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1. Introduction

1.1. Lattice counting. Let us recall from Duke, Rudnick and Sarnak
[10] the setup of lattice counting on a homogeneous space Z = G/H.
Here G is an algebraic real reductive group and H < G an algebraic
subgroup such that Z carries an invariant measure. Further we are
given a lattice Γ < G such that its trace ΓH := Γ ∩H in H is a lattice
in H.

Attached to invariant measures dh and dg on H and G we obtain an
invariant measure d(gH) on Z via Weil-integration:∫

Z

(∫
H

f(gh)dh
)
d(gH) =

∫
G

f(g) dg (f ∈ Cc(G)) .

Likewise the measures dg and dh give invariant measures d(gΓ) and
d(hΓH) on Y := G/Γ and YH := H/ΓH . We pin down the measures dg
and dh and hence d(gH) by the request that Y and YH have volume
one.

Further we are given a family B of “balls” BR ⊂ Z depending on
a parameter R ≥ 0. At this point we are rather imprecise about the
structure of these balls and content us with the property that they
constitute an exhausting family of compact sets as R→∞.

Let z0 = H ∈ Z be the standard base point. The lattice counting
problem for B consists of the determination of the asymptotic behavior
of the density of Γ ·z0 in balls BR ⊂ Z, as the radius R→∞. By main
term counting for B we understand the statement that the asymptotic
density is 1. More precisely, with

NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}
and |BR| := volZ(BR) we say that main term counting holds if

(1.1) NR(Γ, Z) ∼ |BR| (R→∞).

1.2. Relevant previous works. The main term counting was estab-
lished in [10] for symmetric spaces G/H and certain families of balls,
for lattices with YH compact. In subsequent work Eskin and McMullen
[11] removed the obstruction that YH is compact and presented an er-
godic approach. Later Eskin, Mozes and Shah [12] refined the ergodic
methods and discovered that main term counting holds for a wider class
of reductive spaces: For reductive algebraic groups G,H defined over Q
and arithmetic lattices Γ < G(Q) it is enough to request that H is not
contained in a proper parabolic subgroup of G which is defined over Q.
In particular all maximal reductive subgroups have this property.

In these works the balls BR are constructed as follows. All spaces
considered are affine in the sense that there exists a G-equivariant
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embedding of Z into the representation module V of a rational repre-
sentation of G. For any such embedding and any norm on the vector
space V, one then obtains a family of balls BR on Z by intersection
with the metric balls in V . For symmetric spaces all families of balls
produced this way are suitable for the lattice counting, but on a more
general reductive homogeneous space one needs to be more careful. In
[12] a technical condition called “focusing balls” is requested.

1.3. Real spherical spaces. In this paper we investigate the lattice
counting for a real spherical space Z, that is, it is requested that the
action of a minimal parabolic subgroups P < G on Z admits an open
orbit. In addition we assume that H is reductive and remark that for
spherical spaces this is automatically satisfied if the Lie algebra h of H
is self-normalizing.

Our approach is based on spectral theory and is a natural continua-
tion to [10]. We consider a particular type of balls which are intrinsi-
cally defined by the geometry of Z (and thus not related to a particular
representation V as before).

1.3.1. Factorization of spherical spaces. In the spectral approach it is
of relevance to get a control over intermediate subgroups H < H? < G
which arise in the following way: Given a unitary representation (π,H)
one looks at the smooth vectors H∞ and its continuous dual H−∞, the
distribution vectors. The space (H−∞)H of H-invariant distribution
vectors is of fundamental importance. For all pairs (v, η) ∈ H∞ ×
(H−∞)H one obtains a smooth function on Z, a generalized matrix-
coefficient, via

(1.2) mv,η(z) = η(g−1 · v) (z = gH ∈ Z) .

The functions (1.2) are the building blocks for the harmonic analysis
on Z. The stabilizer Hη in G of η ∈ (H−∞)H is a closed subgroup
which contains H, but in general it can be larger than H even if π is
non-trivial.

Let us call Z? = G/H? a factorization of Z if H < H? and Z? is
unimodular. For a general real spherical space Z the homogeneous
spaces Zη = G/Hη can happen to be non-unimodular (see [18] for H
the Iwasawa N -subgroup). However there is a large subclass of real
spherical spaces which behave well under factorization. Let us call
a factorization co-compact if H?/H is compact and basic if H? is of
the form HI := HI for a normal subgroup I / G. Finally we call a
factorization weakly basic if it is obtained by a composition of a basic
and a co-compact factorization.
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1.3.2. Wavefront spherical spaces. A real spherical space is called wave-
front if the attached compression cone is a quotient of a closed Weyl-
chamber – see [17]. Many real spherical spaces are wavefront: all sym-
metric spaces and all Gross-Prasad type spaces G × H/H are wave-
front1. The terminology wavefront originates from [23] because wave-
front real spherical spaces satisfy the “wavefront lemma” of Eskin-
McMullen (see [11], [17]) which is fundamental in the approach of [11]
to lattice counting.

On the geometric side wavefront real spherical spaces enjoy the fol-
lowing property from [18]: All Zη are unimodular and the factorizations
of the type Zη are precisely the weakly basic factorizations of Z.

On the spectral level wavefront real spherical spaces are distinguished
by the following integrability property, also from [18]: The generalized
matrix coefficients mv,η of (1.2) belong to Lp(Zη) for some 1 ≤ p <∞
only depending on π and η.

1.3.3. Main term counting. In the theorem below we assume that Z
is a wavefront real spherical space of reductive type, for which all fac-
torizations are basic. For simplicity we also assume that all compact
normal subgroups of G are finite.

Using soft techniques from harmonic analysis and a general property
of decay from [20], our first result (see Section 5) is:

Theorem A. Let Z = G/H be as above, and assume that Y = G/Γ
is compact. Then main term counting (1.1) holds.

Since wavefront real spherical spaces satisfy the wavefront lemma by
[17], Section 6, this theorem could also be derived with the ergodic
method of [11]. In the current context the main point is thus the proof
by harmonic analysis.

To remove the assumption that Y is compact and to obtain error
term bounds for the lattice counting problem we need to apply more
sophisticated tools from harmonic analysis. This will be discussed in
the next paragraph with some extra assumptions on G/H.

1.4. Error Terms. The problem of determining the error term in
counting problems is notoriously difficult and in many cases relies on
deep arithmetic information. Sometimes, like in the Gauss circle prob-
lem, some error term is easy to establish but getting an optimal error
term is a very difficult problem.

1Also, if Z is complex, then of the 78 cases in the list of [4], the non-wavefront
cases are (11), (24), (25), (27), (39-50), (60), (61)
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We restrict ourselves to the cases where the cycle H/ΓH is compact.2

To simplify the exposition here we assume in addition that Γ < G is
irreducible, i.e. there do not exist non-trivial normal subgroups G1, G2

of G and lattices Γi < Gi such that Γ1Γ2 has finite index in Γ.
The error we study is measure theoretic in nature, and will be

denoted here as err(R,Γ). Thus, err(R,Γ) measures the deviation
of two measures on Y = Γ\G, the counting measure arising from
lattice points in a ball of radius R, and the invariant measure on
Y . It is easy to compare this error term with the pointwise error
errpt(R,Γ) = |NR(Γ, Z)− |BR||, see Remark 7.2.

To formulate our result we introduce the exponent pH(Γ), which mea-
sures the worst Lp-behavior of any generalized matrix coefficient associ-
ated with a spherical unitary representation π, which isH-distinguished
and occurs in the automorphic spectrum of L2(Γ\G). We first state
our result for the non-symmetric case of triple product spaces, which
is Theorem 8.2 from the body of the paper.

Theorem B. Let Z = G3
0/ diag(G0) for G0 = SOe(1, n) and assume

that H/ΓH is compact. For all p > pH(Γ) there exists a C = C(p) > 0
such that

err(R,Γ) ≤ C|BR|−
1

(6n+3)p

for all R ≥ 1. (In particular, main term counting holds in this case).

To the best of our knowledge this is the first error term obtained for a
non-symmetric space. The crux of the proof is locally uniform compar-
ison between Lp and L∞ norms of generalized matrix coefficients mv,η

which is achieved by applying the model of [3] for the triple product
functional η in spherical principal series.

