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Abstract. For plane curve singularities, a topological définition of

séries of isolated singularities, based on the Milnor fibration, is given. Several

topological invariants, including the spectrum, are computed.

1 . Introduction

Let /: (C 2
, 0) -? (C, 0) be a plane curve singularity, in other words, let /

be an élément of the ring of convergent power séries C{x, y} . Assume /
ds,

0.

Because C{x, y} is factorial, we can write / = /f
C{x

/f
C{x

1 ?*? f? r with ail /,
irreducibleand whenever i ±j, there is no unit u with fi = ufj. The

branches of / are the curves fi(x, y) = 0.

It is well-known that for s > 0 small, the intersection L = f~l (0) n SS
3

e of
the curve X: f = 0 and a small 3-sphere of radius s is a link, consisting of

r components corresponding to the branches of /, and that this link détermines

the topological type of /
ndi

/
ndi

(or of X). Moreover, the map f/\f\: SS
3

e \L -> S 1 is

a fibration, called the Milnor fibration.
It is natural to consider L as a multilink, i.e. a link with intégral

multiplicités assigned to each component. We use the notation

L= m x Sx +???+ mr Sr , where S, = fj~\O) n sg. Thèse multiplicities
reflect in the behaviour of the Milnor fibre F (i.e. a typical fibre of the Milnor
fibration, which is a Seifert surface bounded by L) near 5,-: F approaches s,

frommi directions (see [EN]).
The Milnor fibration is important in our discussion of topological séries

of isolated singularities. A striking feature of Arnol'd's séries A, D, E, J, etc.
(see [AGV]), is that they are somehow related to a non-isolated singularity.
For example: Dk : xy 2 + xx k ~l~ l is related to D? : xy 2 and Yr>sYr>sY \ x2x

2y 2 + x r+4

+ y s+A to Yoo,oo: x2x
2y 2

. This relationship is still not completely understood.
In this paper we give (for plane curve singularities) a topological définition

of séries (définition 3.1), as follows. A singularity belongs to the topological



séries of a certain non-isolated singularity /, if its Milnor fibration arises from
that of / by removing tubular neighbourhoods of the multiple components
and putting something back in such a way that the resuit is the Milnor fibration
of an isolated singularity.

With this définition in hand, we first investigate which isolated singularities
belong to the séries associated to a given non-isolated singularity. For example,
it follows from theorem 3.4 that Dk (k^4), is the only possibility when we

start with D? (cf. [AGV], p. 243).
What interests us most is how the topology behaves within the séries and

with regard to the non-isolated singularity. We compute the Milnor number,
the characteristic polynomial of the monodromy, and the spectrum of the
séries. For example, we will find in proposition 5.2, that the Milnor number
of a séries belonging to a singularity with transversal type Ai increases

linearly with steps of one, just as in the familiar case of the Arnol'd séries.

Many of thèse topological invariants hâve already been considered in the case

of séries of the form /
ical

/
ical

+ s/*, with / a gênerai linear function. This was

initiated by lomdin (see [Le]). But observe that in gênerai such a séries is a

very small subseries of our topological séries belonging to /.
In the last section we consider the question what we hâve to add to / to

get a required élément of the séries. For instance, to Wf>?f>?f : (y 2 ? x3x
3 ) 2

, one

may add x4+qy and x3x
3 + q y 2 for q Ito obtain the whole séries W*

p . In the

case that / has only transversal A\ singularities, we obtain explicit conditions

(theorem 6.5), mainly involving intersection properties.
We use the link L of /

vol

/
vol

to describe the topological type. There is a nice

notation for algebraic links (i.e. links arising as the link of a plane curve

singularity) by means of graphs that we will call EN-diagrams after D. Eisen
budand W.D. Neumann, who developed thèse graphs in [EN].

The EN-diagrams and the underlying concept of splicing, which is due to
Siebenmann and studied extensively in [EN] , are used to state our results and

proofs. For example, the définition of topological séries is very clear in thèse

terms: the corresponding non-isolated singularity is visible as a subdiagram of
the diagram of the séries. We will only recall the main points of splicing and

EN-diagrams in the next section. For détails we refer to [EN] and [Ne], where

one can also find how to compute several familiar topological invariants from
the EN-diagram. A method of Computing the spectrum and a splice formula
for spectra are of independent interest and they are given in section 4. We will
show that the spectrum of a singularity is "almost additive" under splicing.

Our définition of topological séries présents a natural idea behind couterex
amples(foundby J. Steenbrink and J. Stevens) to the spectrum conjecture (the



spectrum détermines the topology of a plane curve singularity) and the ?
équivalent ? conjecture involving the real Seifert form (cf. [SSS]). Also,

A. Neméthi used the idea of topological séries to define his topological trivial

séries [Nm].
In the Appendix, we hâve included the EN-diagrams and some invariants

of the Arnol'd séries.

