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1. Introduction

A finite family of subgroups of GL,, each endowed with a character, was introduced by Klyachko in [9]. Over a finite
field this family provides a model for GL, (see [7]). In this note we consider the archimedean case and prove pairwise
disjointness of Klyachko pairs in a sense we now explain.

Definition 1.1. Let G be a real reductive group, H; a closed subgroup and y; a continuous character of H;, i =1, 2. We say
that (G, (H1, x1)) and (G, (H2, x2)) are disjoint pairs if for every irreducible admissible smooth Fréchet representation of
moderate growth 7w of G (see Section 2) we have

dimHompy, (77, x1) - dimHomy, (77, x2) = 0.

In order to formulate our main result we introduce some notation. In Section 3 we use this notation without further
mention. Let F equal either R or C and let iy be a non-trivial unitary character of F. Set X, = GL,(F), let U, be the
subgroup of upper uni-triangular matrices in X;; and let ¥, be the character of U, defined by

Yn() =Y (U12+---+Un_1,n), Uu€Uy

Let wy = (8iny1—j) € Xn and let
_( 0 wy
]n—(_wn 0 >€X2n~
Consider the symplectic group Spy, defined by

Spon = {g € Xon: 'gJng = Jn}-
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Fix n € N. For 0 <r < n such that n —r =2k is even consider the Klyachko subgroup H;, of X, defined by

u X
Hrn= {(O h>: ue Uy, xe Mpyok(F), hesPZk}

and let v, 5 be the character of H; , defined by

u X
Yron (0 h) = yYr(U).

Theorem 1.1. The pairs (Xu, (Hr n, ¥rn)), 0 <1 <n,r=nmod 2 are pairwise disjoint.
The analogous result was obtained in [7] over a finite field and in [10] over a non-archimedean local field.
2. Generalities

Let G be a group, V a vector space over C and y : G — C* a group homomorphism. For a representation (;r, V) of G on
V, i.e. a group homomorphism 7 : G — GL(V), let

VeX ={veV: m(glv=x(g)vforallgeG}.

If x is trivial we also denote V& X by VC. Denote by 7 ® x (or sometimes by V ® x) the representation of G on V defined
by g+ x(g)m(g). Note that V&:X = (V ® x~1)C.

Let g be a Lie algebra over R. If V is a g-module let V¢ = {v € V: gv = 0} be the subspace annihilated by g and
Vg =V/gV the space of co-invariants.

We refer to [2] for the notions of Schwartz functions and Schwartz distributions in the following setting. For a Nash
manifold X we denote by S(X) the Fréchet space of C valued Schwartz functions on X and by S*(X) its topological dual,
the space of Schwartz distributions.

Let G be a Nash group with a Nash action on X and let g be the Lie algebra of G. Then S(X) (and therefore also S*(X))
is naturally a g-module. Let x be a character of G, i.e., a smooth group homomorphism x : G — C*. Then S*(X) ® x ! is
also a g-module and evidently

S* XX c(sFxex . (2.1)

For every x € X denote by Gx the G-orbit of x, by Gy the stabilizer of x in G and by g, the Lie algebra of G,. Let T(X)
be the tangent bundle of X. For a Nash submanifold Y of X let N¥ = (T(X)|y)/T(Y) be the normal bundle to Y in X
and let CNJ = (N¥)* be the conormal bundle. For a point y € Y we denote by fo_’y (resp. CN{f’y) the fiber over y in N¥
(resp. CN{S), i.e., the normal (resp. conormal) space to Y in X at the point y.

If X is itself a Nash group and H; is a closed subgroup, i =1, 2, then we shall always consider the left action of Hy x H
on X defined by ((h1, h2),x) — Inxh;1 for hy € Hy, h, € Hy and x € X.

Let G be a real reductive group. An admissible smooth Fréchet representation of moderate growth 7 of G is a represen-
tation in the category FH(G) defined in [12, 11.6.8]. It is called a smooth F-representation in [4] and a Casselman-Wallach
representation in [11]. We denote by 7 the contragredient of 7.

The following is an immediate consequence of [11, Theorem 2.3 (b)]. The statement in [11] is in terms of tempered
generalized functions rather than Schwartz distributions. The translation is straightforward.

Theorem 2.1 (Sun-Zhu). Let G be a real reductive group, H; a closed subgroup and x; a continuous character of H;, i = 1, 2. If
S*(G)h xHa x50 — 0 then for every irreducible admissible smooth Fréchet representation of moderate growth w of G we have

dimHomy, (;r, x1) - dimHomy, (77, x2) = 0.
Next we provide a sufficient condition for vanishing of the space of equivariant distributions in an algebraic context.