It is possible to obtain error term bounds under a certain technical
hypothesis introduced in Section 6 and refered to as Hypothesis A. This
hypothesis in turn is implied by a conjecture on the analytic structure
of families of Harish-Chandra modules which we explain in Section 9.1.
The conjecture and hence the hypothesis appear to be true for symmet-
ric spaces but requires quite a technical tour de force. In general, the
techniques currently available do not allow for an elegant and efficient
solution. Under this hypothesis we show that:

Theorem C. Let Z be wavefront real spherical space for which Hy-
pothesis A is valid. Assume

• ΓH = H ∩ Γ is co-compact in H.
• p > pH(Γ)

2After a theory for regularization of H-periods of Eisenstein series is developed,
one can drop this assumption.
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• k > rank(G/K)+1
2

dim(G/K) + 1

Then, there exists a constant C = C(p, k) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(2k+1)p

for all R ≥ 1. Moreover, if Y = Γ\G is compact one can replace the
third condition by k > dim(G/K) + 1.

The existence of a non-quantitative error term for symmetric spaces
was established in [1] and improved in [13].

We note that in case of the hyperbolic plane our error term is still
far from the quality of the bound of A. Selberg. This is because we
only use a weak version of the trace formula, namely Weyl’s law, and
use simple soft Sobolev bounds between eigenfunctions on Y .

2. Reductive homogeneous spaces

In this section we review a few facts on reductive homogeneous
spaces: the Mostow decomposition, the associated geometric balls and
their factorizations.

We use the convention that real Lie groups are denoted by upper case
Latin letters, e.g A,B,C, and their Lie algebras by the corresponding
lower case German letter a, b, c.

Throughout this paper G will denote an algebraic real reductive
group and H < G is an algebraic subgroup. We form the homoge-
neous space Z = G/H and write z0 = H for the standard base point.

Furthermore, unless otherwise mentioned we assume that H is reduc-
tive in G, that is, the adjoint representation of H on g is completely
reducible. In this case we say that G/H is of reductive type.

Let us fix a maximal compact subgroup K < G. It is no loss of
generality to request that H ∩K is maximal compact in H. Attached
to the choice of K is the infinitesimal Cartan decomposition g = k + s
where s = k⊥ is the orthogonal complement with respect to a non-
degenerate invariant bilinear form κ on g which is positive definite on
s (if g is semi-simple, then we can take for κ the Cartan-Killing form).
Further we set q := h⊥.

2.1. Mostow decomposition. We recall Mostow’s polar decomposi-
tion:

(2.1) K ×H∩K q ∩ s→ Z, [k,X] 7→ k exp(X) · z0

which is a homeomorphism. With that we define

‖k exp(X) · z0‖Z = ‖X‖ := κ(X,X)
1
2

for k ∈ K and X ∈ q ∩ s.
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2.2. Geometric balls. The problem of lattice counting in Z leads to
a question of exhibiting natural exhausting families of compact subsets.
We use balls which are intrinsically defined by the geometry of Z.

We define the intrinsic ball of radius R > 0 on Z by

BR := {z ∈ Z | ‖z‖Z < R} .
Write BG

R for the intrinsic ball of Z = G, that is, if g = k exp(X) with
k ∈ K and X ∈ s, then we put ‖g‖G = ‖X‖ and define BG

R accordingly.
Our first interest is the growth of the volume |BR| for R → ∞. We

have the following upper bound.

Lemma 2.1. There exists a constant c > 0 such that:

|BR+r| ≤ ecr|BR|
for all R ≥ 1, r ≥ 0.

Proof. Recall the integral formula

(2.2)

∫
Z

f(z) dz =

∫
K

∫
q∩p

f(k exp(X).z0)δ(X) dX dk,

for f ∈ Cc(Z), where δ(Y ) is the Jacobian at (k, Y ) of the map (2.1).
It is independent of k because dz is invariant. Then

|BR| =
∫
X∈q∩s,‖X‖<R

δ(X) dX .

Hence it suffices to prove that there exists c > 0 such that∫ R+r

0

δ(tX)tl−1 dt ≤ ecr
∫ R

0

δ(tX)tl−1 dt

for all X ∈ q ∩ s with ‖X‖ = 1. Here l = dim q ∩ s. Equivalently, the
function

R 7→ e−cR
∫ R

0

δ(tX)tl−1 dt

is decreasing, or by differentiation,

δ(RX)Rl−1 ≤ c

∫ R

0

δ(tX)tl−1 dt

for all R. The latter inequality is established in [12, Lemma A.3] with
c independent of X. �

Further we are interested how the volume behaves under distortion
by elements from G.

Lemma 2.2. For all r, R > 0 one has BG
r BR ⊂ BR+r.

To prove the lemma we first record that:
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Lemma 2.3. Let z = gH ∈ Z. Then ‖z‖Z = infh∈H ‖gh‖G.

Proof. It suffices to prove that ‖ exp(X)h‖G ≥ ‖X‖ for X ∈ q ∩ s,
h ∈ H, and by Cartan decomposition of H, we may assume h = exp(T )
with T ∈ h ∩ s. Thus we have reduced to the statement that

‖ exp(X) exp(T )‖G ≥ ‖ exp(X)‖G
for X ⊥ T in s. This follows from the fact that the sectional curvatures
of K\G are ≤ 0. �

In particular, it follows that

(2.3) ‖gz‖Z ≤ ‖z‖Z + ‖g‖G (z ∈ Z, g ∈ G)

and Lemma 2.2 follows.

2.3. Factorization. By a (reductive) factorization of Z = G/H we
understand a homogeneous space Z? = G/H? with H? an algebraic
subgroup of G such that

• H? is reductive.
• H ⊂ H?.

A factorization is called compact if Z? is compact, and co-compact if
the fiber space F := H?/H is compact. It is called proper if dimH <
dimH? < dimG.

Let F → Z → Z? be a factorization of Z. We write B?
R and BFR for

the intrinsic balls in Z? and F , respectively.

Lemma 2.4. We have B?
R = BRH

?/H? and BFR = BR ∩ F .

Proof. Follows from Lemma 2.3. �

For a compactly supported bounded measurable function φ on Z we
define the fiberwise integral

φF(gH?) :=

∫
H?/H

φ(gh?) d(h?H)

and recall the integration formula

(2.4)

∫
Z

φ(gH) d(gH) =

∫
Z?
φF(gH?) d(gH?)

under appropriate normalization of measures. Consider the character-
istic function 1R of BR and note that its fiber average 1FR is supported
in the compact ball B?

R. We say that the family of balls (BR)R>0 fac-
torizes well to Z? provided for all compact subsets Q ⊂ G

(2.5) lim
R→∞

supg∈Q 1FR(gH?)

|BR|
= 0 .
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Observe that for all compact subsets Q there exists an R0 = R0(Q) > 0
such that

sup
g∈Q

1FR(gH?) ≤ |BFR+R0
|

by Lemma 2.2. Thus the balls BR factorize well provided

(2.6) lim
R→∞

|BFR+R0
|

|BR|
= 0 .

for all R0 > 0.

2.4. Basic factorizations. There is a special class of factorizations
with which we are dealing with in the sequel. From now on we assume
that g is semi-simple and write

g = g1 ⊕ . . .⊕ gm

for the decomposition into simple ideals. For a reductive sub algebra
h < g and a subset I ⊂ {1, . . . ,m} we define the reductive subalgebra

(2.7) hI := h +
⊕
i∈I

gi .

We say that the factorization is basic provided that h∗ = hI for
some I. Finally we call a factorization weakly basic if it is built from a
sequence of basic and co-compact factorizations. To be more explicit:

h? = hk ⊃ · · · ⊃ h0 = h

such that for each i we have hi = (hi−1)I for some I or hi/hi−1 compact.

3. Wavefront real spherical spaces

We assume that Z is real spherical, i.e. a minimal parabolic subgroup
P < G has an open orbit on Z. It is no loss of generality to assume
that PH ⊂ G is open, or equivalently that g = h + p.