Acknowledgments. I wish to thank Dirk Siersma and Jan Stevens for

their remarks and help.

2. SPLICING AND SERIES

2.1. It is clear that singularities occur in séries. The simplest séries hâve been

given names, such as A, D, J, etc., by Arnol'd. But how to define a séries

is unclear. One looked at déformation properties such as adjacencies, etc.,

because the goal is to define what a séries means analytically. A proper

analytical description can be given for séries of the form /+ lk
, where /is

a sufficiently gênerai linear form, see the work of lomdin and Le, [Le]. But

already in the case of Arnol'd's séries, one finds that they are not of the

'lomdin-type'. Some séries are multi-indexed, such as

and others, such as W*

make smaller steps than a linear séries.

However, the most apparent properties that hold a séries together, are the

topological invariants. For example, the Milnor number within Arnol'd's
séries, increases with steps of 1. Therefore it is worthwhile to go not as far
as an analytical définition, but to look for a topological one.

Another property is that, as already mentioned in the Introduction, séries

of isolated singularities are clearly related to non-isolated singularities, and
that the hierarchy of thèse non-isolated singularities reflects the hierarchy of
the isolated singularities. This relationship is also not completely understood.
Our topological définition, which works for plane curve singularities, makes
clear which isolated singularities belong to the séries of a given non-isolated
singularity.



2.2. The motivation for our définition cornes from the topology of the link
exterior. We first need to recall some facts of splicing and EN-diagrams.

Let / e C{x, y} be a plane curve singularity, and L the link of /
EN-

/
EN-

embedded

in S 3
. L completely describes the topological type of /. There is a notation

for L by means of a weighted graph, that we call an EN-diagram, introduced

by Eisenbud and Neumann [EN]. The EN-diagram of /
N-d

/
N-d

is closely related to
the resolution graph of / (the dual graph of the good minimal resolution).
In fact, as a graph, the EN-diagram is equal to the resolution graph with ail
linear chains contracted. We will call the vertices of valence 1 dots, and the

vertices of valence at least 3 nodes. The arrows correspond to the components
of L (or the irreducible components of /), and they hâve a multiplicity, equal

to the multilink multiplicity. The nodes, dots and edges hâve topological
meanings as well, we refer to [EN] for détails. There are conversion rules from
EN-diagram to resolution graph and back, see [EN], chapter V.

It is known that M= S 3 \N(L) (where N(L) is a open tubular
neighbourhood of L) is a Waldhausen manifold, see [EN] or [LMW]. This

means that there is a décomposition of M in Seifert manifolds (the basic

building blocks). The décomposition can be found in several ways, e.g. by

means of the resolution of /
écom

/
écom

or the polar décomposition of /. This is explained
in détail in [LMW].

2.3. Glueing two pièces of this décomposition together uses the opération of
splicing, due to L. Siebenmann and studied extensively in [EN]. Consider two

(multi)links L x = m\S\ + L\,L2 = m2m 2 S2 + L'2L'2L' , embedded in (separate copies

of) S 3
. Let Ni ,

N2N
2

N
2

N be small tubular neighbourhoods of S{ , S2 . Then the splice

I
o

I
o

of Ij and L2L
2 is the link

embedded in the homology sphère

the boundaries dN{ and 6W2W2W of the tubular neighbourhoods glued meridian to

longitude and vice versa. The EN-diagram F of L arises from the EN-diagrams

of L x and L2L
2 by replacing the two arrows representing Si and S2S

2 by an edge

(which represents the splice torus ô/V^ = dN2 ):



If we impose two conditions, described below, then L is again an algebraic

link in S\

Splice Condition

i.e. m x has to be equal to the linking number of S2S
2 with the other components

of L2 , counted with their multiplicities (and similarly for m2 ).

Linking numbers can be computed easily from the EN-diagram, see [EN],
section 10.

If the splice condition holds, then L is again a fibred link. In fact it forces

that the Milnor fibres eut the splice torus in an (mi9ra9ra9 2 )-torus link.
The second condition is a condition on the weights

i
weights

i of the EN-diagram. It
follows from [EN], Theorem 9.4, that we need the following condition in order
that L is again algebraic:

Algebraicity condition

(a) The resulting link can be obtained by repeated cabling, and

(b) If the EN-diagrams of both links near the splice arrows are as follows:

then the inequality ao(a o (3o >a}??? a.pj ??? (3, must hold.

