Rigid Dualizing Complexes via Differential Graded Algebras

Lecture Notes ¹

Amnon Yekutieli Ben Gurion University, ISRAEL

http://www.math.bgu.ac.il/~amyekut

Here is the plan of my lecture:

- 1. Dualizing Complexes: Overview
- 2. Rigid Complexes and DG Algebras
- 3. Properties of Rigid Complexes
- 4. Rigid Dualizing Complexes
- $5.\ {\rm Rigid}\ {\rm Complexes}$ and CM Homomorphisms

1. Dualizing Complexes: Overview

Let A be a noetherian commutative ring. Denote by $\mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(\mathsf{Mod}\,A)$ the derived category of bounded complexes of A-modules with finitely generated cohomology modules.

Definition 1. (Grothendieck [RD]) A dualizing complex over A is a complex $R \in \mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(\mathsf{Mod}\,A)$ satisfying the two conditions:

- (i) R has finite injective dimension.
- (ii) The canonical morphism $A \to R\operatorname{Hom}_A(R,R)$ is an isomorphism.

Condition (i) means that there is an integer d such that $\operatorname{Ext}_A^i(M,R)=0$ for all i>d and all modules M.

Example 2. If \mathbb{K} is a regular noetherian ring of finite Krull dimension (say a field, or the ring of integers \mathbb{Z}) then

$$R := \mathbb{K} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,\mathbb{K})$$

is a dualizing complex.

Dualizing complexes over commutative rings are part of Grothendieck's duality theory in algebraic geometry, which was developed in [RD]. This duality theory deals with dualizing complexes on schemes and relations between them.

In this lecture I will explain a new approach to dualizing complexes over commutative rings, due to James Zhang and myself (see [YZ4] and [YZ5]). Specifically, I'll talk about existence and uniqueness of *rigid dualizing complexes*.

The purpose of rigidity is to eliminate automorphisms, and to make the dualizing complexes functorial.

 1 written: 14 Jan 2007

1

In a sequel paper [Ye2] we use the technique of *perverse coherent sheaves* to construct rigid dualizing complexes on schemes, and we reproduce almost all of the geometric Grothendieck duality theory. But that's a subject for a separate lecture.

Related work in noncommutative algebraic geometry (where rigid dualizing complexes were first introduced) can be found in [VdB, YZ1, YZ2, YZ3].

2. RIGID COMPLEXES AND DG ALGEBRAS

By default all rings considered in this talk are commutative.

Let me start with a discussion of rigidity for algebras over a field. Suppose \mathbb{K} is a field, B is a \mathbb{K} -algebra, and $M \in \mathsf{D}(\mathsf{Mod}\,B)$.

According to Van den Bergh [VdB] a $\mathit{rigidifying}$ $\mathit{isomorphism}$ for M is an isomorphism

$$\rho: M \stackrel{\simeq}{\to} \mathrm{RHom}_{B \otimes_{\mathbb{K}} B}(B, M \otimes_{\mathbb{K}} M)$$

in D(Mod B).

Now suppose A is any ring.

Trying to write A instead of \mathbb{K} in formula (1) does not make sense: instead of $M \otimes_A M$ we must take the derived tensor product $M \otimes_A^{\mathbf{L}} M$; but then there is no obvious way to make $M \otimes_A^{\mathbf{L}} M$ into a complex of $B \otimes_A B$ - modules.

The problem is torsion: B might fail to be a flat A-algebra.

This is where differential graded algebras (DG algebras) enter the picture.

A DG algebra is a graded ring $\tilde{A} = \bigoplus_{i \in \mathbb{Z}} \tilde{A}^i$, together with a graded derivation $d: \tilde{A} \to \tilde{A}$ of degree 1, satisfying $d \circ d = 0$.

A DG algebra quasi-isomorphism is a homomorphism $f: \tilde{A} \to \tilde{B}$ respecting degrees, multiplications and differentials, and such that $H(f): H\tilde{A} \to H\tilde{B}$ is an isomorphism (of graded algebras).

We shall only consider super-commutative non-positive DG algebras. Super-comm- utative means that $ab=(-1)^{ij}ba$ and $c^2=0$ for all $a\in \tilde{A}^i$, $b\in \tilde{A}^j$ and $c\in \tilde{A}^{2i+1}$. Non-positive means that $\tilde{A}=\bigoplus_{i<0}\tilde{A}^i$.

We view a ring A as a DG algebra concentrated in degree 0. Given a DG algebra homomorphism $A \to \tilde{A}$ we say that \tilde{A} is a DG A-algebra.

Let A be a ring. A semi-free DG A-algebra is a DG A-algebra \tilde{A} , such that after forgetting the differential \tilde{A} is isomorphic, as graded A-algebra, to a superpolynomial algebra on some graded set of variables.

Definition 3. Let A be a ring and B an A-algebra. A semi-free DG algebra resolution of B relative to A is a quasi-isomorphism $\tilde{B} \to B$ of DG A-algebras, where \tilde{B} is a semi-free DG A-algebra.

Such resolutions always exist, and they are unique up to quasi-isomorphism.

Example 4. Take $A := \mathbb{Z}$ and $B = \mathbb{Z}/(6)$. Define \tilde{B} to be the super-polynomial algebra $\mathbb{Z}[\xi]$ on the variable ξ of degree -1. So $\tilde{B} = \mathbb{Z} \oplus \mathbb{Z}\xi$ as free \mathbb{Z} -module, and

 $\xi^2=0$. Let $d(\xi):=6$. Then $\tilde{B}\to\mathbb{Z}/(6)$ is a semi-free DG algebra resolution of $\mathbb{Z}/(6)$ relative to \mathbb{Z} .

