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INVARIANT FUNCTIONALS ON THE SPEH REPRESENTATION

DMITRY GOUREVITCH, SIDDHARTHA SAHI, AND EITAN SAYAG

Abstract. We study Sp2n(R)-invariant functionals on the spaces of smooth vectors in Speh represen-
tations of GL2n(R).

For even n we give an expression for such a functional using an explicit realization of the space of
smooth vectors in the Speh representation. Our construction, combined with the argument in [GOSS12],
gives a purely local and explicit construction of Klyachko models for all unitary representations of
GL2n(R). Furthermore, we show that this functional is, up to a constant, the unique functional on the
Speh representation which is invariant under the Siegel parabolic subgroup of Sp2n(R).

For odd n we show that the Speh representation does not admit an invariant functional with respect
to the subgroup U(n) of Sp2n(R) consisting of unitary matrices.

1. Introduction

In recent years, there has been considerable interest in periods of automorphic forms in relation to
the Langlands program and equidistribution problems ([SV, V10]). The study of periods admits a local
counterpart, invariant linear functionals and with it the notion of distinction of a representation π of
a reductive group G with respect to a subgroup H ⊂ G. We recall that the representation π is called
distinguished with respect to a subgroup H ⊂ G if HomH(π∞,C) 6= 0. In many interesting cases the
pair (G,H) is a Gelfand pair and this allows one to connect the global period integral to local linear
functionals. Motivated by the work of Jacquet-Rallis [JR92] and Heumos-Rallis [HR90], the third author
together with O. Offen classified in [OS07, OS08a, OS08b, OS09] those unitary representations of GL2n(F )
that are distinguished with respect to the subgroup Sp2n(F ), in the case that F is a non-archimedean
local field. The case of Archimedean fields was treated subsequently in [GOSS12, AOS12]. We remark
that the pair Sp2n(F ) ⊂ GL2n(F ) is a Gelfand pair (see [OS08b, AS12, Say]).

The classification of distinguished unitary representations involves the family of unitary representations
of GLn(R) discovered by B. Speh. We remind that these unitary representations, and their generalizations
to GLn(F ), where F is a local field, play a central role in the classification scheme of the unitary dual of the
general linear group over the local field F . Indeed any irreducible representation of GLn(F ) is a Bernstein-
Zelevinski product, in a unique way, of generalized Speh representations and their complementary series
counterparts (see [Tad86, Vog86]).

For a discrete series representation σ of GLr(F ) we denote by U(σ, n) the corresponding generalized
Speh representation of GLnr(F ). For |α| < 1

2 we denote by π(σ, n, α) = U(σ, n)| · |α × U(σ, n)| · |−α

the complementary series, which is a unitary representation of GL2nr(F ). Recall that for archimedean
F we have r ≤ 2, and if F = C then r = 1. If r = 1 then U(σ, n) is a character of GLn(F ), and
π(σ, n, α) is a Stein complementary series representation of GL2n(F ). We denote by Dm the discrete
series representations of GL2(R) and by δm the corresponding Speh representations of GL2n(R).

The answer to the distinction is summarized in the next theorem, which in the archimedean case is a
combination of [GOSS12, Theorem A] and [AOS12, Theorem 1.1].

Theorem. Let π be an irreducible unitary representation of GL2n(F ). Write π = ×k
i=1U(σi, ni) ×

×l
j=1π(σ

′
j ,mj, αj) with

• σ1, ..., σk discrete series representations of GLp1(F ), ...,GLpk
(F ) respectively

• σ′
1, ..., σ

′
l discrete series representations of GLq1(F ), ...,GLql(F ) respectively

• α1, ..., αl real numbers in (− 1
2 ,

1
2 ).
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and 2n =
∑k

i=1 nipi +
∑l

j=1 2mjqj .

Then π is Sp2n(F )-distinguished if and only if all ni and all mj are even.

One of the key steps in the proof that the generalized Speh representations U(σ, n) with even n are
distinguished by the symplectic group. The proof of this result in [OS07] and [GOSS12] is based on a
global argument involving periods of residues of automorphic Eisenstein series.

In [SaSt90] Speh representations δm of GL2n(R) have been constructed explicitly as a natural Hilbert
space of distributions on matrix space. The paper [SaSt90] also describes and uses a construction of the
Speh representation as a quotient of a degenerate principal series representation induced from a character
of the (n, n) standard parabolic subgroup (see §2.2 below).

In the present paper we use the explicit constructions of [SaSt90] and give a direct proof that the
spaces of Sp2n(R)-invariant functionals on the Speh representations of GL2n(R) are zero if n is odd and
one-dimensional if n is even. We also analyze functionals invariant with respect to subgroups of Sp2n(R).

To describe our result we need some further notation. Let G := G2n denote the group GL2n(R).