2.4. We now return to the ideas behind our définition of séries. A typical
séries is the séries consisting of W*

MM
*

MM
* _ X and Wfaqfaqf , introduced earlier. Their

EN-diagrams are:

It is clear that this is the resuit of splicing something to



which is precisely the EN-diagram of Wf>oof>oof : (y 2 -x3 ) 2
. In terms of the resolu

tion:take a resolution of f(x, y) = 02-O
2 -x 3 ) 2

, and deform the double compo
nentslightly into an Ap , we then get a? partial ? resolution of one of the

W*
tP . In terms of the splice décomposition: Consider the splice décomposi

tionof a représentative f
splic

f
splic

pfpf of WftPftPf . It consists of two pièces, one of which
is the complément of the link of /, wheras the other dépends on the parameter

p. This is équivalent to the statement that the Milnor fibration of f
par

f
pa

pfpf results

from the Milnor fibration of / by removing a tubular neighbourhood of the

link component, and replacing it by something else in such a way that the resuit
is the Milnor fibration of f

lacin

f
lacin

pfpf and leaving the rest unchanged. We will see later
that this process will not give more than only the séries W*

p . The link of fpfpf
is a (2, 6+p)-cable on the link of the reduced singularity Jr{x, y) =y2 - x3

,

which is a (2, 3)-torus knot.
If we hâve a singularity with more than one double component, we can

splice something to each of the components independently. We see this with
our example Yr>SiYr>SiY its EN-diagram is the resuit of splicing two pièces (one

depending on r and one on s) to (2) <-> (2), the EN-diagram of Y?^'. x2x
2 y 2

.

If we hâve a singularity / with a component of multiplicity greater than

two, then we can get non-isolated singularises with lower multiplicities when

we splice something to it. The simplest example is f(x, y) = y 3
. In this case,

the Milnor fibre consists of three dises. If we want to replace a small tubular
neighbourhood of the knot with something else, in such a way that the resuit
is again an algebraic link, we first of ail hâve to take care that the fibres in
the solid torus that we put back in, approach the boundary in a (3, 0)

fibres

0)
fibres in

0)
in

link.It is intuitively clear that this is only possible with 3 compone0)components0)of0)of0)
multiplicity 1 or with 1 single and 1 double component. Indeed, in 3.8 we will
see, that this gives the possibilités E6ki E6k+l , E6k+2 and Jk, ? , and if we

apply the same procédure again to Jk>Oo,J

k>O0 , we get the séries JkiP . In Arnol'd's
list we find ail thèse singularises in the séries of y 3

.

In the Appendix we hâve included the EN-diagrams of ail Arnol'd séries,

and one sees that they ail arise from splicing something to the link of the

corresponding non-isolated singularity.
Thèse examples motivate our définition of topological séries, which will be

presented next.



3. The definition of topological series

3.1. Définition. Let /e J?= C{x, y} hâve a non-isolated singularity. The

topological séries belonging to / consists of ail topological types of isolated

singularities whose link arise as the splice of the link of /
log

/
log

with some other link.

So what we want is that the Milnor fibration of an élément of the séries

differs from that of / only in small neighbourhoods of the components with

higher multiplicities.
In ternis of EN-diagrams: Ail arrows in the diagram of / with

' {ni) ' (m > 1) in front of them, hâve to be replaced by subdiagrams with arrows
with multiplicity 1 only, taking the splice and algebraicity conditions into
considération. The advantage of using EN-diagrams instead of resolution

graphs can be observed hère: it is not easy to describe the linear chains that
arise in the resolution graphs of the isolated singularity.

Below, we investigate what possibilities there are to replace an arrow
' -> {ni)' by something else, in the sensé of the preceding remarks. It will follow
that the topological séries do not contain more singularities than we want them

to. The method is purely combinatorial. We start with m = 2 and end with
a formula giving the number of such possibilities.

3.2. Notation. If Fisan EN-diagram, then we dénote by A(T) the set of
arrow-heads of T, by 7V(T) the set of non-arrow-heads (dots and nodes) and

by V{T) = A{T) u N{T) the set of ail vertices.
The corresponding (multi)link is L = L{T) = £ ieA(r) niiSi, and for

ieN(T),Si will dénote the corresponding virtual component (cf. [EN]).

3.3. The case of a double component.

Suppose fe^ has link L = £ /gi4(r) >W/S/. Suppose one of the com
ponents,S<>, has multiplicity 2, i.e. m 0 =2. Near the arrow o, the EN
diagramr of L looks like this:

where the boxes may dénote anything and the arrow is O eA(T) (the second
picture is only defined when r ?-+ (2)). Define the foliowing numbers:



i.e. cis the linking number of S o with the other components, counted with
their multiplicities.

