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Abstract. The effective conductivity ¢ of a magnetized plasma with random irregularities has
been studied theoretically. The main aim of this research is to construct a general theory valid to
unbounded (closed Hall circuit) as well as to bounded plasma systems (opened Hall circuit) with
one kind of current carrier. Our results reveal essential differences in behavioff af these
cases.

The behaviours ¢ following from the theoretical considerations has been confirmed in
experiments on thin non-homogeneous plates of crystal p-Si in crossed electric and magnetic
fields (from 0O to 15 kGs) placed in liquid He.

In the case of an open Halll circuité differs only slightly from the average ) in the whole
range of the magnetic fields. In contrast may be higher thatw) for a closed Hall circuit when
the magnetization parameter is greater than 10.

1. Introduction

The effective transport properties of magnetized media is of the greatest interest to wide
branches of laboratory plasma physics, solid-state physics and space physics. This interest
has risen because any inhomogeneities can change dramatically the effective transport
characteristics such as the galvanomagnetic characteristics, the thermal flux and the effective
electrical conductivity.

The determination of a relation between the effective transport characteristics of a medium
and its local features allows us to better define the inhomogeneity, predict the course of transport
processes in disordered systems and create heterostructures with specific properties [1]. The
sensitivity of the effective transport characteristics of the magnetized solid-state plasma to
small random irregularities enables us, in principle, to use this feature to also define their
concentration in semiconductors [2].

This problem arises also in many situations involving ionospheric and magnetospheric
electrodynamics. The ionospheric conductivity is the parameter controlling the performance
of the coupling of the inner and external parts of planetary atmospheres. The clarity of trans-
mission and scattering of the extra-low-frequency electromagnetic waves through the planetary
plasma shells when complicated by random clouds, is extremely important if one keeps in mind
the problems of bearing, sounding and shielding. Hydromagnetic waves incident from extrater-
restrial space onto the Earthis a specific example amongst many. Understanding the regularities
of hydromagnetic wave transformation at the ionospheric level is a significant problem, as well
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as being able to do ground-based diagnostics of the magnetospheric sizes, obtaining the distri-
bution of the cold plasma density, etc and doing electromagnetic sounding of the Earth based
on the features of the waves transmitted to the Earth through, and scattered by, the ionosphere.
The use of ground electromagnetic observations as a major research tool has always been
treated as the key to understanding the structure and dynamics of the magnetosphere.

In practically all these fields, the question may be formulated thus: what is the integral
effect of randomly non-homogeneous ionosphere, and what is the integral current caused by
an external electric field?

The electrical current flowing through a non-homogeneous ionosphere produces a
magnetic perturbation. The contribution of small random wind and electron concentration
perturbations to the ground and magnetospheric quasi-stationary electric and magnetic fields
was studied in [3, 4]. From these studies one can connect the correlation matrices of the above-
and under-ionosphere magnetic fields with those of random ionospheric irregularities.

However, if our concern is with the integral magnetic field on the ground surface, that
is for a distance of around 100 km from the ionosphere containing small inclusions, then
the magnetic effect caused by those irregular currents is equivalent to the magnetic effect of
some average current flowing along an ionosphere with an effective conductivity. By these
definitions, the problem is reduced to: how to calculate the effective conductivity, even if
we are provided with detailed information about either every irregularity, or the correlation
properties of the random non-homogeneous field. Intuition suggests that it is necessary to
substitute an average conductivity in the case of the small perturbations. In fact, it turns out
[5] that in the case of magnetized media the total current will be defined by the product of the
concentration perturbations by the magnetization parameter of the current carrier. Since the
discovery of the strong influence of the small perturbations on the effective transport properties
of the magnetized media many physicists have been intrigued by this effect (e.g. [6-9]).

This paper is organized as follows. In the rest of this section we review, briefly, existing
theories of effective conductivity both for a regular media with the scalar local conductivity,
and for a magnetized media, such as a solid-state semiconductor plasma or a partially ionized
plasma. The local conductivity in this case has tensor characteristics. In section 2 we present
an expression for the effective conductivity of a partially ionized plasma placed between two
non-conductive walls. A situation of this kind arises either in laboratory experiments with
open ‘Hall circuit’ on the semiconductor plasma (see for example [10]), or in the equatorial
plasma of the E-layer bounded below by the non-conductive atmosphere and above by the
weakly conductive F-layer. In section 3 we use this approach, which was first outlined and
applied in [7] to the unbounded plasma systems, to evaluate the effective conductivity tensor
in the bounded magnetized systems. The expressiong*fofor small perturbations of the
local conductivity in strong magnetic fields are derived. Section 4 provides a discussion and
summary of those results. Theoretical outcomes are compared with the results of the laboratory
experiments on p-Si non-homogeneous films placed into the strong magnetic field. Finally,
we discuss and consider some practical issues related to our predictions.

1.1. Existing theories

The effective conductivity ¢ defines a connection between the volume average current density
(7) and electric field E)

(G(r) = o (E(r)) (1)
o is actually measured in experiments and appears in the averaged Maxwell equations.

and E(r) in Ohm’s law (1) are the local current and electric field. In the common case, the
spatial distribution of the local conductivity(r) is random.
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¢ does not, in general, coincide with the average conductivity and can differ greatly
from the latter. A wide range of theoretical approaches have been applied to this problem. In
certain situations, as in the example of rare inclusions, it may be assumed that the medium with
conductivityo; contains inclusions of conductivity,. Let p be the volume concentration of
the inclusions. Assume also, that an external electric field is applied to the medium. Then,
if p <« 1 a mutual impact of inclusions may be neglected and one can consider that only the
field (E) influences the irregularities and

(J(r)) = o1(E) + p(o2 — 01)(E?)
where(E) = (1— p)(E1) + p(E>) and

1
(E1) = E(r)dv (E2) = A E(r)dv

V-V Jv_y, 2 Jv,
whereV is the total volume of the system and is the volume occupied by inclusion#;
and E, are the fields outside and inside an irregularity, respectively. The averaging here is
performed on the volume larger than the scale size of an inclusion.