Let ω2n be the standard symplectic form on R2n. More explicitly ω2n is given by

(
0 Idn

− Idn 0

)
and let

H := H2n = Sp2n(R) < G2n denote the stabilizer of this form. Let

P :=

{(
g X
0 g−t

)
| g ∈ GLn(R), X ∈ Matn×n(R), X = Xt

}
< H

denote the Siegel parabolic subgroup. Let U(n) < H2n < G2n be the unitary group.
In this paper we prove the following result.

Theorem A. (i) If n is even then

HomH(δ∞m ,C) = HomP (δ
∞
m ,C) ≃ C

(ii) If n is odd then
HomH(δ∞m ,C) = HomU(n)(δ

∞
m ,C) = 0.

It is known that the restriction of δm to SL2n(R) decomposes as a direct sum of two irreducible
components. It follows from Theorem A that exactly one of them admits an H-invariant functional. In
Lemma 4.2 we determine which one does.

It is easy to see that if n is odd and m is even then there are no functionals on δ∞m invariant with
respect to − Id ∈ H , and thus neither P -invariant nor Un -invariant functionals exist (see Remark 6.1).

Remark. Although the pair (G2n, P ) is not a Gelfand pair for simple geometric reasons, we show that
the Speh representation δm still admits at most one P -invariant functional (at least for even n). The
reason we suspected this result to hold is that, as shown in [SaSt90], Speh representations stay irreducible
when restricted to a standard maximal parabolic subgroup Q ⊂ G satisfying Q ∩ H = P . It is possible
that (Q,P ) is a generalized Gelfand pair, i.e. the space of P -invariant functionals on the space of smooth
vectors of any irreducible unitary representation of Q is at most one dimensional. However, this statement
does not imply our uniqueness result, since the space of G-smooth vectors of δm could a priori have more
functionals.

1.1. Klyachko models. For any n, any even k ≤ n and any field F , [Kly84] defines a subgroup Klk
of GLn(F ) and a generic character ψk of Klk. In particular, Kln = Spn(F ) (if n is even) and Kl0
is the group of upper unitriangular matrices. For local fields F , it is shown in [HR90, OS07, OS08a,
OS08b, OS09, GOSS12, AOS12] that for any irreducible unitary representation π of GLn(F ) there exists
a non-zero (Klk, ψk)-equivariant functional on π

∞ for exactly one k. The uniqueness of such functional
is known only over non-archimedean fields (see [OS08b]).

The proof of existence of k for F = R, given in [GOSS12], is done by reduction to the statement
that certain representations are H-distinguished. This case is reduced, using the Vogan classification of
the unitary dual, to the proof of existence of H-invariant functionals on Speh representations (for even
n). This existence is proved using a global (adelic) argument. In this paper we give an explicit local
construction of such a functional. Together with [GOSS12] this gives a proof of existence of Klyachko
models which uses only the representation theory of GLn(R) (and the theory of distributions).
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1.2. Structure of the proof. We use the realization of δ∞m as the image of a certain intertwining
differential operator �m : π−m → πm, where π−m and πm are certain degenerate principal series induced
from characters of a fixed (n, n)-parabolic subgroup Q ⊂ G (see §2.2).

The study of the even case is divided into two parts. In §3 we first use the realization of δm as
a quotient of the degenerate principal series π−m to lift a linear P -invariant functional on δm to an
equivariant distribution on G. More precisely, we study P × Q equivariant distributions on G. The
technical heart is Corollary 3.3, which shows that such distributions do not vanish on the open cell NQ.
This is based on the techniques of [AGS08], classical invariant theory and a careful analysis of the double
cosets P \G/Q, which is postponed to §5. Then we analyze the distributions supported on the open cell
by identifying them with the space of distributions on N with a certain equivariance property. Identifying
N with its Lie algebra and using the Fourier transform we show that this space is at most one dimensional
for even n. This finishes the proof of Proposition 3.1 which states that there exists at most one invariant
P -invariant functional in the n even case.

In the second part (§4) we construct an H-invariant functional as an H ×Q-equivariant distribution
on G. For that we fix an explicit H × Q-equivariant polynomial p, consider the meromorphic family
of distributions |p|λ (cf. [Ber72]) and take the principal part of this family at λ = (n − m)/2. This
distribution defines an H-invariant functional on π∞

m . To show that the restriction of this functional to
δ∞m is non-zero (Lemma 4.1) we use Corollary 3.3 along with another lemma from §3 on non-existence
of equivariant distributions with certain support. The uniqueness of P -invariant functionals and the
existence of H-invariant ones imply that the two spaces are equal. Our proof shows that the spaces of
such functionals are equal and one-dimensional also for the (reducible) representations πm and π−m.

For odd n we prove that already a U(n)-invariant functional does not exist (Corollary 6.4). We do
that by analyzing the O(2n)-types of δm described in [HL99, Sah95] and showing that none of those have
a U(n)-invariant vector.

To summarize, Theorem A follows from Proposition 3.1 on uniqueness of P -invariant functionals for
even n, Lemma 4.1 on existence of H-invariant functionals for even n and Corollary 6.4 on non-existence
of U(n)-invariant functionals for odd n.