Note that we work with minimal EN-diagrams, which means that redun
dantdots (those attached to a node with weight 1) must be removed by using
theorem 8.1 of [EN].

We now show what possibilities there are to replace the double component,
in the sensé of the remarks at the beginning of this section. Let

be the characteristic polynomial of the monodromy on Hk (F), and let

À* = Ai/A0 . This function is related to the zêta function Ç/ of the

monodromy (cf. [A'C]) by the relation £,/(/) = /-^A*^" 1 ) (where %(F) is

the Euler characteristic of F).

3.4. Theorem. The only two (classes of) possibilities to replace a double

component, are:

Furthermore, let A* be the A* of L= LÇT), and AÏ be the A*
of the new link. Then we hâve:

In particular, the Milnor number is linear in N with coefficient one.

Proof The EN-diagrams of the theorem can be regarded as being the

results of splicing the links L = L(T) = L(f) and those defined by the EN
diagramsT'NT'NT' in the next figure, along the components S<> and the one with

multiplicity c, which we call Si with * eA(T'N(T'N(T' ). (Note that c can be zéro, in

[EN] this has been given a natural interprétation).



That the multiplicity must be c follows from one half of the splice condi
tion.The other half, 2=H heAirN)rN)r ,k±* mti lk (s *> s 'h)> implies that thèse two

diagrams are the only two essentially différent EN-diagrams with the required

property, for we want mh = 1. For the first link the splice condition reads

'2 = 2 ? 1 ' and for the second '2 = 1 ? 1 + 1 ? 1 '.

Finally, the algebraicity condition gives N > NQ .

The À* formula follows from [EN], theorem 4.3. ?

The last statement of the theorem implies that if L is not the unknot, the

Milnor numbers are related as follows:

We see for example that in case /isof type A w , the séries is precisely the

whole >l-series, and in case f(x, y) = x2x
2y 2

, the séries is the complète doubly
indexed F-series.

3.5. Définition. We combine the two possibilities in one graph, where,

depending on whether TV is odd or even, the first or the second graph of the

theorem must be substituted.

Observe that for N even, this represents the graph with two arrows and edge

weight N/2.

3.6. Remark. If a=l or a=2 (see the figure at the beginning of this
section), then the case N= No is also allowed, although then the diagram has

to be minimized by applying theorem 8.1 of [EN]. The monodromy formula
still holds.

3.7. Example. JkjOQ has the équation f(x9 y) = y 2 (y + x k ), its EN-diagram
is pictured below:



We hâve c=k and 7V0V0V = 2k. The séries is Jk , p :y 3 + y2y
2 x k + x3k+p ,p 0.

The case p = 0 is the spécial case with N = No .

We hâve

3.8. HIGHER MULTIPLICITIES.

When we hâve higher multiplicities, exactly the same method can be used.

The splice condition gives us always a finite number of links that can be spliced

to the component with multiplicity m. We enumerate the possibilités when

m = 3 and m = 4. The names refer to the simplest case when f{x, y) = y m
.

In the diagrams, the splice edges hâve variable weight N, TVhaving no com
monfactor with the other weights. Further omitted edge weights are equal to 1

.

We only listed the diagrams with one node; some hâve an arrow of multiplicity
greater than 1, which should be treated again.

The four possibilités for m = 3:

The nine possibilités for m = 4:



We now give a formula giving the number of essentially différent diagrams

with one node and only multiplicities less than m, that can be spliced to a com
ponentof multiplicity m.

Proposition. The number is:

where p (ri) is the number of integer partitions of n.

Proof. In such a diagram at most one dot appears, with at the node a

weight 2. The number of edges emerging from the node must be at least 3.

There is at most one weight > 1
. Thèse are conséquences of the algebraicity

condition. The splice condition demands that the total linking number of the

other components with the splice component equals m. The formula is now
a matter of counting. ?

For m 15 we obtain

This can be regarded as an upperbound on the number of symbols (such as

A, W*, etc.) needed to give names to ail singularises of corank m.

4. The spectrum of a plane curve singularity

4.1. In this section we compute the spectrum of a plane curve singularity
from the EN-diagram and we prove a splice formula for spectra. This will be
needed in the next section, where we look at several invariants within a séries.
First we need to define a number of polynomials.

4.2. We dénote by F the Milnor fibre of a plane curve singularity /.
Définition.



Recall that H0(F)H
0 (F) and Hx (F) hâve ranks d and ji, respectively, where d equals

the number of connected components and \x the Milnor number.
We will also need the following polynomials. Let h*: HX (F) -» H{ (F) be

the algebraic monodromy.