On assuming that the inclusions are spherical, we have¥bf11]

off 3(02 — 01)01
o =o1+p P — (2)

The next stage of generalization is to give up the concept of rare inclusions and to consider
amedium of conductivity, in which pieces of conductivity, are imbedded. Brugemann [12]
gave a method of the so-called self-consistent field. It was agreed that all non-homogeneities
create a general average electric field and that an inclusion is embedded into an ‘effective
medium’ of conductivityo®". Every irregularity, in turn, is polarized in that field and the
polarization field initiated by the irregularity is readily calculated for spherical inclusions.
The general electric field induced by all inclusions is equated to the average electric field.
The effective conductivity is found from the equality of these fields. For example, for
binary mixtures of spherical particles of conductivitiesando, and concentrationg; and
p2 = 1— py, the equation fos ™ has the form

seft @ +[a? + 80107] /2
B 4

If one of the components is actually dielectric (for example= 0), ¢ becomes zero.
Thus, there is a critical concentratipg (‘percolation threshold’) below whick®® = 0. Inthe
case of spherical inclusiong = 1/3. The value of the percolation threshold is a characteristic
of a wide variety of heterogenic systems. In actual compogigesin vary greatly. Behaviour
of the effective conductivity close to the percolation threshold is described by

wherea = (3p, — 1o, + (3p1 — 1oy (3)

o = o1(p — po)'
wherert is a critical index the value of which was defined by modelling of the percolation
problem on different lattices [13—15].

The outlined methods for calculating®™ are based on the assumption that the mixed
phases are separated by well-shaped edges. On numerous occasions, however, especially
in polycrystal samples, strongly doped compensated semiconductors, non-homogeneous
laboratory and cosmical plasmas and other systems with irregular spatial distribution, the
conductivityo is a continuous function of the coordinateHerring [5] has given a theoretical
treatment of the influence of random inhomogeneities on the effective electrical properties of
such systems. Formulae are developed which are asymptotically exact in the limit of small
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fractional fluctuations of the local conductivity. A numerical approach has been proposed in
which all fluctuating values are expanded as a Fourier series in spatial wavenikmbers
o(r) = (o) + ) opexplikr). (4)
k0
Hereoy, is the amplitude of the harmonic of spatial wavenumbkgand (o) is the average
conductivity. It has been found that in the lowest approximation for fluctuating conductivities,
the effective conductivity is

o = (o) [1 - —Z’“(;”;f ’“] (5)
and can be rewritten in the more descriptive form
5 2
=i 0]

wheredo (1) = o (r) — (o) and(8o%(r)) is a mean square deviation of the local vadue)
from the averagéo ).

Thus, for calculation o&¢", the spatial distribution of (r) needs to be known. It is
realized, that in the case of random irregularities, it would be desirable first, to determine
theoretically the spectrum of irregularities and then, to calculate the resulting effective
conductivity. Unfortunately, usually, we do not know the real spectrum caused by various
plasma instabilities of laboratory or cosmical plasmas, and also by the impurity concentration
in a semiconductor sample. However, in any case, independent of the actual fo(m) ahe
magnitude ot ™ for small perturbations in accordance with (6) is always less than the mean
conductivity (o).

The situation changes drastically in the case of a magnetized media. Here, one of the
components of the tensor of the effective conductivify becomes larger than the mean
conductivity (o;;) even for small perturbations of the local conductivity.

In experiments with high mobility semiconductors, for example, InSb, a transverse
magnetoresistance is observed to grow linearly with the magnetic figld However, the
classical theory of transport phenomena predicts saturation of the transverse magnetoresistance
in strong magnetic fields. Herring [5] was the first to notice that this phenomenon can be
associated with the effect of conductivity inhomogeneities, the sizes of which are small in
comparison with the sample size, but substantially exceed the mean free path of carriers. He
gave a theoretical treatment of the joint effect of random inhomogeneities and magnetic field
on electrical properties. The formulae developed were asymptotically exact in the limit of the
small fluctuations of the local conductivity.

However in strongH, when the magnetization parameter

B =wet, > 1 (7)
the conductivity becomes anisotropic. In )= ZeH/mc is the Larmor frequency,, is the
time of carrier relaxatiorg is the elementary charge,is the light velocity andZ andm are
the charge state and mass carriers, respectively. If there is just one charge carrier, a diagonal
component of the local conductivity tensor dependssbas 1/ H?, and a non-diagonal one
varies as 1H (H = |Hp|). The diagonal component of the effective transverse conductivity
aj“(H) will be defined by some combination of components of local conductivity averaged
over the volume. Herring in his pioneering work [5] gave an explicit expression for the
correction for the transverse conductivity in the lowest order considering inhomogeneities to
be small. The expansion was carried out using the value of relative fluctuation of conductivity

6 <<502>>”2' @
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It was found that a correctiodo®(H) defined by random inhomogeneities varies
inversely with the magnetic fiel# and decreases with the growth Bfslower than the non-
perturbed conductivity, (H). Therefore, it was concluded that even for small perturbations
(¢ <« 1) in strongH, the correction may exceed the value of the undisturbed conductivity
o1 (H). Note, that this conclusion is not formally correct because it applies perturbation theory
to the case where the correction term is greater than the main term.