1.3. Acknowledgements. The authors thank the Hausdorff Institute in Bonn for perfect working con-
ditions during the summer of 2007 where the initial collaboration on this project started. They further
thank Avraham Aizenbud, Joseph Bernstein and Omer Offen for fruitful discussions on the subject matter
of this paper.

D.G. was partially supported by ISF grant 756/12.
E.S. was partially supported by ISF grant 1138/10.

2. Preliminaries

2.1. Notation. Recall the notation G = G2n = GL2n(R), and H = H2n = Sp2n(R) ⊂ G. Let

Q :=

{(
a c
0 d

)
∈ G

}
Q :=

{(
a 0
b d

)
∈ G

}
N :=

{(
Idn c
0 Idn

)
∈ G

}
.

Recall that P denotes Q ∩H and let

M :=

{(
g 0
0 g−t

)}
and U :=

{(
Idn B
0 Idn

)
|B = Bt

}

denote the Levi subgroup and the unipotent radical of P .
For g ∈ Mati×i(R) we denote |g| := | det(g)| and sgn(g) := sign(det(g)).

For q =

(
A 0
B D

)
∈ Q we denote γ(q) := |A||D|−1 and ε(q) := sgn(D).

For any integer m let Lm denote the character of Q given by Lm := εm+1γ−(n+m)/2. Let πm denote
the (unnormalized) induced representation IndG

Q
(Lm). Considering N as an open subset of G/Q, one can

restrict smooth vectors of πm to N . This restriction is an embedding since N is an open subset of G/Q.
We sometimes identify N and its Lie algebra n with Matn×n(R) in the obvious way. This enables us to
define the Fourier transform on n. Denote by M+

n (respectively M−
n ) the subset of Matn×n consisting
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of matrices with nonnegative (resp. nonpositive) determinant. For f ∈ π∞
m we denote its restriction to n

by f |n. We denote the space of all smooth functions obtained in this way by π∞
m |n.

2.2. Sahi-Stein realization of the Speh representations. For any m ∈ Z≥0 define

Ĥm := {f ∈ S∗(n) | f̂ ∈ L2(n, |x|−mdx)} and Ĥ±
m := {f ∈ Ĥm | Suppf̂ ⊂M±

n },

where S∗(n) denotes the space of tempered distributions n. The Ĥm and Ĥ±
m are Hilbert spaces with the

scalar product

〈f, g〉 = 〈f̂ , ĝ〉L2(n,|x|−mdx).

Define an action of Q on Ĥm by

δm(q)f(x) := Lm(q)f(a−1(c+ xd)), for q =

(
a c
0 d

)
,

or equivalently on the Fourier transform side by

δ̂m(q)f(ξ) = exp(2πiTr(cd−1ξ))L−1
−m(q)f̂(d−1ξa).

Summarizing the main results of [SaSt90] we obtain

Theorem 2.1 ([SaSt90]). Let m ∈ Z≥0. Then

(i) The action of Q extends to a unitary representation δm of G on Ĥm.

(ii) (G, δm, Ĥm) is isomorphic to the Speh representation of G.
(iii) There exists an epimorphism π−m → δm and an embedding δm ⊂ πm. The latter is defined on the

smooth vectors by the inclusion δ∞m ⊂ π∞
m |n.

(iv) The restriction of δm to SL(2n,R) is a direct sum of two irreducible representations δ±m , realized

on the subspaces Ĥ±
m.

Consider the determinant as a polynomial on n and let� denote the corresponding differential operator.

Theorem 2.2. The operator �
m defines a continuous G-equivariant map π∞

−m → π∞
m with image δ∞m .

Proof. By [KV77, Proposition 2.3] (see also [Boe85]), the operator �m defines a continuous G-equivariant
map π∞

−m → π∞
m , which is non-zero by [SaSt90]. By [HL99, Theorems 3.4.2-3.4.4] π−m has unique

composition series in the strong sense, meaning that any quotient of π−m has a unique irreducible
subrepresentation, and all these irreducible subquotients are pairwise non-isomorphic. It is easy to see
that πm is dual to π−m and thus their composition series are opposite. Hence the image of any nonzero
intertwining operator from π−m to πm is the unique irreducible subrepresentation of πm. Since δ∞m is an
irreducible subrepresentation of πm, it is the image of �m. �

Remark 2.3. One can deduce Theorem 2.2 also from [KS93], which computes the action of �
m on

every K-type, where K = O(2n,R). From the formula in [KS93] and the description of the K-types of
the composition series of π−m in [HL99, Sah95] one can see that �

m does not vanish precisely on the
K-types of δm.