Définition:

(a) A 1 is the characteristic polynomial of /z*|Ker(/z^ - 1), where Nisa
common multiple of the order of the eigenvalues of h* ,

(b) A' is the characteristic polynomial of h*\\m{Hx {§F) -> H^F)).
The roots of A l are the eigenvalues of the 2x 2-Jordan blocks of h* .

Observe that ail polynomials defined above can be obtained easily from the

EN-diagram, cf. [EN], section 11 and [Ne].

4.3. The spectrum of a holomorphic function germ is a set of rational
numbers with intégral multiplicities, denoted as D a6Q «a(a) (an élément of
the free abelian group on Q), which can be regarded as logarithms of the eigen
valuesof the algebraic monodromy.

In the isolated singularity case we hâve that Ài(O = n a (/-exp(27t/a))v
In the case of plane curve singularises, the spectrum numbers a satisfy

-I<a<l,so for each eigenvalue X=él there are two possible a 's with
X = exp(27i/a).

4.4. We follow [St] for a brief description of the spectrum. For détails we

refer to this source. Let /: (C n +l, 0) -> (C, 0) be non-zero holomorphic func
tiongerm, and dénote by Fits Milnor fibre. The reduced cohomology groups
H* {F) - H* (F; C) carry a canonical mixed Hodge structure. The semi-simple

part TsTsT of the monodromy acts as an automorphism of this mixed Hodge

structure, and in particular it préserves the Hodge filtration J^ Write
Gr /y= S^p / S"p +\ and let sp be the dimension of Gr^r.There are rational
numbers apj with 1 j sp , n?p-1< apj n?p such that

Now we define Sp^/f^FjC), &, TsTsT ) = £ £ .(a^-) and:

It is clear that the spectrum is a finer invariant than the characteristic

polynomial. Steenbrink has proved for instance that the spectrum distinguishes



ail quasi-homogeneous isolated singularities (not only curves). But already

for plane curves the spectrum is not a complète invariant of the topological

type. Détails of thèse facts can be found in [SSS].

4.5. Example. Consider f(pc, y) = xy(y 2 - x 2 ) and g{x, y) = xy(y-x5 ).

Then /
Exa

and g hâve the same intégral monodromy (see [MW]), their

characteristic polynomial is A! = (/- 1) (t u -l). But

4.6. In [LS] a method is given to compute the spectrum of a reduced curve

singularity from the resolution graph. However, the non-reduced case follows
by the same methods. The results are closely related to those of Neumann on
the equivariant signatures of the isometric structure on H\ (F; C) given by the

monodromy and the sesquilinearized Seifert forai, see [Ne]. Below we combine
the results of [LS] and [Ne] to obtain a purely topological method to compute
the spectrum.

For a root of unity X the signature o x is defined in [Ne] and computed
as the sum of the o^ of ail the splice components. Consider a (very gênerai)
splice component:

For the moment, put m^ = 0 for ie{k + 1, ...,«}; so

is the multiplicity of the central node. Choose integers (3/(1 with
Pyai ? ? ? àj: ?? ? an = 1 (mod a,-) and put Sj = (mj - (3yw)/ay-.y-.y

Remark. The numbers Sj are, modulo m, equal to the multiplicities of
the neighbour vertices in the resolution graph.

For a real number x, let {x} be the fractional part of x, and let



4.7. Proposition. Write X= exp(2nip/q) with g.c.d. (p,q) =1. Then

we hâve (see Neumann [Ne]):

4.8. For Xa root of unity, let bo ,x,bx , b[, b'xb'xb' be the multiplicities of Xas
a root of Ào ,

A1?A

1?
Àl,À

1

, À', respectively (thèse polynomials hâve been defined
in section 4.2) Let o^ be the signature as computed above. Write
e(a) = exp(27ua). Sp(/) dénotes the spectrum of /.

Theorem. Sp(/) = X|na (a) with:

Proof. The proposition is a translation of the results of [LS], extended

to the case of non-reduced singularises. The différence with [LS] is, that the

roots of A', coming from the boundary, must be added to the weight one part,
and the roots of Ào must be subtracted from the weight zéro part. In the

language of [Ne]: The I\ and the ?A^ part contribute to the négative

(weight 1) spectrum numbers, the Aj_ part contributes to the positive

(weight 0) spectrum numbers. The pairs of eigenvalues in the 2 x 2-Jordan

blocks are evenly distributed among the positive and négative parts. The roots

of A o give only weight 0 spectrum numbers and they hâve négative

multiplicity. D

4.9. A point which may cause confusion is the fact that in the définition of

spectrum reduced (co)homology is used. Therefore we define

Sp*(/) = Sp(/) - (0). It is now possible to compare Sp* with A*: If
Sp*(/) = tt

Sp
tt
Sp

a
nn a (a), then A*(o = II aeQ (f " <*<*)) ""

?