Dreizin and Dychne [7], Kvyatkovsky [8], Galperin and Laichtman [16] showed later
that the true parameter by which the expansion should be carried out in [5]§s bot 8¢.

They summarized the complete series of perturbation theory and proved strictly the validity
of Herring’s conclusion [5]. According to [7]

%- 13
so5"(B) = A (E) 0. ©)
Hereoy is the conductivity along the magnetic field aads some constant independentfof
For a three-dimensional (3D) system the exponenptis 4/3.

It was also indicated [8] that in the described system a specific size effect can appear—
a dependence of the conductivity on the scale-&izalong Hyo. Moreover, in very strong
magnetic fieldsvjff turns out to be inversely proportional £ [8]

eff S a 12
so (B) = E : (E) 00 (10)
whereq is the inhomogeneity’s size.

The method of [7, 8] was developed by Alperovich and Chaikovsky [17] and applied to
the ionospheric plasma.

Coincident with the development of the theory«dt' for systems with a continuously
distributed non-homogeneous conductivity, there were obtained significant theoretical and
numerical results for the two-phase systems like a metal dielectric [6, 9, 18].

A special case of two-phase systems with periodical inclusions has been considered by
Bergman and Strelniker [20] and Tornaet al [21]. They predicted an effect of the strong
anisotropy of the conductivity in the strong magnetic field. The effect was confirmed in
experiments with nGaAs-layers in which the periodic voids were burned through by the
electronic beam [21].

Despite the fact that our understanding of anisotropic disordered systems and their
effective properties has increased significantly over the past two decades, transport in bounded
anisotropic disordered media is a fundamental, and major, unsolved problem. This paper
is directed toward the solution of the problem of the effective conductivity of the bounded
magnetized plasma system containing small-scale time-independent random irregularities of
the concentration of charge carriers.

2. Homogeneous plasma

A charged particle of mass and charge with moving velocityv in the presence of an electric
field, E, and a magnetic fieldH is subjected to two forces: an electrostatic force

eFE
F=— (11)
m

parallel toE and the magnetic (Lorentz) force perpendicular to ho#md H,

FL = ;[v x Hy). (12)
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Since the conductivityg along the magnetic field is unaffected B, we can takeE, without
loss of generality, to be perpendicularify. The plasma becomes anisotropic, i.e. the electric
field E applied to the plasma produces parafjeind perpendiculaf, to E electrical currents.

Taking the axis along Hy and thexy-plane to contairE(E,, Ey), the two component
equations of Ohm’s law are

Jjx = opE, +O’HEy jy = O’pEy —oRE,. (13)

The conductivitiesp andoy connectingj;, andj, with the electric field are called the Pedersen
and Hall conductivities, respectively.

Let us now turn to the coordinate system so thattaxis coincides with the direction of
the applied electric field. Then, we have

Jjx = opEy Jy = —0onE,. (14)

In the simplest case of a homogeneous plasma system located between two long uniform
non-conductive walls, the total current will not be defined by merely l@gahdoyy, but by their
combination called the Cowling conductivityd) in cosmical physics and the Hall coefficient
in solid-state physics. Assuming that thig-current cannot flow through the boundaries
(jy = 0), we have from (13)

E, =g, (15)
op
andj, tends to

2
o
Je=0"E, wheres® = o = op+ 2, (16)
op

For the magnetized plasma with one kind of carrier the Pedesseand Hall oy
conductivities can be written as

00 )
(oxx) = 1 +’32 (GX)') =71 +,32. (17)
Then, the relationship (16) fer®™ of the bounded magnetized ‘electron’ plasma reduces to
2
o =gy = (18)
’ MmVe

whereoy is longitudinal along the magnetic field conductivity. In this situation, the charges
move along the plasma under the electric field as if there is no magnetic field. That is, the
magnetoresistivity of the plasma vanishes. The effect results from the accumulation of charges
of the opposite sign on the bounds of the plasma system. Theiramountis such thatthe presented
electrostatic force compensates precisely the Lorentz force.

3. Non-homogeneous plasma

3.1. Stochastic inhomogeneities and the effective conductivity

Calculation of the electrical characteristics of a weakly inhomogeneous plasma in a strong
magnetic field has been carried out before in [6,21-23]. In [22] this problem was solved
exactly for the one-dimensional (1D) layer medium, in which the conductivity of each layer
was a random function of the transverse coordinate. It was found thatsfos 1 (but

& « 1) there is an essential change of its transport parameters. This result was confirmed
experimentally in [23] in studies of the conductivity of turbulent partially ionized plasmas in

a strong magnetic field. A strong change of the conductivity was demonstrated qualitively in
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[25] for two-dimensional (2D) inclusions. An expression for the effective conductivity of a

medium with randomly alternating regions of depressed and enhanced plasma density has been

givenin [6]. It was shown that the conductivity of such systems is inversely proportional to the

applied magnetic field. We will demonstrate that inserting the boundary conditions changes

radically the effective transport properties of a weakly inhomogeneous magnetized plasma.
Let us consider the stationary current flowing in the medium where the conductivity tensor

6 (r) is a random coordinate function. Ohm’s law connecting the local current def(sity

and the local electric fiel& () can be written as

jr) =) E(r). (19)
In additionj (r) and E () satisfy
V-jr)=0 V x E(r)=0 E=-Vop (20)

whereyp is a potential.