2.3. Invariant distributions.

Definition 2.4. For an affine algebraic manifold M we denote by S(M) the space of Schwartz functions
on M , that is smooth functions f such that df is bounded for any differential operator d on M with
polynomial coefficients. We endow this space with a Fréchet topology using the sequence of seminorms
Nd(f) := supx∈M |df(x)|, where d is a differential operator on M with polynomial coefficients. Also, for
an algebraic vector bundle E over M we denote by S(M,E) the space of Schwartz sections of E. We
denote by S∗(M,E) the space of continuous linear functionals on S(M,E) and call its elements tempered
distributional sections. For a closed subvariety Z ⊂M we denote by S∗

M (Z,E) ⊂ S∗(M,E) the subspace
of tempered distributional sections supported in Z. For the theory of Schwartz functions and distributions
on general semi-algebraic manifolds we refer the reader to [AG08].
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Theorem 2.5 ([AGS08, §B.2]). Let a Nash group K act on a real algebraic manifold M . Let Z ⊂M be

a Nash closed subset. Let Z =
⋃l

i=1 Zi be a Nash K-invariant stratification of Z. Let χ be a character
of K. Suppose that for any k ∈ Z≥0 and 1 ≤ i ≤ l,

S∗(Zi, Sym
k(CNM

Zi
))K,χ = 0.

Then S∗
M (Z)K,χ = 0.

Theorem 2.6 (Frobenius descent, see [AG09, Appendix B]). Let a Nash group K act on a Nash manifold
X. Let Z be a Nash manifold with a transitive action of K. Let φ : M → Z be a K-equivariant map.
Let z ∈ Z be a point and Mz := φ−1(z) be its fiber. Let Kz be the stabilizer of z in K. Let ∆K and ∆Kz

be the modular characters of K and Kz. Let E be a K-equivariant Nash vector bundle over M .
Then there exists a canonical isomorphism

Fr : (S∗(Mz, E|Mz )⊗∆K |Kz ·∆
−1
Kz

)Kz ∼= S∗(M,E)K .

From those two theorems we obtain

Corollary 2.7. Let a Nash group K act on a real algebraic manifold M . Let Z ⊂ M be a Nash closed

subset. Suppose that Z has a finite number of orbits: Z =
⋃l

i=1Kzi. Let χ be a character of K. Suppose
that for any and 1 ≤ i ≤ l,

Sym∗(NM
Kzi,zi))

Kz ,χ·∆K |Kz ·∆
−1
Kz = 0,

where Sym∗ denotes the symmetric algebra. Then S∗
M (Z)K,χ = 0.

Lemma 2.8. Let G be a real algebraic group, and R be a (closed) algebraic subgroup. Consider the right
action of R on G and suppose that G/R is compact. Let ξ be a character of R. Then we have a natural
isomorphism of left G - representations

(C∞(G, ξ)R)∗ ∼= S∗(G, ξ∆−1
R )R ∼= S∗(G)(R,ξ−1∆R)

Proof. Let Ind(ξ) be the bundle on G/R corresponding to ξ. Consider the surjective submersion π : G→
G/R. It defines an isomorphism C∞(G, ξ)R ∼= C∞(G/R, Ind(ξ)).

Since G/R is compact, we have C∞(G/R, Ind(ξ))∗ ∼= S∗(G/R, Ind(ξ)). Consider the diagonal action
of G on G × G/R and the projections p1, p2 of G × G/R on both coordinates. From Theorem 2.6 we
obtain

S∗(G/R, Ind(ξ)) ∼= S∗(G×G/R, p∗1(ξ))
G ∼= S∗(G, ξ∆−1

R )R

The isomorphism S∗(G, ξ∆−1
R )R ∼= S∗(G)(R,ξ−1∆R) is straightforward. �

3. Uniqueness of P -invariant functionals

In this section we assume that n is even. The goal of this section is to prove the following proposition.

Proposition 3.1. For any integer m we have

dim((π∞
m )∗)P ≤ 1.

Since ∆Q = γ−n, we obtain from the definition of πm and Lemma 2.8

(1) (π∞
m )∗ ∼= S∗(G)Q,εm+1γ(n−m)/2

and thus in order to prove Proposition 3.1 we have to show that for even n

dimS∗(G)P×Q,1×εm+1γ(n−m)/2

≤ 1.

We will need the following proposition, which we will prove in section 5.

Proposition 3.2. Denote K := P ×Q, and let x /∈ NQ. Then

Sym∗(NG
PxQ,x

))Kx,ε
m+1γ(n−m)/2·∆K |Kx∆

−1
Kx = 0.

From this proposition and Corollary 2.7 we obtain



6 DMITRY GOUREVITCH, SIDDHARTHA SAHI, AND EITAN SAYAG

Corollary 3.3.

S∗
G(G−NQ)P×Q,1×εm+1γ(n−m)/2

= 0.

By this corollary it is enough to analyze S∗(NQ)P×Q,1×εm+1γ(n−m)/2

. Let S denote the space of
symmetric n×nmatrices, and A denote the space of anti-symmetric n×nmatrices. IdentifyM ∼= GLn(R)
and let it act on S and on A by x 7→ gxgt.