Example. The A ? singularity has Sp* = - I-I - (0). Recall that its

A* equals (t 2 - l)" 1

. D? has spectrum Sp = (0), so Sp* =0 ('empty'). Let

f(x>y) = (y 2 -*3 ) (y 3 -*2 ) t>e the A'Campo singularity. Then:



As with ail isolated singularities, this spectrum is symmetrical (i.e. if (a) is in

the spectrum, then so is (-a)). This is not the case with non-isolated

singularities. The asymmetry cornes from the fact that the Milnor fibre can

hâve more than one connectée! component and from the fact that the

monodromy possibly acts non-trivially on the boundary of F. Both can be seen

in:

Observe that the A* of x2x
2y 2 is just 1, as with D? .

4.10. The A* behaves well under splicing: it is the product of the A* of the

splice components. Our topological way of looking at spectra asks for a for
mulaof splicing spectra. It appears that Sp* = Sp - (0) is almost additive.

Example. In the example above we computed the spectrum of the

A'Campo singularity. Both splice components are isomorphic to that of the
non-isolated singularity x2 (y 2 -x2 ), which has spectrum:

So we hâve to add both spectra, but instead of 21 ?1 we hâve
\ 2)
?1

2)
?1

j ~- I + I - I
? This is the resuit of the new edge in the EN-diagram, giving

a new 2 x 2-block.

4.11. Theorem. Let L be the resuit of splicing U and L" along
components S' and S", respectively. Let m'(m") be the multilink
multiplicity of Sr(S") and put q = g.c.d.fm

1\m"). Then



Proof. If q=l the theorem is clear. Now suppose q>l. Consider the
behaviour of the polynomials A^A 1 and A' under this splice opération.
Splicing introduces a new edge E which contributes to A 1 with a factor
t q - 1. This introduces new 2 x 2-Jordan blocks. Both splice components

hâve Y/l=i I ? I m their spectrum (coming from A'). But, as both eigen

valuesin a 2 x 2-block are of différent weight, L has £ ?"/ I ? I + ( - I

instead of the sum of both parts. It is clear from theorem 4.8 that ail other

parts of the spectra of L' and L" hâve to be added. D

5. Invariants in the case

that f has only transversal $A_1$ singularities

In this section we describe the topology and équation of a topological séries

that belongs to a non-isolated singularity with only transversal A x

singularities.
Throughout this section, /eJ?isof the form /=/]?? ff2

r g, with

/i,...,/r irreducible and g reduced. The critical
/=/

critical
/=/

set of / is

E=£iu???u
/i,...,/
E=£iu???u
/i,...,/

Er , and the transverse type of / along E/ is A x . For ail

ze{l,...,r}, we hâve numbers NOi and c, as defined in section 3.3. Let

Ni > NOi (1 / r). According to theorem 3.4, a typical élément of the séries

belonging to / has the topological type (EN-diagram) F*:

That is: each arrow of the EN-diagram F of / belonging to a double com
ponent,is replaced in the way described in theorem 3.4. So varying the Ni
will give us the complète séries belonging to /.

The following two propositions are easy conséquences of theorem 3.4. Let
A^ = (TVi , ...,Nr) and let f

ropo

f
ropo

N hâve topological type F*.

5.1. Proposition. Let A*[/] and A*[/N] be the A* of f and

fN respectively. Then:



5.2. Proposition. Let n«, be the Milnor number of f and \xN that

of fN . Let fi o e{l, 2} be the number of connectée! components of the

Milnor fibre of /. Then:

The numbers |ia ,[i 0 and ct (l^i^r) dépend only on f.

5.3. We conclude this list of topological invariants with the formula of the

spectrum of a séries (see section 4).

Proposition. Define for 1 / r: y, =0 if c{ is even and

ji = 1/2 when c-, is odd. Write v ;
- =Nt+ c{ . Then:

Proof One can use the proof of [St], theorem 4.5, but it is also possible

to work out the various cases using the method of section 4. For the proof
of [St], the following observation is needed. Let F\ be a transversal slice

transverse to Z;
- (in this case F\ consists of two points ? the transverse type

is Ai). Let Tj: HO(F-)H

0
)H

0
)H (F-) -* Hq(F\) be the monodromy of the local System over

the punctured dise £/\{o}. Then it is well-known that 7} is the identity if c,

iseven and - identity if c,- is odd. In fact, even if the transversal type is not
A u the following holds. Let t{ : Ho{F\) -> Ho(F-) be the Milnor fibration
monodromy of /

ing

/
ing

restricted to a transversal slice through xel,-. Then t\ is a

cyclic permutation of the finite number of points in F\ , and 7} = tJ Ci
. ?