Much more interesting in practice is not (19) but rather Ohm'’s law for the average current
(j;) and average electric fiekdy )

(i) = o (Ew) (21)

Whereo[‘zff is the effective conductivity of the spatially inhomgeneous anisotropic system.

Such a statement f@rﬁ{“ is valid assuming the following: (1) the free path of the current
carriers should be significantly less than the scale length of inclusions; and (2) the characteristic
frequency of variation of the applied electric field is small compared to the longitudinal
conductivity og (along the ambient magnetic field) and to the dispersion frequency of the
conductivity (is an order of collision frequency of charge carriers with neutrals). The first
condition enables us to use local Ohm’s law (19) and the second one to use steady Maxwell's
equations (20).

Let all fluctuating values (r) be written as a sum of a mean valug of a(r) and its
fluctuating parta(r)

a(r) = (a) +da(r). (22)
For example, the potential can be written as

@ = (p) + 8¢ = —(E)x; + 3¢ (23)
then

=B+ L (24)

Taking into account that all mean values of the fluctuating parts are independent of coordinates,
particularly

26
(8¢)=0  (So4) =0 <—‘”> —0 (25)
Bxk
we find
. 24
(Ji) = (o) (Ex) — <50i1< 8_¢> (26)
X
EquationV - j(r) = O with (24) becomes
80, 8 25 25 3(80;
a(aak) 'a_(p*'(o'ik) ¢ Oik e _ A Gk)(EU =0. (27)
X Xy 0x; 0y 0X; 00Xy, ax;

Therefore, the problem becomes one of findipgr) with a known coordinate dependence of
doi(r). In the appendix we show a formal solution, the procedure reducing to an expansion
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of fluctuating variables in the Fourier series. Substitution of the series into (27) leads to a
much more tractable equation for separate spatial Fourier harmonics, and, after considerable
manipulation, Ohm'’s law for the average current is (A4)
. Bi(q)
(i) = (ol Ex) + Y _ 80u(—q) ———(ED)q (28)
q (Jim>qiql71

which is basic for the calculation of the effective conducti\dﬁ?. HereB;(q) is defined by
(A3). By definition,o® is the transverse effective conductivity féif|x and Ho||z. Then,
(A4) can be rewritten as

. dou(q)qi Bi(q)
= ori)t Yy ———————H{E;). 29
Vel i;V {< ) ; (Omn)qman }( ) (29)

Here,k = x, y for the corresponding current components. It is evident from (21) that (29)
yieIdSJi‘iﬁ. A variety of techniques are available for the solution of the integral equation (29).
The most obvious is an iterative procedure taking into account the first approximation on the
correlation function of conductivity. It means, that we must include just the first term of the
integral equation to estimat® (¢) in (A3).

3.1.1. Closed Hall circuit{E,) = 0. From (29) follows

O—i?(ﬁ = <Uxx> + 03, (30)
where
doi(—q)qiB;(q) ..
Oxi; = Z (0171H>quj1 hI=ET (31)

q
was analysed in detail in a series of papers (see, for example, [7, 8]) for the case of strong
magnetic fieldg > 1.

However, (31) is obtained by making very general assumptions about the magnetic field.
Therefore, it is valid for both strong and weak fields. In the case of one sort of carriers,
componentsp andoy of the tensor conductivity are of the form (17).

Weak magnetic field3 « 1. For the weak magnetic field, wheth <« 1, the component
{(oxx) > (oxy). The main contribution to (31) is provided By, (¢). We obtain from this
equation that
8 xx\ ™ xBx
5%, — Z oxx (—q)q (q). (32)
p (Omn)qmGn
In the lowest approximation in fluctuatiods,, (¢) the quantityB, (q), which determines the
perturbation of the potential caused by inclusions, (see A3) is
Bx (Q) ~ _aaxx (q)QX (33)
Then, the addition of X, to the effective Pedersen conductivit§ in (30) can be written as

Sxx_ Sxx 2
R o Oxx (@802 (D

q (Umn)qun
We obtain, in view ofio...) > (o,,), that
5 2
55, v — L) (34)
(Oxx)

Substituting (34) into (30) we then have an expression for the effective conductivity in form (6)
in which (o) should be changed folo,,) = oo/(1 + ?). It is clear, that the effective
conductivity is less than the average conductivity in the case of a weak magnetized medium

(B <.
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Strong magnetic field3(>> 1). Expressions (17) for diagonal and non-diagonal parts of the
tensor conductivity reduce to

00 00
SN (35)
The main term in (31) is defined by the Hall perturbed compoident. Therefore, the

corrections X, is

OXX

00y (— By
5%, ~ Z oxy (=g, B (@) (36)
7 (Omn)qmdn
with
B (q) = _86}*x(q)Qy-
Taking into consideration an asymmetrydof; for i # j, that iséo,, = —d80,,, we obtain
80y 242
82”%+Zﬂ. (37)
<G)nn>qu71

q

Hence, it follows that the contribution from inhomogeneities is positive and in the case of
B > 1 the effective conductivity always exceeds, ).