If L is a real algebraic group, then we write Ln for the normal sub-
group of L which is generated by all unipotent element. In case L is
reductive we observe that ln is the sum of all non-compact simple ideals
of l.

According to [19] there is a unique parabolic subgroup Q ⊃ P with
the following two properties:

• QH = PH.
• There is a Levi decomposition Q = LU with Ln ⊂ Q ∩H ⊂ L.
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Following [19] we call Q a Z-adapted parabolic subgroup.
Having fixed L we let L = KLALNL be an Iwasawa decomposition

of L. We choose an Iwasawa decomposition G = KAN which inflates
the one of L, i.e. KL < K,AL = A and NL < N . Further we may
assume that N is the unipotent radical of the minimal parabolic P .

Set AH := A∩H and put AZ = A/AH . We recall that dimAZ is an
invariant of the real spherical space, called the real rank (see [19]).

In [17], Section 6, we defined the notion of wavefront for a real spher-
ical space, which we quickly recall. Attached to Z is a geometric in-
variant, the so-called compression cone which is a closed and convex
subcone a−Z of aZ . If one denotes by a− ⊂ a the closure of the negative
Weyl-chamber, then Z being wavefront means that

A−AH/AH = A−Z .

Let us mention that many real spherical spaces are wavefront; for ex-
ample all symmetric spaces and all Gross-Prasad type spaces Z =
G ×H/H have this property. We recall from [17] the polar decompo-
sition for real spherical spaces

(3.1) Z = ΩA−ZF · z0

where

• Ω is a compact set of the type F ′K with F ′ ⊂ G a finite set.
• F ⊂ G is a finite set with the property that F · z0 = T · z0 ∩
Z where T = exp(ia) and the intersection is taken in ZC =
GC/HC.

Remark 3.1. With regard to lattice counting one needs that Z = G/H
carries an invariant measure. If we assume in addition that NG(H) =
H, then it follows from [16] that H is reductive.

3.1. Volume growth. Define ρQ ∈ a∗ by ρQ(X) = 1
2
tr(aduX), X ∈ a.

It follows from the unimodularity of Z and the local structure theorem
that ρQ|aH = 0, i.e. ρQ ∈ a∗Z = a⊥H .

Lemma 3.2. Let Z = G/H be a wavefront real spherical space. Then

(3.2) |BR| � sup
X∈a
‖X‖≤R

e2ρQ(X) = sup
X∈a−

Z
‖X‖≤R

e−2ρQ(X) .

Proof. First note that the equality in (3.2) is immediate from the wave-
front assumption.
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Let us first show the lower bound, i.e. there exists a C > 0 such that
for all R > 0 one has

|BR| ≥ C sup
X∈a
‖X‖≤R

e2ρQ(X) .

For that we recall the volume bound from [18], Prop. 4.2: for all
compact subsets B ⊂ G with non-empty interior there exists a constant
C > 0 such that volZ(Ba · z0) ≥ Ca2ρQ for all a ∈ A−Z . Together with
the polar decomposition (3.1) this gives us the lower bound.

As for the upper bound let

a−R := {X ∈ a− | ‖X‖ ≤ R} .
Observe that BR ⊂ B′R := KA−RK · z0. In the sequel it is convenient to
realize AZ as a subgroup of A (and not as quotient): we identify AZ
with A⊥H ⊂ A. The upper bound will follow if we can show that

|B′R| ≤ C sup
X∈a
‖X‖≤R

e2ρQ(X) (R > 0) .

for some constant C > 0. This in turn will follow from the argument
for the upper bound in the proof of Prop. 4.2 in [18]: in this proof we
considered for a ∈ A−Z the map

Φa : K × ΩA × Ξ→ G, (k, b,X) 7→ kb exp(Ad(a)X)

where ΩA ⊂ A is a compact neighborhood of 1 and Ξ ⊂ h is a compact
neighborhood of 0. It was shown that the Jacobian of Φa, that is√

det(dΦadΦt
a), is bounded by Ca−2ρQ . Now this bounds holds as well

for the right K-distorted map

Ψa : K × ΩA ×K × Ξ→ G, (k, b, k′, X) 7→ kb exp(Ad(ak′)X) .

The reason for that comes from an inspection of the proof; all what
is needed is the following fact: let d := dim h and consider the action
of Ad(a) on V =

∧d g. Then for a ∈ A− we have

a−2ρ ≥ sup
v∈V,
‖v‖=1

〈Ad(a)v, v〉 .

We deduce an upper bound

(3.3) volZ(KΩAaK · z0) ≤ Ca−2ρ .

We need to improve that bound from ρ to ρQ on the right hand side of
(3.3). For that let WL be the Weyl group of the reductive pair (l, a).
Note that ρQ = 1

|WL|
∑

w∈WL
w · ρ. Further, the local structure theorem

implies that Ln ⊂ H and hence WL can be realized as a subgroup of
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WH∩K := NH∩K(a)/ZH∩K(a). We choose ΩA to be invariant under
NH∩K(a) and observe that a ∈ AZ is fixed under WH∩K . Thus using
the NH∩K(a)-symmetry in the a-variable we refine (3.3) to

volZ(KΩAaK · z0) ≤ Ca−2ρQ .

The desired bound then follows. �

Corollary 3.3. Let Z = G/H be a wavefront real spherical space of
reductive type. Let Z → Z? be a basic factorization such that Z? is not
compact. Then the geometric balls BR factorize well to Z?.

Proof. As Z → Z? is basic we may assume (ignoring connected compo-
nents) that H? = GIH for some I. Note that F = H?/H ' GI/GI∩H
is real spherical.

Let Q be the Z-adapted parabolic subgroup attached to P . Let
PI = P ∩GI and GI ⊃ QI ⊃ PI be the F -adapted parabolic above PI
and note that QI = Q ∩GI . With Lemma 3.2 we then get

|BFR | � sup
X∈aI
‖X‖≤R

e2ρQI (X) ,

which we are going to compare with (3.2).
Let uI be the Lie algebra of the unipotent radical of QI . Note that

uI ⊂ u and that this inclusion is strict since G/H? is not compact. The
corollary now follows from (2.6). �

3.2. Property I. We briefly recall some results from [18].
Let (π,Hπ) be a unitary irreducible representation of G. We denote

by H∞π the G-Fréchet module of smooth vectors and by H−∞π its strong
dual. One calls H−∞π the G-module of distribution vectors; it is a DNF-
space with continuous G-action.

Let η ∈ (H−∞π )H be an H-fixed element and Hη < G the stabilizer
of η. Note that H < Hη and set Zη := G/Hη. With regard to η and
v ∈ H∞ we form the generalized matrix-coefficient

mv,η(gH) := η(π(g−1)v) (g ∈ G)

which is a smooth function on Zη.
We recall the following fact from [18]:

Proposition 3.4. Let Z be a wavefront real spherical space of reductive
type. Then the following assertions hold:

(1) Let H < H? < G be a closed subgroup such that Z? is unimod-
ular. Then Z? is a weakly basic factorization.

(2) Let (π,H) be a unitary irreducible representation of G and let
η ∈ (H−∞π )H . Then:
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(a) Z → Zη is a weakly basic factorization.
(b) Zη is unimodular and there exists 1 ≤ p < ∞ such that

mv,η ∈ Lp(Zη) for all v ∈ H∞π .

The property of Z = G/H that (2b) is valid for all π and η as
above is denoted Property (I) in [18]. Assuming this property we define
pH(π) as the smallest index ≥ 1 such that all K-finite generalized
matrix coefficients mv,η with η ∈ (H−∞π )H belong to Lp(Zη) for any
p > pH(π). It follows from finite dimensionality of (H−∞π )H (see [22])
that pH(π) <∞. We say that π is H-tempered if pH(π) = 2.

The representation π is said to be H-distinguished if (H−∞π )H 6= {0}.
Note that if π is not H-distinguished then pH(π) = 1.

Remark 3.5. Let Z = G/H be a wavefront reductive homogeneous
space. Then, with (1) above and a little bit of effort, one can show
that every factorization Z → Z? (see Section 1.3.1) is of the type

Z → Z?
c → Z?

with Z → Z?
c co-compact and Z?

c → Z? basic. Hence if we neglect
compact symmetries of Z, which is natural in the context of lattice
counting, then it is natural to assume that every factorization is basic.