Example. Let f(x,y) = (y 2 -x4x 4 ) 2 (x2
-y4y

4 ) 2
; its EN-diagram is:

Observe that according to the proposition, the spectrum of fN is independent
of the order of N{ , ...,7V4V4V . If we take TV = (5,5,6,6) and TV = (5,6,5,6) we
get the same spectrum but différent topological types, because the EN



diagramsarenot équivalent. This is the counterexample to the spectrum con
jecturefoundby Steenbrink and Stevens, cf. [SSS].

6. Equations

In this section we discuss the équations of séries: what do we hâve to add

to / to obtain a required élément of its séries?

In the example W* at the beginning of section 4, we had

The Puiseux expansion of WftO0ftO0f : f(x, y) = (y 2 -x3 ) 2
, is x= t 2 ,y = t 3

.

When we substitute this in xA + qy, we get t n + 2<?,<?,< which is just the number TV

in the EN-diagram.
More generally, it appears that adding (p eJ^ with (p(/ 2

, t 3 ) of order
11 + 2q, gives the same resuit, although there are various kinds of exceptions.

In theorem 6.5 below, we give conditions on cp such that / + ecp has the

required type, where s is introduced in order to fulfil transversality properties.
This avoids exceptional cases such as when f(x,y)=y2 and

q>(x,y) = 2x ky + x2k
, the sum is then a non-isolated singularity.

Again, / has only transversal Ai singularises; but the foliowing lemma is

valid in greater generality.

6.1. Lemma. Let f,vseJ^ and assume f has a non-isolated

singularity. If for ail small s>o, / + s\|/ has a singularity topologically
équivalent to f, then for almost ail s the zéro sets of f

larity

f
larit

and /+ si|/

are equal.

Proof First take f\x, y) =y" with n>l. Assume that for no s, / and

/+ s\|/ hâve the same zéro set. Then we may assume

/
/+
/
/+

+ si|/ = (y + F(x, z)) n where F(x, s) # 0, regarded also as a function, of s,

can be written as

Hère ai(z) may hâve positive fractional powers of 8. / + s\j/ is linear in 8. By

writing out the équation



one immediately sees that this impossible. If / is not of the form y n then

there always is a small neighbourhood away from the origin where it is. There

we can apply the above argument. ??'

6.2. Let /=f\'?? ffrfg hâve EN-diagram r, and let TV/ > Noi and c, be

defined as usual. We are looking for <p with the property that / + sep has the

topological type of EN-diagram F* = r*(Nlt ...,Nr ):

By Puiseux's Theorem [Ph], we can choose coordinates x, y of C2C 2 in such

a way that the Puiseux expansions of the 1,-, (1 i<r) hâve the form:

For each /we hâve the valuation function Vji J? -* Nu {00} given by

After considering various examples, one is tempted to think that whenever for
ail i, y/ (9) =Nj+ch f+ sep has, for gênerai s, the required topological type

given by EN-diagram r*(7Vl5 ... 9 Nr ). The foliowing example shows that this

is not true. Take f(x, y) = y 2
, and (p(x, y) = x ky + xN

. Although i>(cp) =N,
the topological type is determined by k and not by TV when 2k < N. So we

hâve to take care of low order multiples of /. We will do this by considering
u and an extra valuation u {2)

.

6.3. Définition. Consider h= hh
2

red , where /zred e^ is irreducible with
Puiseux expansion x= t n ,y =£ 0/*'. Let (3 be the largest characteristic

exponent. For aeC,neN, define wa>N : j@ -> Nu { 00 } by :

Finally, define v^\



Notice that y (2) ((p) =°°&cpe (/z). If TV - TVo is odd, the number (2) ((p) is

equal to the intersection number of (p with some curve which has as its Puiseux

pairs the Puiseux pairs of /zred with one extra pair, (N-N0 ,2), added.

6.4. Example. Take f(x, y) =y2 and (p(x, y) = xky + xN
. Then y(cp) =TV

and v<2 >(<p) = min{2Â: + TV, 27V}. Observe that the type of / is AA
m _ x with

m = i> (2) ((p) - y(cp).

6.5. Let /=/i??? f]g be as above. For 1 / /? we now hâve valuations
t>|2)

as in the preceding définition. Recall F*(7Vi, ...,Nr ) is obtained from the

EN-diagram F of /
edin

/
edin

by replacing ail multiple arrows as in the last picture.

Theorem. Suppose (pe^ satisfies v*2>(<p) = vf((s>) ??? 2)
(cp) <».