Small perturbationsft > 1). Let us estimate e for small perturbations of charge carriers
and for such strong magnetic fiel@$ > 1) that¢ > 1 wheret is the relative conductivity
fluctuation defined by equation (8). Using as the starting point the equati@drzferin the

form
(180, (q)1%)g2
5T — / > S 38

" oolg? + B~2(q2 + q?)] e (39)

with fluctuations ooy, ~ 0o&/B. Therefore
0,252
(1602, (@)1*) ~ == D(@). (39)
Letting the correlation length of fluctuations bethenD(¢g) ~ a° for wavenumberg < a~*
andD(g) ~ 0 forg > a~1. Then, (38) may be written as
002 D(q)q?
B J q?+B2q?+q?)

For 8 > 1in (40) justg. ~ a~18~1 is significant and after integration lay in (40) we have

82 =

(40)

00E? q2
52 = 2 [ Do g, (41)
B q1
whereq? = g2 +42. The integral in (41) is of the order of one, hence
2
sE® 087 (42)
XX ﬂ

The series fo X, (37) can be summarized in all exponents of the parang&teapplying a
diagram technique [7]. As a result, we obtain

£\2
fo ~ 09 (E) (43)
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and it is suggested here that
SE.X)C > (GXX)' (44)

Equation (43) relates to the 3D case. Practically the same calculations for 2D systems
lead to

o ~ aoi. (45)

Small perturbationsgé < 1). We find that in this case

2
5 e A %. (46)

3.1.2. Open Hall circuit{j,) = 0. In this case{j,) = 0in (29) allows us to findE,) and
Jjx in (29) can be rewritten as

(o) = oME,) (47)

XX

where

o = (o) +6%,, — ({oxy) +0Zx)) ((Oyx) +8X,5)

o <UXX> + SEXX

When the medium is homogeneous, thatsis;; = 0 (48) reduces to (18)(, = o)
and the medium, as already noted, loses magnetoresistance. In contrast, to this, when the
boundary is a conductor and permits flow of the transversal current (‘closed Hall circuit’),
the conductivity depends on the magnetic fietd, (= 0o/82). This suggests that in the case
(jy) = 0 and with weak deviations from homogeneity, the fluctuating addéidi is to be
compared withog) but not(op/A2), and with increasing magnetic field it should not exceed
(00) (see (6)). Most probably, it will not lead to the effect of anomalous effective conductivity.

It is easy to show, that in this approximation

(48)

5T =5 (49)
Then, we have from (48)
eff 2
of 0%k (o) _ (50)
(Oxx) (Oxx) (0xx) (1 +6X 1 /(0xx))
Hence, one can obtain the inequality
o > 2(0,,) (51)

Small perturbationg « 1

(@) B2 > 1. In the approximation of the first iteratigt®,, = §=» and for strong fields
so that from (50) we obtain

(Ory)?
52
Substituting (42) into (52), we have

eﬁ%@ 2 })wﬂ 53
O ﬁ(SJrE pE 3)

R DI (52)
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or
2% <o < op.
Taking into account (52) and (44) we obtain
eff 00

Gxx ~ W (54)

However, contrast, to the homogeneous ca§g,depends on the magnetic field in a weakly
perturbed plasma. This statement is valid even when the relaxation time is independent of
energy.

(b) BE2 < 1. On simple algebraic rearrangemersf becomes
o ~ op(1 — BE?). (55)

XX

We see that e decreases with increasing magnetic fighd until &2 ~ 1 and is less than
o in the homogeneous bounded plasma.
The following is a summary of theoretical considerations.

4. Discussion and summary

4.1. A simple example. Isolated 2D inclusion

In previous sections we dealt with continuous models in conductivity. One can illustrate
the unusual behaviour of effective conductivity in the strong magnetic field on the simplest
example of anisolated cylindrical inclusion with tensor conductigtgmbedded in a medium
of 61 conductivity. To keep the algebra as simple as possible, we suppose that the external
magnetic field is applied along the cylindrical axis and that the electric field is perpendicular
to the cylinder. This example is identical to a circle inhomogeneity with a tensor conductivity
6, placed on a thin conductive sheet with conductivify(see figure 1). A magnetic fiele
is perpendicular to the sheet plane. We choose the cylindrical coordinate syst@mvith
origin in the circle centre also letting an electric fiditlbe applied within the sheet. This
means, that a homogeneous curté&is created far from the irregularity. The inhomogeneity
leads to the appearance of an anomaly curigvith componentg, and j,.

The boundary conditions are the normal component of the curieahd the tangential
component of the electric field;,, continuous ai = a. Then the desired solution of the
Laplace equation for thg. and j,-components of the total current outside the irregularity is

J\ _ a> (A —B COoSp
(i) =e[2+5 (3 )] (00)

P p3— (51— 8 B 2mG1—%)
(p1+ p2)% + (81— 82)? (p1+ p2)% + (81— 82)?

OH1,2 OP12
— /52 2 — ) —
Iy=FE op1 T 01 012 = 5 PL2 = —3

2 7
Ofi12 ¥ 0P Ofi12 Y 0P

where

Forop andoy defined by (17)

1
pL2=— 810 = —— (57)
0012 001,2
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+
J1701Eo
+ -
Jp1=0pE,
+ -
EO |:“> 0

Figure 1. A sketch of a thin layer of a tensor conductiviéy with diagonal componenip;
(Pedersen conductivity) and non-diagonal compoagip{Hall conductivity) and an isolated circle
irregularity of a conductivitys, placed into the cross electrigy and magnetidHy, fields. Jp1,

Ju1 andJ are, respectively, the Pedersen, Hall and total currents far from the irregularity. The
magnetic field faces into the page.

whereog, with corresponding index, is the longitudinal along the magnetic field conductivity
outside the inclusion (index ‘1’) or the irregularity itself (index ‘2’) (see (18)).