Lemma 2.2. Let G = G4(F) (= F) and let g (= F) be the Lie algebra of G. Let x : G — C* be a non-trivial character and let 7t be a
finite-dimensional algebraic representation of G. Then (T ® x)g =0.

Proof. Since 7 is algebraic and G unipotent, the only eigenvalue of 7 ® x on G is x. The derivative of x at zero is not zero
and therefore every non-zero element of g acts on 7w ® x by an invertible linear transformation. Hence g(7# ® x) =7 ® x
and there are no non-zero coinvariants. O

Proposition 2.3. Let G be an F-linear algebraic group acting on a smooth algebraic variety X. Let x : G — C* be a unitary character
and assume that for every x € X there exists a unipotent element u € Gy such that x (u) # 1. Then S*(X)©X =0.
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Proof. By (2.1) we have Tlysxex-1 =0 for every T € S*(X)%X. It is therefore enough to show that S(X) ® x~
g(S(X) ® x~1). By [1, Theorem 2.2.15] it is enough to show that (Symf(CNX, )y ® X g, =0 for all k € Zxo where x’' =

Gx,x
x ! Iy - ((Ag)lc,/Ag,) and Ay denotes the modulus function of a locally compact group H.
Since x is unitary and (Ag¢)|g,/Ac, positive we have x'(u) # 1. Since u is unipotent it lies in the image of some
algebraic homomorphism ¢ : F — Gy (see e.g. [5, Proposition 5.29]). Let u be the Lie algebra of ¢(F). It follows from
Lemma 2.2 that (Sym*(CNZ, ,) ® x")u = 0 and since u C gy also that (Sym*(CNJ ) ® x')q, = 0. The theorem follows. O

Gx,x x,Gx

Remark 2.1. See [8, Lemma 3.4] for a related result.

Let ¢ be a unitary character of F and G an F-linear algebraic group. A character x of G is y-algebraic if there exists an
F-algebraic homomorphism ¢ : G — G4(F) such that x =y o ¢.

Corollary 2.4. With the above notation assume that G acts on a smooth algebraic variety X. Let x be a y-algebraic character of G
such that x|c, # 1 for every x € X. Then S*(X)¢:X = 0.

Proof. Let ¢ : G — Gg4(F) be as above. For x € X the stabilizer Gy is an F-linear algebraic group and therefore each of its
elements has a Jordan decomposition in Gy (see e.g. [6, §34.2]). If x(s) # 1 for some semi-simple s € Gy then let S be an
F-torus in Gy containing s. Then ¢|s is a non-trivial algebraic homomorphism from a non-trivial F-torus to the additive
group G, (F), which is a contradiction. Thus y (u) # 1 for some unipotent element u € Gy. The corollary therefore follows
from Proposition 2.3. O

Theorem 2.5. Let X be an F-reductive group, H; an algebraic subgroup and x; a y-algebraic character of Hj,i =1,2.Set G = Hy x H;
and x = x1 x x2 and assume that x|c, # 1 forallx € X.

(1) For every irreducible admissible smooth Fréchet representation of moderate growth m of X we have

dimHomy, (77, x1) - dimHomp, (77, x2) =0.
(2) If X = GLy(F) and ¢ is the involution on X defined by g* =g =" then (X, (Hy, x1)) and (X, (H%, X5)) are disjoint pairs.

Proof. The first part is immediate from Theorem 2.1 and Corollary 2.4. (Note that x ~! is ¢ ~!-algebraic and qucx #1,
x € X.) For X = GL,(F) it follows from [3, Theorem 2.4.2] that for every irreducible admissible smooth Fréchet representation
of moderate growth 7 of X we have 7* >~ 7. Thus,

Homy, (77, x2) =~ Homp, (7", x2) =~ Homy, (7, x3)-

The second part therefore follows from the first. O

3. Disjointness

Fix neN and 0 <r#r <n such that r=n =1 mod 2. Let ¢ be the involution on X, defined by g' =g~ !, G =
Hynx H!  and 6 =y, x ¢}  a unitary character of G. Clearly 6 is v-algebraic.
By [10, Proposition 2] (see Remark 2 of [10]) we have

Theorem 3.1. With the above notation 0|, # 1 for all x € X.
Proof of Theorem 1.1. The theorem follows from Theorems 2.5(2) and 3.1. O
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