77ze/2 /+ ecp //^ for almost ail s 0, /7ze topological type given by EN
diagramF* (Nu ...,Nr ), with for I</ r:
(a) Ni = v?\q>) - U/((p) - if <», or

(b) Ni = 2Vi((p/fi)-d if u; (q>) = 00,

provided that Nt > NioNi0 for ail i.

Proof Since the order of cp |Ez is > NOi +C/ and s is gênerai (use

lemma 6.1), the good minimal resolution of / +scp also résolves the

singularities of /. So the EN-diagram of / is a subdiagram of that of / + s(p.

Hence, according to theorem 3.4, /
ram

/
ram

+ sep has the EN-diagram:

for certain numbers qt , (I^/^r). It remains to prove that qt equals the

number Nt stated in the theorem.

For this purpose we consider one spécifie / at the time, and draw // in the

same picture as /
rpos

/
rpos

+ ecp. That is, we draw the EN-diagram of their product,
unless // happens to be a branch of / + sep. Using an argument analogous



to the one presented in section 3.3 (which provided the two possible extensions

to the EN-diagram), we conclude that the situation near /, is as in one of the

five foliowing cases:

In each picture, the arrow pointing downwards represents //. Observe that
when // is removed (replaced by a dot) we get back the situation of the

original picture as it should. We now compute q-q-xq- in each case, using the inter
prétationof the valuations as intersection numbers with /,-. Recall that they

can be computed by walking from arrow to arrow in the EN-diagram, see

[EN], section 10. To clarify matters, we explain in each case the local situation
as follows. In the resolution of / we take suitable local coordînâtes u, v near
the strict transform of the branch // in such a way that f) = u2u

2 and that the
branches of / + sep near /,- hâve the form mentioned.

Pictures #1, #2 and #5: One computes =q( + c,- and

vf]vf]vf = Iqi + 2c/. Therefore qt =Nh In picture #1, qt is odd and in picture
#2 even. In both cases the local situation is u(u 2 + u s) with s=qx? Nio.Ni0 . In
picture #5, the two branches hâve intersection number (3 > qjl

s=qx
qjl

s=qx
with each

other.

Picture #3: One computes uf-((p)u

f-((p)f-((p)f =oo and vi{s/v i {$/f i ) = qi/2qi /2 + ci .

Therefore qt = Nt . The local situation is u(u + us/1)u
s/1 ) with s as before.

Picture #4: One computes = qt/2q t /2 +a+ c,- and vf\q)
= 3<7//2 + a + 2c, . Again we obtain that qt equals the number N{ of the
theorem. The local situation is u(u 2 + us/2vu s/2 v +ua+ s/2 ). ?
6.6. Remark. We want to point out at this point that it is easy to find a
cp satisfying the condition. One can use the method of [EN], pages 57-58. An



interesting observation is, that in gênerai the monomials of (p themselves will
hâve a smaller order in t than (p.

6.7. The case that /is arbitrary.
If /= /???? /^g with /7/

7
- irreducible, ah,- 2 and g reduced, we still

hâve that /
/=

/
/=

+ ecp has the diagram of /
edu

with the multiple arrows replaced. We

know exactly which replacements are possible (see section 3.8). To find out
what is the type of / + sep, it again suffices to investigate linking behaviour.
Some possibilities that only become apparent when // and /

lin

/
lin

+ sep are drawn
in one diagram (that is the diagram of their product), hâve to be opted out
by considering linking with cables which are known to be correct, using such

valuations as i> (2)
.

Although the tests become increasingly difficult, this gives a way to
generalize theorem 6.5.

6.8. lOMDIN TYPE SERIES.

We end with a remark on séries of the form /+ zl k
, where /isa linear

form not tangent to any branch of / and k kO,k
0 , the largest polar ratio of

/. Thèse séries hâve been studied by lomdin and Le, see [Le], not only in the

curve case but for gênerai dimensions. Siersma [Si] has given a formula for
the À* of thèse séries. In the curve case this is just a spécial case of our results.

Notice that:

We would like to stress again that thèse lomdin type séries are generally much

coarser than our topological séries: they are single indexed and for example
the Milnor number increases with steps of d= d\ + ? ?? + dr within the

séries.

Appendix

In this appendix the EN-diagrams of the séries of plane curve singularities
listed in [AGV] are drawn.

The first part consists of the exceptional families E, W and Z.

The second part contains the infinité séries A, D, J, W, W*, X, Y and

Z. Ail variants are given. In the tables, we hâve that:



(a) p. = the Milnor number;

(b) No and the graph constant c are as in theorem 3.4;

(c) À* is the A* of the non-isolated singularity, the A* oï an élément oï the

séries can be obtained by multiplying with //
N ~l~ l - (- 1) N

.
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