4. Lattice point counting: setup

Let G/H be a real algebraic homogeneous space. We further assume
that we are given a lattice (a discrete subgroup with finite covolume)
Γ ⊂ G, such that ΓH := Γ ∩ H is a lattice in H. We normalize Haar
measures on G and H such that:

• vol(G/Γ) = 1.
• vol(H/ΓH) = 1.

Our concern is with the double fibration

G/ΓH

xx %%
Z := G/H Y := G/Γ

Fibre-wise integration yields transfer maps from functions on Z to func-
tions on Y and vice versa. In more precision,

(4.1) L∞(Y )→ L∞(Z), φ 7→ φH ; φH(gH) :=

∫
H/ΓH

φ(ghΓ) d(hΓH)

and we record that this map is contractive, i.e

(4.2) ‖φH‖∞ ≤ ‖φ‖∞ (φ ∈ L∞(Y )) .
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Likewise we have

(4.3) L1(Z)→ L1(Y ), f 7→ fΓ; fΓ(gΓ) :=
∑

γ∈Γ/ΓH

f(gγH) ,

which is contractive, i.e

(4.4) ‖fΓ‖1 ≤ ‖f‖1 (f ∈ L1(Z)) .

Unfolding with respect to the double fibration yields, in view of our
normalization of measures, the following adjointness relation:

(4.5) 〈fΓ, φ〉L2(Y ) = 〈f, φH〉L2(Z)

for all φ ∈ L∞(Y ) and f ∈ L1(Z). Let us note that (4.5) applied to |f |
and φ = 1Y readily yields (4.4).

We write 1R ∈ L1(Z) for the characteristic function ofBR and deduce
from the definitions and (4.5):

• 1Γ
R(eΓ) = NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}.

• ‖1Γ
R‖L1(G/Γ) = |BR|.

4.1. Weak asymptotics. In the above setup, G/H need not be of
reductive type, but we shall assume this again from now on. For spaces
with property (I) and Y compact we prove analytically in the following
section that

(MT) NR(Γ, Z) ∼ |BR| (R→∞) .

For that we will use the following result of [20]:

Theorem 4.1. Let Z = G/H be of reductive type. The smooth vectors
for the regular representation of G on Lp(Z) vanish at infinity, for all
1 ≤ p <∞.

With notation from (4.3) we set

F Γ
R :=

1

|BR|
1Γ
R.

We shall concentrate on verifying the following limit of weak type:

(wMT) 〈F Γ
R , φ〉L2(Y ) →

∫
Y

φ̄ dµY (R→∞), (∀φ ∈ C0(Y )) .

Here C0 indicates functions vanishing at infinity.

Lemma 4.2. (wMT) ⇒ (MT).

Proof. As in [10] Lemma 2.3 this is deduced from Lemma 2.1 and
Lemma 2.2. �
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5. Main term counting

In this section we will establish main term counting under the man-
date of property (I) and Y being compact. Let us call a family of balls
(BR)R>0 well factorizable if it factorizes well to all proper factorizations
of type Z → Zη.

5.1. Main theorem on counting.

Theorem 5.1. Let G be semi-simple and H a closed reductive sub-
group. Suppose that Y is compact and Z admits (I). If (BR)R>0 is well
factorizable, then (wMT) and (MT) hold.

Remark 5.2. In case Z = G/H is real spherical and wavefront, then
Z has (I) by Proposition 3.4. If we assume in addition that G has
no compact factors and that all proper factorizations are basic, then
the family of geometric balls is well factorizable by Corollary 3.3. In
particular, Theorem A of the introduction then follows from the above.

The proof is based on the following proposition. For a function space
F(Y ) consisting of integrable functions on Y we denote by F(Y )van the
subspace of functions with vanishing integral over Y .

Proposition 5.3. Let Z = G/H be of reductive type. Assume that
there exists a dense subspace A(Y ) ⊂ Cb(Y )Kvan such that

(5.1) φH ∈ C0(Z) for all φ ∈ A(Y ) .

Then (wMT) holds true.

Proof. We will establish (wMT) for φ ∈ Cb(Y ). As

Cb(Y ) = Cb(Y )van ⊕ C1Y ,

and (wMT) is trivial for φ a constant, it suffices to establish

(5.2) 〈F Γ
R , φ〉L2(Y ) → 0 (φ ∈ Cb(Y )van) .

We will show (5.2) is valid for φ ∈ A(Y ). By density, as F Γ
R is K-

invariant and belongs to L1(Y ), this will finish the proof.
Let φ ∈ A(Y ) and let ε > 0. By the unfolding identity (4.5) we have

(5.3) 〈F Γ
R , φ〉L2(Y ) =

1

|BR|
〈1R, φH〉L2(Z).

Using (5.1) we choose Kε ⊂ Z compact such that |φH(z)| < ε outside
of Kε. Then

1

|BR|
〈1R, φH〉L2(Z) =

∫
Kε

+

∫
Z−Kε

1R(z)

|BR|
φH(z) dµZ(z) .
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By (4.2), the first term is bounded by |Kε|||φ||∞
|BR|

, which is ≤ ε for R

sufficiently large. As the second term is bounded by ε for all R, we
obtain (5.2). Hence (wMT) holds. �

Remark 5.4. It is possible to replace (5.1) by a weaker requirement:
Suppose that an algebraic sum

(5.4) A(Y ) =
∑
j∈J

A(Y )j

is given together with a factorization Z?
j = G/H?

j for each j ∈ J .
Suppose that the balls BR all factorize well to Z?

j , j ∈ J . Suppose

further that φH factorizes to a function

(5.5) φH
?
j ∈ C0(Z?

j )

for all φ ∈ A(Y )j and all j ∈ J . Then the conclusion in Proposition
5.3 is still valid. In fact, using (2.4) the last part of the proof modifies
to:

1

|BR|
〈1R, φH〉L2(Z) =

1

|BR|
〈1FR, φH

?
j 〉L2(Z?j ) =

=

∫
K?
ε

+

∫
Z?j−K?

ε

1FR(z)

|BR|
φH

?
j (z) dµZ?j (z)

for φ ∈ A(Y )j. As ‖1FR‖L1(Z?j ) = |BR|, the second term is bounded by

ε for all R. As the balls factorize well to Z?
j we get the first term as

small as we wish with (2.5).

5.2. The space A(Y ). We now construct a specific subspace A(Y ) ⊂
Cb(Y )Kvan and verify condition (5.5).

Denote by Ĝs ⊂ Ĝ the K-spherical unitary dual.
As Y is compact, the abstract Plancherel-theorem implies:

L2(G/Γ)K '
⊕
π∈Ĝs

(H−∞π )Γ.

If we denote the Fourier transform by f 7→ f∧ then the corresponding
inversion formula is given by

(5.6) f =
∑
π

mvπ ,f∧(π)

with vπ ∈ Hπ normalized K-fixed and f∧(π) ∈ (H−∞π )Γ. The matrix
coefficients for Y are defined as in (1.2), and the sum in (5.6) is required
to include multiplicities.
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Note that L2(Y ) = L2(Y )van ⊕ C · 1Y . We define A(Y ) ⊂ L2(Y )Kvan

to be the dense subspace of functions with finite Fourier support, that
is,

A(Y ) = span{mv,η | π ∈ Ĝs non-trivial, v ∈ HK
π , η ∈ (H−∞π )Γ}.

Then A(Y ) ⊂ L2(Y )K,∞van is dense and since C∞(Y ) and L2(Y )∞ are
topologically isomorphic, it follows that A(Y ) is dense in C(Y )Kvan as
required.

The following lemma together with Remark 5.4 immediately implies
Theorem 5.1.

Lemma 5.5. Assume that Y is compact and Z has (I), and define
A(Y ) as above. Then there exists a decomposition of A(Y ) satisfying
(5.4)-(5.5).

Proof. Let J denote the set of all factorizations Z? → Z, including
also Z? = Z which we give the index j0 ∈ J . For j ∈ J we define
A(Y )j ⊂ A(Y ) accordingly to be spanned by the matrix coefficients
for which Hη = H?

j . Then (5.4) holds.