Lemma 3.4.

S∗(NQ)P×Q,1×εm+1γ(n−m)/2 ∼= S∗(A)GLn(R),det
1−m ∼= S∗(A)GLn(R),sgn

m+1 |·|m−n

Proof. Identify U ∼= S and let it act on itself by translations. Then NQ is isomorphic as a P ×Q-space to
A×S×Q, where Q acts on the third coordinate (by right translations), U acts on the second coordinate
and M acts on the first and the second coordinates. Note that the action on S×Q is transitive and that

∆Q = γ−n and ∆P

(
g 0
0 gt

)
= |g|n+1. The first isomorphism follows now from Frobenius descent.

The second isomorphism is given by Fourier transform on A defined using the trace form. �

Let O ⊂ A denote the open dense subset of non-degenerate matrices and Z denote its complement.
The following lemma is a straightforward computation.

Lemma 3.5.

(i) Every orbit in Z includes an element of the form x =

(
0k×k 0
0 ωn−k

)
.

(ii) NA
GLn(R)x,x

∼=

{(
0k×k b
0 0

)}
and GLn(R)x =

{(
ak×k 0
c d

)
such that d is symplectic

}

(iii) ∆GLn(R)x = | · |−(n−k)

Corollary 3.6.

Sym∗(NA
GLn(R)x,x

)
GLn(R)x,sgn

m+1 |·|m−n·∆−1
GLn(R)x = 0

Proof. From the previous lemma sgnm+1 | · |m−n · ∆−1
GLn(R)x

= sgnk+1 detm−k. If n is even then so is k

and thus this is not an algebraic character of GLn(R)x and thus there are no tensors that change under
this character. �

Corollary 3.7.

dimS∗(A)GLn(R),sgn
m+1 |·|m−n

≤ 1

Proof. By Corollary 3.6 and Corollary 2.7,

(2) S∗
A(Z)

GLn(R),sgn
m+1 |·|m−n

= 0.

Therefore, the restriction of equivariant distributions to O is an embedding. Now,

dimS∗(O)GLn(R),sgn
m+1 |·|m−n

≤ 1

since O is a single orbit. �

Proposition 3.1 follows now from Corollary 3.7, Lemma 3.4, Corollary 3.3 and (1).

Remark 3.8. For odd n Corollary 3.3 does not hold. For example, the smallest orbit does support an
equivariant distribution.
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4. Construction of the H-invariant functional

Let n be even. In this section we construct an H-invariant functional φ on π∞
m for any m ∈ Z≥0 and

show that its restriction to δ∞m is non-zero. Define a polynomial p on Mat(2n× 2n,R) by

(3) p

(
A B
C D

)
:= det(DtB −BtD)

Note that p is non-negative, H-invariant on the left and changes under the right multiplication by Q
by the character | · |γ−1. Consider the meromorphic family of distributions on Mat(2n× 2n,R) given by

(4) ξmλ := pλ| · |−λεm+1.

This family is defined by [Ber72]. For Reλ > 0, the restriction of this distribution to G = GL(2n,R) is
a non-zero smooth function, and thus the restriction ηmλ of the family is not an identical zero. Note that

ηmλ ∈ S∗(G)(H×Q,1×εm+1γλ).

Let α ∈ S∗(G) be the principal part of this family at λ = n−m
2 . By (1) α defines a non-zero H-invariant

functional φ on π∞
m .

Lemma 4.1. φ|δ∞m 6= 0.

Proof. By Theorem 2.2 it is enough to show that �
mφ 6= 0. By Corollary 3.3, α|NQ 6= 0. It is enough

to show that (�mα)|NQ 6= 0. As in §3, let A ⊂ N denote the subspace of anti-symmetric matrices

and O ⊂ A the open subset of non-degenerate matrices. Note that α|NQ 6= 0 is P × Q-equivariant and

let β ∈ S∗(A)GLn(R),det
1−m

be the distribution on A corresponding to α by the Frobenius descent (see
Lemma 3.4). Note that F(�mβ) is F(β) multiplied by a polynomial. Thus it is enough to show that
F(β) has full support, i.e. F(β)|O 6= 0. This follows from the equivariance properties of F(β) by (2). �

This argument in fact proves slightly more.

Lemma 4.2. φ|(δ+m)∞ 6= 0.

Proof. If g is a Schwartz function on M+
n ⊂ N then its Fourier transform ĝ determines a vector in (δ+m)∞

by Theorem 2.1. Thus it is enough to find such a g for which ζ(ĝ) 6= 0, where ζ denotes the P -invariant
distribution on N corresponding to α.

Let f be a compactly supported smooth function on O such that β(F(f)) 6= 0. Since the determinant
is positive on O, there exists a compact neighborhood Z of zero in the space S of symmetric n by n
matrices such that Supp(f) + Z ⊂ M+

n . Let h be a smooth function on S which is supported on Z and
s.t. h(0) = 1. Let g := f ⊠ h be the function on N defined by g(X + Y ) := f(X)h(Y ) where X ∈ A and
Y ∈ S. Let FS denote the Fourier transform on S. Then we have

ζ(ĝ) = ζ(F(f)⊠ FS(h)) = β(F(f)) 6= 0.

