|U ) → 0.

Proof. The only non-trivial part is to show that the restriction map S∗(X,E) → S∗(U,E|U ) → 0
is onto. It is done in [AG1], corollary 5.4.4.

Now we obtain the following corollary of theorem 7.2.4 using the exact sequence from theorem 7.2.5.

Corollary 7.2.6. Let X be a Nash manifold. Let E be Nash bundle over X. Let Y ⊂ X be locally
closed subset. Let Y =

⋃l
i=0 Yi be a Nash stratification of Y .

Then the space S∗X(Y,E) has a natural filtration F ik(S∗X(Y,E)) such that

Grik(S∗X(Y, E)) ∼= S∗(Yi, E|Yi ⊗ Symk(CNX
Yi

))

for all i ∈ {1...l} and k ∈ Z>0.
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7.3 Proof of proposition 4.2.4
We will prove the following generalization of proposition 4.2.4.

Proposition 7.3.1. Let X be a Nash manifold. Let G be a Nash group acting on X and let
g := Lie(G) be its Lie algebra. Let E be a G-equivariant vector bundle on X. Let Y ⊂ X be a
locally closed subset which is a finite union of G-orbits. Let ξ ∈ DX(Y,E) be a distribution such
that for any A ∈ g, the derivative Aξ lies in S∗X(Y, E). Then ξ ∈ S∗X(Y,E).

For the proof of this proposition we will need several lemmas.

Lemma 7.3.2. Let E → X be a Nash bundle. Let L be a finite dimensional space of Nash sections
of E such that for any x ∈ X and v ∈ Ex there exists an element α ∈ L such that α(x) = v.

Then there exists a finite open (semi-algebraic) cover X =
⋃l

i=1 Ui such that for any i the
restriction L|Ui generates the module of Nash sections of E|Ui over the algebra of Nash functions
N (Ui).

Proof. It is sufficient to prove for the case that X is affine and E = X × Rm is a trivial bundle.
Let e1...en be a basis of L. For any subset S ⊂ {1, ..., n} of cardinality m and any x ∈ X we define
fS(x) := det(ei(x), i ∈ S). Let US := {x ∈ X|fS(x) 6= 0}. It is easy to see that US cover X. Clearly,
every US is an open semi-algebraic subset and L|US

generates the module of Nash sections of E|US

over the algebra of Nash functions N (US).

Definition 7.3.3. Let X be a Nash manifold and E be a Nash vector bundle over X. A Nash
derivation of E is a Nash section of the bundle TX ⊗E ⊗E∗. Note that every Nash derivation of
E defines a differentiation map S(X,E) → S(X,E).

Lemma 7.3.4. Let E → X be a Nash bundle. Then there exist a finite open (semi-algebraic) cover
X =

⋃l
i=1 Ui and for any i a finite dimensional space Li of Nash derivations of E|Ui such that the

differentiation map Li ⊗ S(Ui, E|Ui) → S(Ui, E|Ui) is onto and hence open.

Proof. Any Nash manifold can be covered by finite number of open (semi-algebraic) subsets Nash
diffeomorphic to Rn (for a proof see theorem I.5.12 in [Shi]) 3. Thus it is sufficient to prove for the
case X = Rn and E = X × R is trivial bundle.

Let Ln = Span({ ∂
∂xi

, xi
∂

∂xi
}n

i=1). It is easy to see that the differentiation map a : Ln ⊗S(Rn) →
S(Rn) is onto.

By Banach open map theorem (see theorem 2.11 in [Rud]) it implies that a is open.

Corollary 7.3.5. Let E → X be a Nash bundle. Let ξ ∈ D(X, E) such that for any open
(semi-algebraic) U ⊂ X and any Nash derivation α of E|U , we have αξ|U ∈ S∗(U,E|U ). Then
ξ ∈ S∗(X,E).

Proof. Choose a cover X =
⋃l

i=1 Ui and Li as in lemma 7.3.4. Consider the space C∞
c (Ui, E|Ui)

with the induced topology from S(Ui, E|Ui) and consider η := ξ|Ui as a map η : C∞
c (Ui, E|Ui) → C.

We need to prove that η is continuous. Consider the differentiation map a : L ⊗ S(Ui, E|Ui) →
S(Ui, E|Ui). By lemma 7.3.4 it is open. Let W := a−1(C∞

c (Ui, E|Ui)) with the induced topology and
consider the map a|W : W → C∞

c (Ui, E|Ui). It is also open. Since for any α ∈ L, αη ∈ S∗(Ui, E|Ui),
the map η ◦ a|W is continuous. Since a|W is onto and open, it implies that η is continuous.

Now we are ready to prove proposition 7.3.1.

3The proof of this fact uses Hironaka’s desingularization theorem. Actually it is not necessary to use this fact here,
but it simplifies the proof.
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Proof of proposition 7.3.1.
Step 1: proof for the case when X is a transitive G-set and Y = X.