We consider first the subspace A(Y )j0 . The map φ 7→ φH from (4.1)
corresponds on the spectral side to a map (H−∞π )Γ → (H−∞π )H , which
can be constructed as follows.

As H/ΓH is compact, we can define for each π ∈ Ĝs

(5.7) Λπ : (H−∞π )Γ → (H−∞π )H , Λπ(η) =

∫
H/ΓH

η ◦ π(h−1) d(hΓH)

by H−∞π -valued integration: the defining integral is understood as inte-
gration over a compact fundamental domain F ⊂ H with respect to the
Haar measure on H; as the integrand is continuous and H−∞π is a com-
plete locally convex space, the integral converges in H−∞π . It follows
from (5.7) that (mv,η)

H = mv,Λπ(η) for all v ∈ H∞π and η ∈ (H−∞π )Γ.
Let φ ∈ A(Y )j0 , then it follows from (5.6) that

(5.8) φH =
∑
π 6=1

mvπ ,Λπ(φ∧(π)) .

Note that Hη = H for each distribution vector η = Λπ(φ∧(π)) in this
sum, by the definition of A(Y )j0 . As Z has property (I) the sum-
mand mvπ ,Λπ(φ∧(π)) is contained in Lp(G/H) for p > pH(π), and by
[18], Lemma 7.2, this containment is then valid for all K-finite general-
ized matrix coefficients mv,Λπ(φ∧(π)) of π. Thus mvπ ,Λπ(φ∧(π)) generates a
Harish-Chandra module inside Lp(G/H). As mvπ ,Λπ(φ∧(π)) is K-finite,
we conclude that it is a smooth vector. Hence φH ∈ Lp(G/H)∞, and
in view of Theorem 4.1 we obtain (5.1).



18 KRÖTZ, SAYAG, AND SCHLICHTKRULL

The proof of (5.5) for φ ∈ A(Y )j for general j ∈ J is obtained by the
same reasoning, where one replaces H by H?

j in (5.7) and (5.8). �

This concludes the proof of Theorem 5.1.

6. Lp-bounds for generalized matrix coefficients

From here on we assume that Z = G/H is wavefront and real spher-
ical. Recall that we assumed that G is semi-simple and that we wrote
g = g1 ⊕ . . . ⊕ gm for the decomposition of g into simple factors. It
is no big loss of generality to assume that G = G1 × . . . × Gm splits
accordingly. We will assume that from now on.

Further we request that the lattice Γ < G is irreducible, that is, the
projection of Γ to any normal subgroup J ( G is dense in J .

Let π be an irreducible unitary representation of G. Then π =
π1⊗ . . .⊗πm with πj and irreducible unitary representation of Gj. We
start with a simple observation.

Lemma 6.1. Let (π,H) be an irreducible unitary representation of G
and 0 6= ν ∈ (H−∞)Γ. Then, if one constituent πj of π is trivial, then
π is trivial.

Proof. The element ν gives rise to a G-equivariant injection

(6.1) H∞ ↪→ C∞(Y ), v 7→ (gΓ 7→ ν(π(g−1)v)) .

Say πj is trivial and let J :=
∏m

i=1
i6=j

Gi. Let ΓJ be the projection of Γ to

J . Then (6.1) gives rise to a J-equivariant injection H∞ ↪→ C∞(J/ΓJ).
As ΓJ is dense in J , the assertion follows. �

As we discussed earlier in Remark 3.5 it is no big loss of generality
to request that all factorizations are basic. We assume this from now
on.

Further we request from now that the cycle H/ΓH ⊂ Y is compact.
This technical condition ensures that the vector valued average map
(5.7) converges.

Lemma 6.2. Let (π,H) be a non-trivial irreducible unitary represen-
tation of G. Let ν ∈ (H−∞π )Γ such that η := Λπ(ν) ∈ (H−∞π )H is
non-zero. Then Hη/H is finite.

Proof. As all factorizations are basic we find hη = hI , and as π is
irreducible it infinitesimally embeds into C∞(G/Hη). It follows that πi
is trivial for i ∈ I. Hence Lemma 6.1 implies I = ∅ and hη = h. �
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In the sequel we use the Plancherel theorem (see [14])

L2(G/Γ)K '
∫ ⊕
Ĝs

Vπ,Γ dµ(π) ,

where Vπ,Γ ⊂ (H−∞π )Γ is a finite dimensional subspace and of constant
dimension on each connected component in the continuous spectrum
(parametrization by Eisenstein series), and where the Plancherel mea-
sure µ has support

ĜΓ,s := supp(µ) ⊂ Ĝs .

Given an irreducible lattice Γ ⊂ G we define

pH(Γ) := sup{pH(π) : π ∈ ĜΓ,s}
and record the following.

Lemma 6.3. pH(Γ) <∞.

Proof. For a unitary representation (π,H) and vectors v, w ∈ H we
form the matrix coefficient πv,w(g) := 〈π(g)v, w〉. We first claim that
there exists a p < ∞ (in general depending on Γ) such that for all

non-trivial π ∈ ĜΓ,s one has πv,w ∈ Lp(G) for all K-finite vectors v, w.
In case G has property (T) this follows (independently of Γ) from [7].
The remaining cases are SOe(n, 1) and SU(n, 1) (up to covering) of real
rank one, and they are treated in [6].

The claim can be interpreted geometrically via the leading exponent
ΛV ∈ a∗ which is attached to the Harish-Chandra module of H (see
[18], Section 6). The lemma now follows from Prop. 4.2 and Thm. 6.3
in [18] (see the proof of Thm. 7.6 in [18] how these two facts combine
to result in integrability). �

Let 1 ≤ p < ∞. Let us say that a subset Λ ⊂ Ĝs is Lp-bounded
provided that mv,η ∈ Lp(Zη) for all π ∈ Λ and v ∈ H∞π , η ∈ (H−∞π )H .

By definition we thus have that ĜΓ,s is Lp-bounded for p > pH(Γ).
In this section we work under the following:

Hypothesis A: For every 1 ≤ p < ∞ and every Lp-bounded subset

Λ ⊂ Ĝs there exists a compact subset Ω ⊂ G and constants c, C > 0
such that the following assertions hold for all π ∈ Λ, η ∈ (H−∞π )H and
v ∈ HK

π :

(A1) ‖mv,η‖Lp(Zη) ≤ C‖mv,η‖∞ ,

(A2) ‖mv,η‖∞ ≤ c‖mv,η‖∞,Ωη
where Ωη = ΩHη/Hη.
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In the sequel we are only interested in the following choice of subset

Λ ⊂ Ĝs, namely

(6.2) Λ := {π ∈ ĜΓ,s | Λπ(ν) 6= 0 for some ν ∈ Vπ,Γ} .
An immediate consequence of Hypothesis A is:

Lemma 6.4. Assume that p > pH(Γ). Then there is a C > 0 such

that for all π ∈ ĜΓ,s, v ∈ HK
π , ν ∈ (H−∞π )Γ and η := Λπ(ν) ∈ (H−∞π )H

one has
‖φHπ ‖Lp(Zη) ≤ C‖φπ‖∞

where φπ(gΓ) := ν(π(g−1)v).

Proof. Recall from (4.2), that integration is a bounded operator from
L∞(Y )→ L∞(Z). Hence the assertion follows from (A1). �

Recall the Cartan-Killing form κ on g = k + s and choose a basis
X1, . . . , Xl of k and X ′1, . . . , X

′
s of s such that κ(Xi, Xj) = −δij and

κ(X ′i, X
′
j) = δij. With that data we form the standard Casimir element

C := −
l∑

j=1

X2
j +

s∑
j=1

(X ′j)
2 ∈ U(g) .

Set ∆K :=
∑l

j=1 X2
j ∈ U(k) and obtain the commonly used Laplace

element

(6.3) ∆ = C + 2∆K ∈ U(g)

which acts on Y = G/Γ from the left.
Let d ∈ N. For 1 ≤ p ≤ ∞, it follows from [2], Section 3, that

Sobolev norms on Lp(Y )∞ ⊂ C∞(Y ) can be defined by

||f ||2p,2d =
d∑
j=0

||∆jf ||2p .