Let the origin of the Cartesian coordinate systémy) be in the centre of the circle
irregularity and thec-axis be along the initial electric fiel(E,, 0). Then the total current
along thex-direction can be written as

2 . 2 2 .
= et a_2]Pl(101 r3) : 2jH1p1(81 - 52) (58)
r (01 + p2)% + (81— 82)

wherejp; = op1E, is the Pedersen current far from the irregularity. The second termin (58) is
the component defined by the irregularity and consists of two parts. The first, proportional to
(p1 — p2), is the anomaly Pedersen current and the second is the term defined by the anomaly
of the Hall conductivity. Let us suppose that the conductivity of the irregulagydiffers
weakly from the background conductivity; and

O — O
g = 2270 le| < 1. (59)
001

Then, totalj, depending ory = |B¢| with 8 > 1is given by

2
<1+2a—é) y2> 1

r2y
a2
Jx = Eyop1 1+—8 y2a1 (60)
2r2
42
<1+—ﬂy) y? <« 1.
2r

The quantity in braces containigpggives us the correction caused by the irregularity to the
initial j.-current. The important point to note is that the small perturbation of the conductivity
significantly affects the Pedersen current. For exampje3f 1 the anomaly current exceeds
the initial current by le times the modest distances+ «) from the irregularity.

Suppose now, that there are two non-conductive plane boundaries parallektaxie
on both sides far from the irregularity. We direct an initial electric fieldlongx then the
transversal Hall current along theaxis vanishesj; = 0). Then, from (18) it follows that
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0., = op = og and (58) tends to
aZ
Jx = 001Ex (1 + 2—25> . (61)
r

Hence, the contribution from the irregularity in this case is sméadl) @ompared to the
perturbation of local conductivity.

The basic idea is adequately illustrated by the present elementary example and shows
unlimited growth of the effective Pedersen conductivity for small local irregularities with
increasings in unbounded systems (see (60)) avide versaa very slight sensitivity of the
bound systems to such perturbations.

4.2. Effective 2D medium

Returning tar ¢, we use the method of ‘effective medium’ [12, 24] to treat a model of a thin
conductive layer containing a binary mixture of circle irregularities with conductivétiemnd

62. The second term on the right-hand side of (56) contains-thedyp-components of a dipole
moment of the isolated circle irregularity placed into crossed eleEtand magnetidly fields.

It is not difficult to write the total dipole moment of the ensemble of such irregularities. Let
us suppose, that there a¥e inclusions of radiug and conductivitys;, and N inclusions of
radiusb and conductivitys,. Assuming that the whole region is occupied by non-intersecting
inclusions and denoting; = N1a?, x, = N»b?, thenx; andx, must satisfy

x1+x=1

The total polarization caused by all the irregularities should be zero. After some algebraic
manipulations with the expressions in brackets of (56), we can write the system of equations
to find o &™ ando S

(62)

2 ff\ 2 ff 2
Z Opi —(03 ) +(U|?| — OH;) .
j =
S (08" +op)? + (05" — oni)?

eff
OH; — O,
Z Xj T off 12 Heff 2 = 0 (63)
I (g top)ft (o — oni)

wherej = 2, 1 respectively foi = 1, 2.

Figure 2 shows the dependence of the ratio of the effective Pedersen cond@vity
the average Pedersen conductiigy) on the magnetization parameigr= wnt.. og; and
ooz refer to the local conductivities of the inclusions of the first and second kind, respectively.
One of the curves witl; = 0.5 relates to the case when the areas of the two phases are equal.
The curve withy; = 0.1 shOWSUSff (B)/{op(B)) in which 10% of the whole area is occupied
by the high conductive component®f; = 1 whereas the rest of the mixture is the phase with
002 = 0.9. One can see, that the effective conductivity exceeds the average conductivity by a
factor of five even when the medium is weakly perturbed. The tﬁ?@iﬁ)/(op(ﬂ)) can be
estimated crudely from

ag"(B)

(or(B))

with & defined by (8).
In a manner similar to the way we obtain (61) for an isolated inclusion, we can construct
‘an effective bounded medium’ in the strong magnetic field. By virtue of the fact that the

pE (64)
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Figure 2. A plot of the ratio of the effective Pedersen conducti\a';gl‘f to the spatial average
Pedersen conductivitizp) as a function of the magnetization parametes wytc. 601 andag,

refer to the local conductivities of the inclusions of the first and second kind, respectively. The
curve withx; = 0.5 relates to the case when areas of two phases are equal. The curve withl
shows.aF‘?ff (B)/{op(B)) inwhich 10% of the whole area is occupied by high conductive components
of op1 = 1.0, whereas the rest of the mixture is the phasepgf= 0.9.

dependence on the magnetic field drops out in this casey¥bwe can use (62) putting
oni = o' = 0. Equation (62) becomes

o = (002 — 001) (x1 — 3) + (001 + 002)? — 4x1x2(001 — 002)*) 2. (65)
Hence, for example, for a mixture with equal portions of two phases x, = 0.5 we have

o = (601002)Y2. If 091 = 1 andogy = 0.9, as in figure 1, then

o®ff 5 (001002) /2

(op) o001+ 002
independent of the intensity of the applied magnetic field as distinct from the open system in
which ¢/ (op) ~ 2-5 for g ~ 30-100.