Fix open (semi-algebraic) U ⊂ X. Consider the Lie algebra L of Nash derivations of E|U and consider
the map δ : g → L given by the action of G on E. It is easy to see that Imδ satisfies the conditions
of lemma 7.3.2 therefore there exists a finite open (semi-algebraic) cover U =

⋃l
i=1 Ui such that for

any i the restriction (Imδ)|Ui generates the module of Nash derivations of E|Ui over the algebra
of Nash functions N (Ui). Hence for any Nash derivation α of E|Ui , we have αξ|Ui ∈ S∗(Ui, E|Ui).
Therefore, (since Schwartz distributions form a sheaf by [AG1], 5.1.3) for any Nash derivation α of
E|U , we have αξ|U ∈ S∗(U,E|U ). Thus by the last corollary ξ ∈ S∗(X).

Step 2: proof in the general case.
We have to show (DX(Y, E)/S∗X(Y, E))g = 0. Let Y =

⋃l
i=0 Yi be the stratification of Y by

its orbits. The space (DX(Y,E)/S∗X(Y, E)) has a canonical filtration given by corollaries 7.2.2
and 7.2.6. By lemma 7.1.2 it is enough to show that (Grik(DX(Y,E)/S∗X(Y, E)))g = 0. However
(Grik(DX(Y,E)/S∗X(Y, E)))g is canonically embedded into

(D(Yi, E|Yi ⊗ Symk(CNX
Yi

))/S∗(Yi, E|Yi ⊗ Symk(CNX
Yi

)))g

which is zero by step 1.

7.4 Fourier transform and proof of proposition 4.3.2
Notation 7.4.1 Fourier transform. Let V be a finite dimensional vector space over F . Let B be
a non-degenerate bilinear form on V . We denote by FB : S∗(V ) → S∗(V ) the Fourier transform
defined using B and the self-dual measure on V .

We will use the following well known fact.

Proposition 7.4.2. Let V be an n dimensional vector space over F . Let B be a non-degenerate
bilinear form on V . Consider the homothety action ρ of F× on S∗(V ). Then for any λ ∈ F× we
have

ρ(λ) ◦ FB = |λ|−nFB ◦ ρ(λ−1).

Notation 7.4.3. Let (ρ, E) be a complex representation of F×. We denote by JH(ρ, E) the subset of
characters of F× which are subquotients of (ρ, E).

We will use the following straightforward lemma.

Lemma 7.4.4. Let (ρ, E) be a complex representation of F×. Let χ be a character of F×. Suppose
that there exists an invertible linear operator A : E → E such that for any λ ∈ F×, ρ(λ) ◦ A =
χ(λ)A ◦ ρ(λ−1). Then JH(E) = χ

JH(E) .

We will also use the following standard lemma.

Lemma 7.4.5. Let (ρ, E) be a complex representation of F× of countable dimension.
(i) If JH(E) = ∅ then E = 0.
(ii) Let I be a well ordered set and F i be a filtration on E indexed by i ∈ I by subrepresentations.
Then JH(E) =

⋃
i∈I JH(Gri(E)).

Now we will prove proposition 4.3.2. First we remind its formulation.

Proposition 7.4.6. Let G be a Nash group. Let V be a finite dimensional representation of G
over F . Suppose that the action of G preserves some non-degenerate bilinear form B on V . Let

V =
n⋃

i=1
Si be a stratification of V by G-invariant Nash cones.
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Let X be a set of characters of F× such that the set X ·X does not contain the character | · |dimV .
Let χ be a character of G. Suppose that for any i and k, the space S∗(Si, Symk(CNV

Si
))G,χ consists

of homogeneous distributions of type α for some α ∈ X. Then S∗(V )G,χ = 0.

Proof. Consider S∗(V )G,χ as a representation of F×. It has a canonical filtration given by corollary
7.2.6. It is easy to see that Grik(S∗(V )G,χ) is canonically imbedded into (Grik(S∗(V ))G,χ. Therefore
by the previous lemma JH(S∗(V )G,χ) ⊂ X−1. On the other hand G preserves B and hence we have
FB : S∗(V )G,χ → S∗(V )G,χ. Therefore by lemma 7.4.4 we have

JH(S∗(V )G,χ) ⊂ | · |−dimV X.

Hence JH(S∗(V )G,χ) = ∅. Thus S∗(V )G,χ = 0.

7.5 Proof of proposition 4.3.1
The following proposition clearly implies proposition 4.3.1.

Proposition 7.5.1. Let X be a smooth manifold. Let V be a real finite dimensional vector space.
Let U ⊂ V be an open non-empty subset. Let E be a vector bundle over X. Then for any k > 0
there exists a canonical embedding D(X, E ⊗ Symk(V )) ↪→ D(X × U,E £ DV ).

Proof. It is enough to construct a continuous linear epimorphism

π : C∞
c (X × U,E £ DV ) ³ C∞

c (X,E ⊗ Symk(V )).

By partition of unity it is enough to do it for trivial E. Let w ∈ C∞
c (X ×U,DV ) and x ∈ X we

have to define π(w)(x) ∈ Symk(V ). Consider the space Symk(V ) as the space of linear functionals
on the space of homogeneous polynomials on V of degree k. Define

π(w)(x)(p) :=
∫

y∈V
p(y)w(x, y).

It is easy to check that π(w) ∈ C∞
c (X, Symk(V )) and π is continuous linear epimorphism.
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