�

Remark 4.3. (i) For odd n, the polynomial p is identically zero, since the matrix DtB − BtD is an
anti-symmetric matrix of size n.

(ii) The polynomial p defines the open orbit of H on G/Q. In general, one can show that if a linear
complex algebraic group G acts on a complex affine algebraic manifold M , both defined over R,
W is a basic open subset of M defined by a G-equivariant polynomial p with real coefficients, χ
is a character of the group of real points G(R) and there exists a non-zero (G(R), χ)-equivariant
holonomic tempered distribution ξ on W (R) then there exists a non-zero (G(R), χ)-equivariant holo-
nomic tempered distribution on M(R).

To prove that consider the analytic family of distributions |p|λξ onW . For Reλ big enough, it can
be extended to a family ηλ on M(R). By [Ber72] the family ηλ has a meromorphic continuation to
the entire complex plane. Note that the distributions in this family are equivariant with a character
that depends analytically on λ. Thus taking the principal part at λ = 0 we obtain a non-zero
(G(R), χ)-equivariant holonomic tempered distribution on M(R).
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Note that since this construction involves taking principal part, the obtained distribution is not
necessary an extension of the original ξ. This can already be seen in the case when M is the affine
line, W is the complement to 0 and G is the multiplicative group.

If G has finitely many orbits onM then any G(R)-equivariant distribution onM(R) is holonomic.

5. Proof of Proposition 3.2

We start from the description of the double cosets P \ G/Q. Let r1, r2, s, t be non-negative integers
such that r1 + r2 +2s+2t = n. We will view 2n× 2n matrices as 10× 10 block matrices in the following
way. First of all, we view them as 2× 2 block matrices with each block of size n×n. Now, we divide each
block to 5× 5 blocks of sizes r1, r2, s, s, 2t in correspondence. Denote by σ16 the permutation matrix that
permutes blocks 1 and 6, by σ39 the permutation matrix that permutes blocks 3 and 9, and by τ5,10 the

matrix which has

(
Id2t ω2t

0 Id2t

)
in blocks 5 and 10 and is equal to the identity matrix in other blocks.

Recall the notation ω2t :=

(
0 Idt

− Idt 0

)
. Denote

xr1,r2,s,t := σ16σ39τ5,10.

Lemma 5.1. Each double coset in P \GL2n(R)/Q includes a unique element of the form xr1,r2,s,t. The

orbits in NQ correspond to r2 = s = 0.

Proof. Recall that G/Q is the Grassmannian of n-dimensional subspaces of R2n. Let L :=
Span{en+1, . . . e2n} ⊂ R2n be the standard Lagrangian subspace. To an n-dimensional subspaceW ⊂ R2n

we associate the following invariants:

r2 := dimL ∩W ∩W⊥, r1 := dimW⊥ ∩W − r2, s := dimL ∩W − r2, t := (n− r1 − r2)/2− s

Note that n− r1 − r2 is even since it is the rank of ω|W . Clearly, W ∈ NQ if and only if r2 = s = 0.
Note the equality of vectors

(v1, 0, v2, 0, ω2tu | 0, w2, w1, 0, u)
t = xr1,r2,s,t(0, 0, 0, 0, 0 | v1, w2, w1, v2, u)

t.

It is enough to show that W can be brought, using the action of P , to a space of vectors of the form
(v1, 0, v2, 0, ω2tu | 0, w2, w1, 0, u)

t.
Clearly,W can be brought to a space of vectors of the form (v,Aw+Bv |Cw,w,Dw)t , where size(v)+

size(w) = n and A is a square matrix. Let us write this in more detailed form, with the same block sizes
in the first n coordinates and last n coordinates:

(v1, v2, A11w1+A12w2+B11v1+B12v2, A21w1+A22w2+B21v1+B22v2 |C1w1+C2w2, w1, w2, D1w1+D2w2)
t

Denote the first four blocks by ei and the last by fi. For any i and any j 6= i, M allows us to do the
following operations:

(1)i ei 7→ gei, fi 7→ g−tfi,

(2)ij ei 7→ ei + aej, fi 7→ fj −Atfi.

Similarly, U allows us to do two more operations:

(3)ij ei 7→ ei + bfj, ej 7→ ej + btfi

(4)i ei 7→ ei + (c+ ct)fi

Using (2)31 and (2)41, and redefining C and D we get B = 0. Using (2)21 and (2)21, and redefining A we
get C = 0 and D = 0.

Using (3)32 and (3)42 and (3)43 we get A11 = A21 = A22 = 0. Using (3)33 we make A12 anti-symmetric.