Basic spectral theory allows one to define ‖ ·‖p,d more generally for any
d ≥ 0.

Let us define

s := dim s = dimG/K = dim Γ\G/K
and

r := dim a = rankR(G/K) ,

where a ⊂ s is maximal abelian.
We denote by Cb(Y ) the space of continuous bounded functions on

Y and by Cb(Y )o the subspace with vanishing integral.

Proposition 6.5. Assume that
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(1) Z is a wavefront real spherical space with all factorizations ba-
sic,

(2) G = G1 × . . .×Gm with all gi simple and non-compact.
(3) Γ < G is irreducible and YH is compact,
(4) Hypothesis A is valid.

Then the map

AvH : C∞b (Y )Ko → Lp(Z)K ; AvH(φ) = φH

is continuous. More precisely, for all

(1) k > s+ 1 if Y is compact.
(2) k > r+1

2
s+ 1 if Y is non-compact and Γ is arithmetic

there exists a constant C = C(p, k) > 0 such that

‖φH‖Lp(Z) ≤ C‖φ‖∞,k (φ ∈ C∞b (Y )Ko )

Proof. For all π ∈ Ĝ the operator dπ(C) acts as a scalar λπ and we set

|π| := |λπ| ≥ 0 .

Let φ ∈ C∞b (Y )Ko and write φ = φd+φc for its decomposition in discrete
and continuous Plancherel parts. We assume first that φ = φd.

In case Y is compact we have Weyl’s law: There is a constant cY > 0
such that ∑

|π|≤R

m(π) ∼ cYR
s/2 (R→∞) .

Here m(π) = dimVπ,Γ. We conclude that

(6.4)
∑
π

m(π)(1 + |π|)−k <∞

for all k > s/2 + 1. In case Y is non-compact, we let Ĝµ,d be the
the discrete support of the Plancherel measure. Then assuming Γ is
arithmetic, the upper bound in [15] reads:∑

π∈Ĝµ,d
|π|≤R

m(π) ≤ cYR
rs/2 (R > 0) .

For k > rs/2 + 1 we obtain (6.4) as before.
As φ is in the discrete spectrum we decompose it as φ =

∑
π φπ and

obtain with Hypothesis (A1)

‖φH‖p ≤
∑
π

‖φHπ ‖p ≤ C
∑
π

‖φπ‖∞ .
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The last sum we estimate as follows:∑
π

‖φπ‖∞ =
∑
π

(1 + |π|)−k/2(1 + |π|)k/2‖φπ‖∞

≤ C
∑
π

(1 + |π|)−k/2‖φπ‖∞,k

with C > 0 a constant depending only on k (we allow universal positive
constants to change from line to line). Applying the Cauchy-Schwartz
inequality combined with (6.4) we obtain

‖φH‖p ≤ C
(∑

π

‖φπ‖2
∞,k

) 1
2

with C > 0. With Hypothesis (A2) we get the further improvement:

‖φH‖p ≤ C
(∑

π

‖φπ‖2
Ω,∞,k

) 1
2

To finish the proof we apply the Sobolev lemma on K\G. Here
Sobolev norms are defined by the central operator C, whose action
agrees with the left action of ∆. It follows that ‖f‖∞,Ω ≤ C‖f‖2,k1,Ω

with k1 >
s
2

for K-invariant functions f on G. This gives

‖φH‖p ≤ C(
∑
π

||φπ||2Ω,2,k+k1
)

1
2 = C||φ||Ω,2,k+k1 ≤ C||φ||∞,k+k1

which proves the proposition for the discrete spectrum.
If φ = φc belongs to the continuous spectrum, where multiplicities

are bounded (see [14]), the proof is simpler. Let µc be the restriction
of the Plancherel measure to the continuous spectrum. As this is just
Euclidean measure on r-dimensional space we have

(6.5)

∫
Ĝs

(1 + |π|)−k dµc(π) <∞

if k > r/2. We assume for simplicity in what follows that m(π) = 1 for
almost all π ∈ suppµc. As supπ∈suppµcm(π) < ∞ the proof is easily
adapted to the general case.

Let

φ =

∫
Ĝs

φπ dµc(π).

As ‖φH‖∞ ≤ ‖φ‖∞ we conclude with Lemma 6.4, (6.5) and Fubini’s
theorem that

φH =

∫
Ĝs

φHπ dµc(π)
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and, by the similar chain of inequalities as in the discrete case

‖φH‖p ≤ C‖φ‖∞,k+k1

with k > r
2

and k1 >
s
2
. This concludes the proof. �

7. Error term estimates

Recall 1R, the characteristic function of BR. The first error term for
the lattice counting problem can be expressed by

err(R,Γ) := sup
φ∈Cb(Y )

‖φ‖∞≤1

|
〈

1Γ
R

|BR|
− 1Y , φ

〉
| (R > 0),

and our goal is to give an upper bound for err(R,Γ) as a function of
R.

According to the decomposition Cb(Y ) = Cb(Y )o ⊕ C1Y we decom-
pose functions as φ = φo + φ1 and obtain

err(R,Γ) = sup
φ∈Cb(Y )

‖φ‖∞≤1

|〈1Γ
R, φo〉|
|BR|

= sup
φ∈Cb(Y )

‖φ‖∞≤1

|〈1R, φHo 〉|
|BR|

.

Further, from ‖φo‖∞ ≤ 2‖φ‖∞ we obtain that err(R,Γ) ≤ 2 err1(R,Γ)
with

err1(R,Γ) := sup
φ∈Cb(Y )o
‖φ‖∞≤1

|〈1Γ
R, φ〉|
|BR|

= sup
φ∈Cb(Y )o
‖φ‖∞≤1

|〈1R, φH〉|
|BR|

.

7.1. Smooth versus non-smooth counting. Like in the classical
Gauss circle problem one obtains much better estimates for the remain-
der term if one uses a smooth cutoff. Let α ∈ C∞c (G) be a non-negative
test function with normalized integral. Set 1R,α := α ∗ 1R and define

errα(R,Γ) := sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α, φ〉|
|BR|

= sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1R,α, φH〉|
|BR|

.

Lemma 7.1. Let k > s+1 if Y is compact and k > r+1
2
s+1 otherwise.

Let p > pH(Γ) and q be such that 1
p

+ 1
q

= 1. Then there exists C > 0

such that

(7.1) errα(R,Γ) ≤ C‖α‖1,k|BR|−
1
p

for all R ≥ 1 and all α ∈ C∞c (G).

Proof. First note that

〈1R,α, φH〉 = 〈1R,α, (−1 + ∆)k/2(−1 + ∆)−k/2φH〉 .
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With ψ = (−1 + ∆)−k/2φ we have ‖ψ‖∞,k ≤ C‖φ‖∞ for some C > 0.
We thus obtain

errα(R,Γ) ≤ C sup
ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1 + ∆)k/2ψH〉|
|BR|

≤ C

|BR|
sup

ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1 + ∆)k/2ψH〉|

Moving (−1+∆)k/2 to the other side we get with Hölder’s inequality
and Proposition 6.5 that

errα(R,Γ) ≤ C

|BR|
‖(−1 + ∆)k/2α ∗ 1R||q .

Finally,

‖(−1 + ∆)k/2α ∗ 1R‖q ≤ C‖α‖1,k‖1R‖q
and with ‖1R‖q = |BR|

1
q , the lemma follows. �

Remark 7.2. In the literature results are sometimes stated not with
respect to err(R,Γ) but the pointwise error term errpt(R,Γ) = |1Γ

R(1)−
|BR||. Likewise we define errpt,α(R,Γ). Let BY be a compact neighbor-
hood of 1Γ ∈ Y and note that

errpt,α(R,Γ) ≤ |BR| sup
φ∈L1(BY )

‖φ‖1≤1

|〈
1Γ
R,α

|BR|
− 1Y , φ〉| (R > 0).

The Sobolev estimate ‖φ‖∞ ≤ C‖φ‖1,k, for K-invariant functions φ on
BY and with k = dimY/K the Sobolev shift, then relates these error
terms:

errpt,α(R,Γ) ≤ |BR| sup
φ∈C∞

b
(Y )

‖φ‖∞,−k≤1

|〈 1
Γ
R

|BR|
− 1Y , φ〉| .

