Yona Meisel
- Office: Mathematics Building, Room 129
- Office hours: TBA
Expected Course Syllabus
Part I: Basic notions in set Theory
Sets, set operations, relations, equivalence
relations and partitions, partial and total orderings,
the natural numbers, induction principles, functions
Part II: Propositional Calculus
Truth tables, truth values, logical equivalence, disjunctive
normal forms, complete connector systems
Part III: Predicate Calculus
Its language, formulas, structures, satisfaction, normal forms,
definability, isomorphisms of structures
Part IV: Cardinal Arithmetic
bijections, cardinal numbers and equi-cardinality, the
Cantor-Bernstein theorem, |A|<|P(A)|, cardinal arithmetic,
fundamental examples (Q, R, P(N), ...),
the diagonalization argument, countable sets,
Zorn's lemma and the Axiom of choice
Exercises
Exercise 1 (ps)
(pdf)
Solutions: (ps)
(pdf)
Exercise 2
(ps)
(pdf)
(jpg)
Solutions: (ps)
(pdf)
Exercise 3
(ps)
(pdf)
(jpg)
Solutions:
(jpg) page 1
page 2
page 3
Exercise 4 (ps)
(pdf)
(gif - page 1)
(gif - page2)
Solutions:
(pdf)
(ps)
Exercise 5
(ps)
(pdf)
Solutions:
(jpg - page 1)
(jpg - page 2)
(ps)
Exercise 6
(jpg)
Exercise 7
(ps)
(pdf)
Solutions:
(ps)
(pdf)
Exercise 8
(ps)
(jpg)
Solutions:
(jpg - page 1)
(jpg - page 2)
(ps)
Exercise 9
(ps)
(pdf)
Solutions:
(ps)
(pdf)
Exercise 10
(ps)
(pdf)
Solutions:
(ps)
(pdf)
Exercise 11
(ps)
(jpg)
Solutions:
(jpg - page 1)
(jpg - page 2)
Exercise 12
(jpg)
Solutions:
(jpg - page 1)
(jpg - page 2)