Now, using (1)3 we can replace A12 by gA12g
t and thus we can bring it to the form A12 =

(
0 0
0 ω2t

)
. �
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Lemma 5.2. Let K := P ×Q and x := xr1,r2,s,t. Then
(i) If s > 0 then

Sym∗(NG
PxQ,x

))Kx,ε
m+1γ(n−m)/2·∆K |Kx∆

−1
Kx = 0.

(ii) If s = 0 then

Sym∗(NG
PxQ,x

))Kx,ε
m+1γ(n−m)/2·∆K|Kx∆

−1
Kx ∼= Sym∗(glr1)

GLr1 ,|·|
−m−r1 sgnm+1

⊗ Sym∗(or2)
GLr2 ,det

2t−m+1

where or2 denotes the space of antisymmetric matrices and GLi act by a 7→ gagt.

For the proof of this lemma see §5.1.

Lemma 5.3. Let k, l ∈ Z≥0, r ∈ Z>0.
(i) If k 6= l (mod 2) then

Sym∗(glr)
GLr,|·|

k sgnl

= 0.

(ii) If k > 0 and r is odd then

Sym∗(or)
GLr,det

k

= 0.

Proof.
(i)The only algebraic characters of GLr are powers of the determinant.
(ii) The stabilizer in GLr of every matrix in or has an element with determinant bigger than 1. �

Proof of Proposition 3.2. By Lemmas 5.1 and 5.2 it is enough to show that

(5) Sym∗(glr1)
GLr1 ,|det|

−m−r1 sign(det)m+1

⊗ Sym∗(or2)
GLr2 ,det

2t−m+1

= 0

Note that since n is even, r1 and r2 are of the same parity. If they are even then (5) follows from Lemma
5.3(i), and otherwise from Lemma 5.3(ii). �

5.1. Proof of Lemma 5.2. Let x = xr1,r2,s,t be as in the lemma. We need to compute the space NG
x,PxQ

,

the stabilizer Kx and its modular function. In order to do that we compute the conjugates of P and its
Lie algebra p under x.

Lemma 5.4. Let q =

(
a b
0 d

)
∈ Q. Then x−1qx =

(
A B
C D

)
, where

A =




d11 0 d14 0 0
b21 a22 b24 a24 a25
d41 0 d44 0 0
b41 a42 b44 a44 a45

b51 − ωd51 a52 b54 − ωd54 a54 a55




B =




0 d12 d13 0 d15
a21 b22 b23 a23 b25 + a25ω
0 d42 d43 0 d45
a41 b42 b43 a43 b45 + a45ω
a51 b52 − ωd52 b53 − ωd53 a53 b55 + a55ω − ωd55




C =




b11 a12 b14 a14 a15
d21 0 d24 0 0
d31 0 d34 0 0
b31 a32 b34 a34 a35
d51 0 d54 0 0




D =




a11 b12 b13 a13 b15 + a15ω
0 d22 d23 0 d25
0 d32 d33 0 d35
a31 b32 b33 a33 b35 + a35ω
0 d52 d53 0 d55




This lemma is a straightforward computation, which can be done using a computer.
We can identify TxG ∼= gl2n. Under this identification TxPxQ

∼= x−1px+ q and

NG
x,PxQ

∼= gl2n/(x
−1px+ q) ∼= n/(n ∩ (x−1px+ q)).

From the previous lemma we obtain
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Corollary 5.5. Let V ⊂ n denote the subspace consisting of matrices of the form




n11 n12 0 n14 n15

nt
12 n22 0 0 0
n31 0 0 n34 0
0 0 0 0 0
nt
15 0 0 0 0



,

such that n22 = −nt
22.

Then V projects isomorphically onto n/(n ∩ (x−1px+ q)).

Now let us analyze the stabilizer Kx. From Lemma 5.4 we obtain

Corollary 5.6.

(i) Using the projection on the first coordinate

Kx
∼= P ∩ xQx−1 ∼= {

(
A B
0 A−t

)
∈ P s.t.A =




A11 A12 A13 A14 A15

0 A22 0 0 0
0 A32 A33 0 0
0 A42 0 A44 0
0 A52 0 0 A55



,

where A55 is symplectic and B is a symmetric matrix of the form B =




B11 B12 B13 B14 B15

Bt
12 0 0 0 0

Bt
13 0 B33 0 B35

Bt
14 0 0 B44 B45

Bt
15 0 Bt

35 Bt
45 0



}.

(ii) The modular function of Kx is given by

∆Kx(

(
A B
0 A−t

)
) = |A11|

2n−r1+1|A22|
−n+r1+r2 |A33|

n−r1−s+1|A44|
n−r1−s+1.

(iii) Let q =

(
A 0
C D

)
∈ Q ∩ x−1Px. Let k = (xqx−1, q) ∈ Kx. Then k acts on V by

k · n = prV (AnD
−1),

where prV : n → V denotes the projection.

Corollary 5.7. Denote

χ := εm+1γ(n−m)/2 ·∆K |Kx∆
−1
Kx
.