~ 0.6

4.3. Experimental laboratory corroboration

The type of behaviour predicted in the preceding theoretical discussion has been confirmed in
experiments with semiconductor films in strong magnetic fields [27]. Essentially, the idea was
to create, in a homogeneous semiconductor, a stochastic distribution of current egriiers

by an illumination through a special masking film in which different sectors have different
transparency. Then(r) in the plate is in inverse relation to the local transparency in the mask
and the conductivity becomes coordinate dependent.

Plates of silicon Si with a hole conductivity (p-Si) placed in liquid He were chosen as
the study object. At liquid helium temperatures with lack of illumination the concentration of
free carriers is insignificant. Then under illumination, the number of carriers rises and they
determine totally the electrical current. Using different masks it was possible to change the
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Figure 3. Schematic drawing of the modelling experiment to clarify an influence of random
inclusions on the effective conductivity of anisotropic media. Plates of crystal Si at the liquid
helium temperature were placed into crossed eleciie«(1 V cm~1) and magnetic (0-30 kGs)

fields. The samples were illuminated through either positive (the background transparency less
than the spot transparency) or negative (transparency in window (spot) is less than the background
one) spot masks.

level of inhomogeneity, the sizes, forms and distances between inhomogeneities in a sample.
A schematic drawing of the experiment is shown in figure 3.

The measurements were taken on samples which are tkid @52 cm) either rectangular
(figure 4(a)) or disk-shaped plates with an aperture in the centre (figure 4(c)). The outer
diameter of the plate was 1.0 cm and the inner 0.4 cm. A potential difference was applied
to side surfaces of the rectangular plate (figure 4(a)) and large and small radii of the disk
(figure 4(c)). The magnetic field was perpendicular to the plane of the plate. Free carriers
were generated by a background radiation passing through a filter of pure Si and a thin sapphire
mask of 0.02 cm thick pressed to the sample. One of the masks was chosen gfsizd @n?,
and there were 100 transparent spots sizeg 2 0.02 cm. The mean distance between the
spot centres wasl2 ~ 0.4 cm (see figure 4(d)). The level of inhomogeneity, that is the ratio
of transparency in a spot to transparency outside the spot was 0.8.

The experiments were performed with samples of Si with boron impurity of concentration
Ng ~ 6 x 10 cm™3. The lifetime (¢) of the photo-excited carriers was governed by the
impurity of the second kind of concentratigvi, which was selected so that concentration
inhomogeneities would be smeared by diffusion to the least possible degree. The waisie of
connected withV, and the capture cross sectioast = 1/(s Ny (vt)), where(vt) is the mean
thermal velocity. In the experimenig, were; (1)N; ~ 5 x 1018 cm=3, (2) Ny ~ 103 cm™3,

(3) Nx ~ 2 x 10*2 cm=3. Hence, for example, foN, ~ 5 x 10 cm=3, T = 4.2 K and
typicals ~ 10~ cn? the lifetimet ~ 3 x 108 s. An additional condition imposed on the
E value was that the drift lengthy, ~ wEt (u is the carrier mobility) should be small in
comparison with the distance between inhomogeneifigs,At low-temperature and weak
electric field E, the mobility i« is defined by electron—impurity collisions. For the selected
sampley = 5 x 10° cm? Vst andr ~ 3 x 1078 s the conditionLy, <« L. holds for

E ~ 1V cml. The magnetic field was changed in the range:0# < 30 kOe, which
corresponded to & 8 < 15.

Figure 5 shows the experimental rasiff’ /(o) of the sample withv; = 5 x 108 cm=3
as a function of the magnetization paramegerfor the closed Hall circuit (Korbino’s disk).
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Figure 4. Geometry of the applied electri& and magnetidd fields, as well as the Pedersen
currentJp (along the electric field), Hall currenfy (acrosskE and H) and a total currend.

The magnetic field faces into the page. (a) Open Hall circuit. Non-conductive walls ptAyent
flow. The vertical thin arrow indicates the applied electrical field, while the bold arrow signifies
the total current as a consequence of the combined Pedersen current produced by the initial electric
field and Hall current due to the polarized electric field between the walls as well. A potential
difference was applied to side surfaces of the rectangular plate. (b) Closed Hall circuit in which
Ju can leak independently ofy. (c) The measurements on the closed Hall circuit were taken on

a thin (0.05 cm) disk-shaped plate with an aperture at the centre. An electric field between large
and small radii of the disk exites a circular ring of the Hall current enclosed and circulating around
the axis of the disk. (d) Enlarged fragment of the mask ¢00.4 cm). Different areas of the mask

have different transparency.

The applied electric field2 = 0.8 V cm™ in the case of the negative mask (dark spots
on the transparent background) afid= 2.0 V cm~? for the positive mask (the background
transparency less than the spot transparency). The influelé®nfthe conductivity becomes
visible only wheng > 1. In particular, aB = 15 the value ot°"/(o,,) reaches 2.1.

It was established also, that in the case of the open Hall circuit, the effective conductivity
differs only weakly from the average of the whole range of magnetic fields.