We then obtain

errpt,α(R,Γ) ≤ C|BR|1−
1
p (R > 0)

in view of (7.1).

We return to the error bound in Lemma 7.1 and would like to com-
pare err1(R,Γ) with errα(R,Γ). For that we note (by the triangle in-
equality) that

| err1(R,Γ)− errα(R,Γ)| ≤ sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α − 1Γ

R, φ〉|
|BR|

.
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Suppose that suppα ⊂ BG
ε for some ε > 0. Then Lemma 2.2 implies

that 1R,α is supported in BR+ε, and hence

|〈1Γ
R,α − 1Γ

R, φ〉| ≤ ‖1Γ
R,α − 1Γ

R‖1

≤ ‖1R,α − 1R‖1

≤ |BR+ε|
1
2‖1R,α − 1R‖2

≤ |BR+ε|
1
2 |BR+ε\BR|

1
2 .

With Lemma 2.1 we get

|BR+ε\BR| ≤ Cε|BR| (R ≥ 1, ε < 1) .

Thus we obtain that

| err1(R,Γ)− errα(R,Γ)| ≤ Cε
1
2 .

Combining this with the estimate in Lemma 7.1 we arrive at the exis-
tence of C > 0 such that

err1(R,Γ) ≤ C(ε−k|BR|−
1
p + ε

1
2 )

for all R ≥ 1 and all 0 < ε < 1. The minimum of the function

ε 7→ ε−kc+ ε1/2 is attained at ε = (2kc)
2

2k+1 and thus we get:

Theorem 7.3. Under the assumptions of Proposition 6.5 the first error
term err(R,Γ) for the lattice counting problem on Z = G/H can be
estimated as follows: for all p > pH(Γ) and k > s + 1 for Y compact,
resp. k > r+1

2
s + 1 otherwise, there exists a constant C = C(p, k) > 0

such that
err(R,Γ) ≤ C|BR|−

1
(2k+1)p

for all R ≥ 1.

Remark 7.4. The point where we lose essential information is in the
estimate (6.4) where we used Weyl’s law. In the moment pointwise
multiplicity bounds are available the estimate would improve. To
compare the results with Selberg on the hyperbolic disc, let us as-
sume that pH(Γ) = 2. Then with r = 1 and s = 2 our bound is

err(R,Γ) ≤ Cε|BR|−
1
14

+ε while Selberg showed err(R,Γ) ≤ Cε|BR|−
1
3

+ε.

8. Triple spaces

In this section we verify our Hypothesis A for triple space Z = G/H
where G = G′ × G′ × G′, H = diag(G′) and G′ = SOe(1, n) for some
n ≥ 2. Observe that SOe(1, 2) ∼= PSl(2,R). We take K ′ := SO(n,R) <
G′ as a maximal compact subgroup and set K := K ′×K ′×K ′. Further
we set s := s′ × s′ × s′. A maximal abelian subspace a ⊂ s is then of
the form
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a = a′1 × a′2 × a′3
with a′i ⊂ s′ one dimensional subspaces. We recall the following result
from [8].

Proposition 8.1. For the triple space the following assertion hold true:

(1) G = KAH if and only if dim(a′1 + a′2 + a′3) = 2.
(2) Suppose that all a′i are pairwise distinct. Then one has PH is

open for all minimal parabolics P with Langlands-decomposition
P = MPAPNP and AP = A.

We say that the choice of A is generic if all a′i are distinct and
dim(a′1 + a′2 + a′3) = 2.

The invariant measure dz on Z can then be estimated as∫
Z

f(z) dz ≤
∫
K

∫
A

f(ka · z0)J(a) da dk (f ∈ Cc(Z), f ≥ 0)

with J(a), the Jacobian a non-negative real valued function on A with

(8.1) J(a) ≤ sup
w∈W

a2wρ

by Lemma 3.2.

8.1. Proof of the Hypothesis A. We first note that for all π ∈ Ĝs

the space of H-invariants

(H−∞π )H = CI .
is one-dimensional, see [5], Thm. 3.1.

Write π = π1 ⊗ π2 ⊗ π3 with each factor a K ′-spherical unitary
irreducible representation of G′. If we assume that π 6= 1 has non-
trivial H-fixed distribution vectors, then at least two of the factors πi
are non-trivial.

Let vi be normalized K ′-fixed vectors of πi and set v = v1 ⊗ v2 ⊗ v3.
Since Z is a multiplicity one space, the functional I ∈ (H−∞π )H is
unique up to scalars. Our concern is to obtain uniform Lp-bounds for
the generalized matrix coefficients fπ := mv,I :

fπ(g1, g2, g3) := I(π1(g1)−1v1 ⊗ π2(g2)−1v2 ⊗ π3(g3)−1v3) ,

when π belongs to the set Λ of (6.2).
We decompose Λ = Λ0∪Λ1∪{1} with Λ0 ⊂ Λ the set of π ∈ Λ with

all πi non-trivial, and Λ1 the set of π’s with excatly one πi to be trivial.
Consider first the case where π ∈ Λ1, i.e. one πi is trivial, say π3.

Then π2 = π∗1. We identify Z ' G′ × G′ via (g, h) 7→ (1, g, h)H and
obtain

fπ(g, h) = 〈π1(g)v1, v1〉 ,
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a spherical function. Note that Zη ' G′ and Hypothesis A follows from
standard properties about K ′-spherical functions on G′. To be more
specific let G′ = N ′A′K ′ be an Iwaswa-decomposition with middle-
projection a : G′ → A′, then

fπ(g, h) = ϕλ1(g) :=

∫
K′

a(k′g)λ1−ρ′ dk′ .

We use Harish-Chandra’s estimates |ϕν(a)| ≤ aνϕ0(a) and ϕ0(a) ≤
Ca−ρ(1 + | log a|)d for a ∈ A′ in positive chamber. The condition of
π ∈ Λ1 implies that ρ − Reλ1 > 0 is bounded away from zero and
Hypothesis A follows in this case.

Suppose now that π ∈ Λ0, i.e. all πi are non-trivial.
For a simplified exposition we assume that n = 2, i.e. G′ = PSl(2,R),

and comment at the end for the general case. Then πi = πλi are
principal series for some λi ∈ iR+ ∪ [0, 1) with H∞π = C∞(S1) in the
compact realization. Set λ = (λ1, λ2, λ3) and set π = πλ.

In order to analyze fπ we use G = KAH and thus assume that g =
a = (a1, a2, a3) ∈ A. We work in the compact model of Hπi = L2(S1)
and use the explicit model for I in [3]: for h1, h2, h3 smooth functions
on the circle one has

I(h1 ⊗ h2 ⊗ h3) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

h1(θ1)h2(θ2)h3(θ3)·

· K(θ1, θ2, θ3) dθ1dθ2dθ3 ,

where

K(θ1, θ2, θ3) = | sin(θ2−θ3)|(α−1)/2| sin(θ1−θ3)|(β−1)/2| sin(θ1−θ2)|(γ−1)/2 .

In this formula one has α = λ1 − λ2 − λ3, β = −λ1 + λ2 − λ3 and
γ = −λ1 − λ2 + λ3 where λi ∈ iR ∪ (−1, 1) are the standard represen-
tation parameters of πi. According to to [5], Cor. 2.1, the kernel K is
absolutely integrable.

Set

A′ :=
{
at :=

(
t 0
0 1

t

)
| t > 0

}
< G′

Then A′i = kφiA
′k−1
φi

with φi ∈ [0, 2π] and

kφ =

(
cosφ − sinφ
sinφ cosφ

)
.

Set at,i = kφiatk
−1
φi

.
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Returning to our analysis of fπ we now take hi(ti, θi) = [π1(ati,i)vi](θi)
and remark that

hi(ti, θi) =
1

(t2i + sin2(θi − φi)( 1
t2i
− t2i ))

1
2

(1+λi)
.