Let
q = diag(a, b, c, c−t, Id, a−t, b−t, d, d−t, Id).

Let k := (xqx−1, q) ∈ Kx. Then

χ(k) = (sgn(a) sgn(b) sgn(c) sgn(d))m+1|a|−m−r1 |b|2s+2t−m+1|c|−r1−s|d|−r1−s.

Proof.
γ(q) = |a|2|b|2 and ∆Q(q) = |a|−2n|b|−2n

xqx−1 = diag(a−t, b, d−t, c−t, Id, a, b−t, d, c, Id)

∆K(k) = |a|−3n−1|b|−n+1|c|−n−1|d|−n−1

∆Kx(k) = |a|−2n+r1−1|b|−n+r1+r2 |c|−n+r1+s−1|d|−n+r1+s−1

�

Now we are ready to prove Lemma 5.2.
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Proof of Lemma 5.2. If s > 0 then Sym∗(V )Kx,χ = 0, since tensors cannot have negative homogeneity
degrees. Otherwise, V involves only 3 blocks - the ones numbered 1, 2 and 5.

Let p ∈ Sym∗(V )Kx,χ. Identify Kx with a subgroup of Q using the second coordinate.
Consider the action of the block A21. It can map any non-zero vector in the block n11 to any vector

in the block n12. This action does not change any element in any other block of V (it does effect n22,
but not its anti-symmetric part). Also, the character χ does not depend on A21. Therefore p does not
depend on the variables in the block n12.

In the same way, using the action of A52, we can show that p does not depend on the variables in the
block n15. Therefore, p depends only on n11 and n22. Hence

Sym∗(V )Kx,χ ∼= Sym∗(glr1)
GLr1 ,|·|

−m−r1 sgnm+1

⊗ Sym∗(or2)
GLr2 ,|·|

2t−m+1 sgnm+1

.

�

6. Non-existence of an H-invariant functional for odd n

In this section we prove that if n is odd then there are no U(n)-invariant functionals on the Speh
representation and therefore there are no H-invariant functionals. We do that using K-type analysis.
The maximal compact subgroup of GL2n(R) is K := O(2n,R), and U(n) = K ∩ H is a symmetric
subgroup of K. We show that no K-type of δm has a U(n)-invariant vector.

The root system of K is of type Dn, and we make the usual choice of positive roots

{εi ± εj : i < j}

where εi is the i-th unit vector in Rn. With this choice, the highest weights of K-modules are given by
integer sequences µ = (µ1, . . . , µn) ∈ Zn such that

(6) µ1 ≥ · · · ≥ µn−1 ≥ µn ≥ 0.

Remark 6.1. From the definition of πm we see that if n is odd and m is even then the central element
− Id ∈ G acts by scalar −1, and there are neither P -invariant nor U(n) -invariant functionals on δ∞m .

Since δ∞m is the irreducible quotient of π−m, the following theorem follows from [HL99, Theorems 3.4.2
- 3.4.4] (see also [Sah95]).

Theorem 6.2. The K-types of π±m are given by sequences as in (6) with µi ≡ m+1 (mod 2), while the
K-types of the Speh representation δm satisfy the additional condition µn ≥ m+ 1.

Lemma 6.3. If n is odd then no K-type (µ1, . . . , µn) with µn 6= 0 has U(n)-invariant vectors.

Proof. Let ρ be an irreducible representation of K with µn 6= 0. Suppose that ρ has a non-zero U(n)-
invariant vector. Then ρ = ρ1⊕ ρ2, where ρi are irreducible non-zero representations of K0 = SO(2n,R).
The pair (K,U(n)) is a symmetric pair of compact groups and therefore a Gelfand pair. Hence the
U(n)-invariant vector is unique up to a scalar and belongs to one of the ρi. Denote it by v and say v ∈ ρ1.

Consider g :=

(
Id 0
0 − Id

)
∈ K. Since n is odd, g /∈ K0. Hence ρ(g)v /∈ ρ1, since otherwise ρ would

be reducible. However, g normalizes U(n) and hence ρ(g)v is U(n)-invariant and therefore proportional
to v. Contradiction. �

Corollary 6.4. If n is odd then there are no U(n)-invariant functionals on δ∞m .

Proof. By Remark 6.1 we can assume that m is odd. Then by Lemma 6.3 and Theorem 6.2, no K-type
of δm has a U(n)-invariant vector. Therefore, the space of K-finite vectors, which decomposes to a direct
sum of K-types, does not have a U(n)-invariant functional. This space is dense in δ∞m , hence there are
no U(n)-invariant functionals on δ∞m either. �

Remark 6.5. Using the Cartan-Helgason theorem and the table in [Kna85, Appendix C, §2], it can be
shown that the K-types that have Un-invariant vectors are of the form µ2i−1 = µ2i for 1 ≤ i ≤ n/2 and
if n is odd then µn = 0, which gives an alternative proof of Lemma 6.3.
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