For the qualitative comparison of the theoretical predictions and experimental results let
us estimate the value gffrom the relation for a 2D film. Equations (17) and (45) yield, for
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Figure 5. Ratio of the ef'fective;rfff to the spatial average Pedersen conductiidgpy) against the
magnetization parametgr for a measurement Si-sample with boron impurity of concentration
N = 6 x 10 cm~23 and the impurity of the second kind & = 5 x 1013 cm~3. The ratio of the
transparencies was 0.8. Two curves repres@f‘ly(ap) for positive and negative masks.

the strong magnetic fielgs > 1)

ot 1 21
— xZ=%2"x014 66
o0 BT 15 (66)

At the same time, we can estimdtelirectly from the definition (8) for the 2D two-phase
system: the background (phase 1) and the spots (phase 2). In thi§ dapends on the ratio
transparencies of the spots and the background and the ratio of spot areas to the total area as
well. For the system consisting of randomly located regions with conductivigieandog,
and occupying area portions proportionaktoandx,, respectively, the average conductivity
(oo(r)) is

g:

(o0(r)) = /00(") f(00) dog = x1001 + X2002 (67)
with the distribution functionf (oo) defined as

f(00) = x18(00 — 001) + x28(00 — 002) with x; +x2 =1
and

(808) = (0l(r)) — (00)% = x1x2(001 — 002)°. (68)

Rewriting (8) in terms of (67) and (68) we obtain

X2 |1 — o02/001]
x1 1+ (x2/x1)(002/001)

(69)
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In this experiment when we deal with the negative mask, index 1 refers to areas under
transparent sectors of the mask, index 2 refers to the spot areas under semitransparent sectors.
Thenog,/001 = 0.8 andx,/x; ~ 1/3, using (69), yieldg ~ 0.1.

One can see, that the application of the developed theory of the effective conductivity, for
example, to the definition of the correlation functidrof a disordered system in the strong
magnetic fields is confirmed by the exact valueg afefined by the geometrical and optical
parameters of the mask.

5. Conclusions

1. A general expression was found for the effective conductivifyvalid for both bounded
and unbounded magnetized disordered plasma systems. From the obtained relations the
essentially distinct dependenceaf from the applied magnetic field for the open and
closed systems follows.

(@) o of the unbounded systems is extremely sensitive to the small local perturbations
of the charge concentration.

(b) Non-conductive walls bounding a system remove this feature.othef systems
does not differ practically from the mean conductivity. Increasing the magnetic fields
in such configurations has a weak influence on the valué€'af The range of change
in o™ was found to be less than longitudinal along the magnetic field conductivity
oo but more than the ratioag /8.

2. The results may be useful for interpretation of the simultaneous observations of small-
and large-scale current perturbations in the ionosphere. One can assert, for example,
thato® of the equatorial electrojet region is almost non-sensitive to sporadic electron
irregularities. Converselyr®" of the middle latitude ionosphere and the ionosphere of
the outlying regions of the polar electrojet and the polar cap can be changed drastically
even during small perturbations of the electron density. Formally, our reasoning is valid
only for the narrow region of the lower ionosphere where both the Pedersen and Hall
conductivities are defined totally by electrons.

3. We conclude that the control of the semiconductor purity based on the anomaly sensitivity
of the magnetized semiconductor plasma to random carrier irregularities [2] should be
performed on the closed Hall circuits like the Corbino disk rather than the usual plates.

4. We assumed in this paper that the magnetization pararfeieiconstant. However,
such an assumption is valid only if the collision frequencfor scattering of charged
particles of species by neutrals (or crystal lattice) is independent of the energy of the
colliding particles. The general theory involvig# constant should lead to new, non-
destructive techniques for the control of purity of semiconductors and deeper insights into
their transport properties.

The contention regarding zero magnetoresistance of the bounded plasma with one kind
of charge carrier ceases to be true in the situation when the role of other carriers becomes
noticeable, for example, in the ionospheric plasma above around 100 km where the Pedersen
conductivity is defined by ions, whereas the Hall conductivity is by electrons. A similar
situation takes place in the semiconductor plasma in which a mobility of electrons and holes
or heavy and light holes have similar values. In view of the major role played by small
irregularities in the behaviour ef*" presently found in the plasma systems with one sort of
carrier, the mixture of different carriers merits further study.
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Appendix

Let us expand the fluctuating variables in the Fourier series in spatial harmonics with
wavenumberg

3ok doir(q)
d(80ir)/0x; igidoir(q)
0%89/dx;0xc | =) | —aiaxde(@) | expiig-m). (A1)
0(80;1)/0x; a igidoix(q)
08¢/ 0x; igide(q)

Substituting these relations into (27) we get
Zlq,aalk(mexpl(q 7)(Ex) + (o) Zq,qkw(mexpl(q r)

+ZZqipk5oik<q>aso(p> expi((q+p) - )
q p

+8ou Y qiqkde(q) expi(g - 1) =
q

which can be rewritten as

;807 (Ex) + qiqid¢ (@) (oix) Z(ql Pi) Pxdoi(q — P)S¢(p)

+q;iq180i1(q — P)5<P(CI) =0.
We deduce from this that

. B
sp(@) =1—2 D) (A2)
(aim)qiqm
whereBy (q) satisfies
i801(q — q')q, ,
Bila) = —bou(qyg — 3 LA Ddi g 1y (A3)

qr#o (O-mn)q;nqn
If we substitute foBo;, andade/dsx; from (A1), then the relationship (26) between the total
current and perturbations of conductivity and potential becomes
(i) = (ou)(Ex) <Z Soix(q) expi(g - 1) Z i g (p) expi(p - r>>
= (ow)(Ex) —1 Zaa,-k<—q)5¢<q)qk.
q

Because, by definition

(f(r) = i/f(r)dr
%
then
(expi(g+p)-r)=1 ifg+p=0
(expi(g+p)-7) =0 ifg+p#0.
Substitutingse(gq) from (A2) we have
i) = (0w (Ex) + quéoﬂ(—q)%w»qz (Ad)

which is the basis for calculation of the effective conductivify .
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