Let us set |π| := πReλ1 ⊗ πReλ2 ⊗ πReλ3 . Say |π| ≥ |π′| if |Reα| ≤
|Reα′|, |Re β| ≤ |Re β′| and |Re γ| ≤ |Re γ′|. Our formulas then show
for |π| ≤ |π′| that

(8.2) |fπ(a)| ≤ f|π|(a) ≤ f|π′|(a) (a ∈ A) .

Let ci := 1−|Reλi| for i = 1, 2, 3. The fundamental estimate in [21],
Thm. 3.2, then yields a constant d, independent of π, and a constant
C = C(π) > 0 such that for a = (at1,1, at2,2, at3,3) one has

(8.3) |fπ(a)| ≤ C
(1 + | log t1|+ | log t2|+ | log t3|)d

[cosh log t1]c1 · [cosh log t2]c2 · [cosh log t3]c3
.

In view of (8.2) the constant C(π) depends only on the distance of Reλi
to the trivial representation. Looking at the integral representation of
fπ with the kernel K we deduce a lower bound without the logarithmic
factor, i.e. the bound is essentially sharp. Hence (8.1) together with
the fact that all fπ for π ∈ Λ0 are in Lp(Z) for some p < ∞ implies
that

(8.4) inf
π∈Λ0

ci(π) > 0 .

Further (8.2) and (8.3) together give

(8.5) sup
π∈Λ0

C(π) <∞ .

In particular we get both

(8.6) sup
π∈Λ0

‖fπ‖p <∞ .

and

(8.7) sup
π∈Λ0

‖fπ‖∞ <∞ .

On the other hand for g = 1 = (1,1,1), the value fπ(1) is obtained
by applying I to the constant function 1 = 1⊗ 1⊗ 1. This value has
been computed explicitly by Bernstein and Reznikov in [3] as

Γ((α + 1)/4)Γ((β + 1)/4)Γ((γ + 1)/4)Γ((δ + 1)/4)

Γ((1− λ1)/2)Γ((1− λ2)/2)Γ((1− λ3)/2)
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where α, β, γ are as before and δ = −λ1−λ2−λ3. Stirling approxima-
tion,

|Γ(σ + it)| = const.e−
π
2
|t||t|σ−

1
2

(
1 +O(|t|−1)

)
as |t| → ∞ and σ is bounded, yields a lower bound for fπ(1):

(8.8) inf
π∈Λ0

|fπ(1)| > 0 .

As ‖fπ‖∞ ≥ |fπ(1)| the assertion (A1) of Hypothesis A is readily
obtained from (8.6) and (8.8). Likewise (A2) with Ω = {1} follows
from (8.7) and (8.8).

In general for G′ = SOe(1, n) one needs to compute the Bernstein-
Reznikov integral. This was accomplished in [9].

Theorem 8.2. Let Z = G′×G′×G′/ diag(G′) for G′ = SOe(1, n) and
assume that H/ΓH is compact. Then the first error term err(R,Γ) for
the lattice counting problem on Z = G/H can be estimated as follows:
for all p > pH(Γ) there exists a C = C(p) > 0 such that

err(R,Γ) ≤ C|BR|−
1

(6n+3)p

for all R ≥ 1.

8.2. Cubic lattices. Here we let G0 = SOe(1, 2) with the quadratic
Q form defining G0 having integer coefficients and anisotropic over Q,
for example

Q(x0, x1, x2) = 2x2
0 − 3x2

1 − x2
2 .

Then, according to Borel, Γ0 = G0(Z) is a uniform lattice in G0.
Next let k be a cubic Galois extension of Q. Note that k is totally

real. An example of k is the splitting field of the polynomial f(x) =
x3 + x2− 2x− 1. Let σ be a generator of the Galois group of k|Q. Let
Ok be the ring of algebraic integers of k. We define Γ < G = G3

0 to be
the image of G0(Ok) under the embedding

G0(Ok) 3 γ 7→ (γ, γσ, γσ
2

) ∈ G .
Then Γ < G is a uniform irreducible lattice with trace H ∩ Γ ' Γ0 a
uniform lattice in H ' G0.

9. Outlook

We discuss some topics of harmonic analysis on reductive homo-
geneous spaces which are currently open and would have immediate
applications to lattice counting.
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9.1. A conjecture which implies Hypothesis A. Hypothesis A
falls in the context of a more general conjecture about the growth
behavior of families of Harish-Chandra modules.

We let Z = G/H be a real spherical space. Denote by A−Z ⊂ AZ
the compression cone of Z (see Section 3) and recall that wavefront
means that A−AH/AH = A−Z which, however, we do not assume for
the moment.

We use V to denote Harish-Chandra modules for the pair (g, K) and
V ∞ for their unique moderate growth smooth Fréchet globalizations.
These V ∞ are global objects in the sense that they are G-modules
whereas V is defined in algebraic terms. We write V −∞ for the strong
dual of V ∞. We say that V is H-distinguished provided that the space
of H-invariants (V −∞)H is non-trivial.

It is no big loss of generality to assume that A−Z is a sharp cone, as
the edge of this cone is in the normalizer of H and in particular acts
on the finite dimensional space of H-invariants.

As A−Z is pointed it is a fundamental domain for the little Weyl group
and as such a simplicial cone (see [16]). If a−Z = logA−Z , then we write
ω1, . . . , ωr for a set of generators (spherical co-roots) of a−Z .

Set Q := θ(Q) where θ is the Cartan involution determined by the
choice of K. Note that V/qV is a finite dimensional Q module, in
particular a finite dimensional AZ-module. Let Λ1, . . . ,ΛN ∈ a∗Z be
the aZ,C-weight spectrum. Then we define the H-spherical exponent
ΛV ∈ a∗Z of V by

ΛV (ωi) := max
1≤j≤N

Re Λj(ωi) .

Further attached to V is a “logarithmic” exponent d ∈ N. Having
this data we recall the main bound from [21]

|mv,η(a · z0)| / aΛV (1 + ‖ log a‖)dV (a ∈ A−Z) .

Conjecture 9.1. Fix a K-type τ , a constant C > 0, and a compact
subset Ω ⊂ G. Then there exists a compact set ΩA ⊂ A−Z such that for
all Harish-Chandra modules V with ‖ΛV ‖ ≤ C, and all v ∈ V [τ ] one
has

max
a∈A−

Z
g∈Ω

|mv,η(ga · z0)|a−ΛV (1 + ‖ log a‖)−d =

max
a∈ΩA
g∈Ω

|mv,η(ga · z0)|a−ΛV (1 + ‖ log a‖)−d .

It is easily seen that, if true this will imply Hypothesis A.

Remark 9.2. It might well be that a slightly stronger conjecture is
true. For that we recall that a Harish-Chandra module V has a unique
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minimal globalization, the analytic model V ω. The space V ω is an in-
creasing union of subspaces Vε for ε→ 0. The parameter ε parametrizes
left G-invariant neigborhoods Ξε ⊂ GC of 1 which decrease with ε→ 0.
Further Vε consists of those vectors v ∈ V ω for which the orbit map
G → V ω, g 7→ g · v extends to a holomorphic map on Ξε. For
fixed ε, C > 0 the strengthened conjecture would be that there ex-
ists a compact subset ΩA such that for all Harish-Chandra modules V
with ‖ΛV ‖ ≤ C and all v ∈ Vε one has

max
a∈A−Z

|mv,η(a · z0)|a−ΛV (1 + ‖ log a‖)−d =

max
a∈ΩA

|mv,η(a · z0)|a−ΛV (1 + ‖ log a‖)−d .

Note that the compact set Ω is no longer needed, as Ω · Vε ⊂ Vε′ .

9.2. Spectral geometry of Zη. In the general context of a reductive
real spherical space it may be possible to establish both main term
counting and the error term bound, with the arguments presented here
for wavefront spaces, provided the following two key questions allow
affirmative answers.

In what follows Z = G/H is a real reductive spherical space and V
denotes an irreducible Harish-Chandra module and η ∈ (V −∞)H .

Question A: Is Hη reductive?

Question B: If for v ∈ V the generalized matrix coefficient mv,η is
bounded, then there exists a 1 ≤ p <∞ such that mv,η ∈ Lp(Zη).
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[16] F. Knop and B. Krötz, A k-rational local structure theorem, in preparation
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