For a DG algebra A one has the category $\mathsf{DGMod}\,\tilde{A}$ of DG \tilde{A} -modules. It is analogous to the category of complexes of modules over a ring, and by a similar process of inverting quasi-isomorphisms we obtain the derived category $\tilde{\mathsf{D}}(\mathsf{DGMod}\,\tilde{A})$; see [Ke], [Hi].

For a ring A (a DG algebra concentrated in degree 0) we have

$$\tilde{\mathsf{D}}(\mathsf{D}\mathsf{G}\mathsf{Mod}\,A) = \mathsf{D}(\mathsf{Mod}\,A),$$

the usual derived category.

It is possible to derive functors of DG modules, again in analogy to D(Mod A).

An added feature is that for a quasi- isomorphism $\tilde{A} \to \tilde{B}$ the restriction of scalars functor

$$\tilde{\mathsf{D}}(\mathsf{D}\mathsf{G}\mathsf{Mod}\,\tilde{B}) \to \tilde{\mathsf{D}}(\mathsf{D}\mathsf{G}\mathsf{Mod}\,\tilde{A})$$

is an equivalence.

Getting back to our original problem, suppose A is a ring and B is an A-algebra. Choose a semi-free DG algebra resolution $\tilde{B} \to B$ relative to A. For $M \in \mathsf{D}(\mathsf{Mod}\,B)$ define

$$\operatorname{Sq}_{B/A}M := \operatorname{RHom}_{\tilde{B} \otimes_A \tilde{B}}(B, M \otimes^{\mathbf{L}}_A M)$$

in D(Mod B).

Theorem 5. ([YZ4]) The functor

$$\operatorname{Sq}_{B/A}:\operatorname{\mathsf{D}}(\operatorname{\mathsf{Mod}} B)\to\operatorname{\mathsf{D}}(\operatorname{\mathsf{Mod}} B)$$

is independent of the resolution $\tilde{B} \to B$.

The functor $\operatorname{Sq}_{B/A}$, called the *squaring operation*, is nonlinear. In fact, given a morphism $\phi: M \to M$ in $\mathsf{D}(\mathsf{Mod}\,B)$ and an element $b \in B$ one has

(2)
$$\operatorname{Sq}_{B/A}(b\phi) = b^2 \operatorname{Sq}_{B/A}(\phi)$$

in

$$\operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,B)}(\operatorname{Sq}_{B/A}M,\operatorname{Sq}_{B/A}M).$$

Definition 6. Let B be a noetherian A-algebra, and let M be a complex in $D_t^b(\mathsf{Mod}\,B)$ that has finite flat dimension over A. Assume

$$\rho: M \stackrel{\simeq}{\to} \operatorname{Sq}_{B/A} M$$

is an isomorphism in $\mathsf{D}(\mathsf{Mod}\,B)$. Then the pair (M,ρ) is called a *rigid complex over* B relative to A.

Definition 7. Say (M, ρ) and (N, σ) are rigid complexes over B relative to A. A morphism $\phi: M \to N$ in $\mathsf{D}(\mathsf{Mod}\, B)$ is called a *rigid morphism relative to* A if the

diagram

$$\begin{array}{ccc} M & \stackrel{\rho}{\longrightarrow} & \operatorname{Sq}_{B/A} M \\ \downarrow & & & & \operatorname{\lg}_{B/A} (\phi) \\ N & \stackrel{\sigma}{\longrightarrow} & \operatorname{Sq}_{B/A} N \end{array}$$

is commutative.

We denote by $\mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,B)_{\mathrm{rig}/A}$ the category of rigid complexes over B relative to A.

Example 8. Take M = B := A. Then

$$\operatorname{Sq}_{A/A} A = \operatorname{RHom}_{A \otimes_A A} (A, A \otimes_A A) = A,$$

and we interpret this as the tautological rigidifying isomorphism

$$\rho^{\mathrm{tau}}: A \stackrel{\simeq}{\to} \mathrm{Sq}_{A/A} A.$$

The tautological rigid complex is

$$(A, \rho^{\mathrm{tau}}) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,A)_{\mathrm{rig}/A}.$$

3. Properties of Rigid Complexes

The first property of rigid complexes explains their name.

Theorem 9. ([YZ4]) Let A be a ring, B a noetherian A-algebra, and

$$(M, \rho) \in \mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(\mathsf{Mod}\,B)_{\mathrm{rig}/A}.$$

Assume the canonical homomorphism

$$B \to \operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,B)}(M,M)$$

is bijective. Then the only automorphism of (M, ρ) in

$$\mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,B)_{\mathrm{rig}/A}$$

is the identity $\mathbf{1}_M$.

The proof is very easy: an automorphism ϕ of M has to be of the form $\phi = b \mathbf{1}_M$ for some invertible element $b \in B$. If ϕ is rigid then $b = b^2$ (cf. formula (2)), and hence b = 1.

We find it convenient to denote ring homomorphisms by f^* etc. Thus a ring homomorphism $f^*:A\to B$ corresponds to the morphism of schemes

$$f:\operatorname{Spec} B\to\operatorname{Spec} A.$$

Let A be a noetherian ring. Recall that an A-algebra B is called essentially finite type if it is a localization of some finitely generated A-algebra.

We say that B is essentially smooth (resp. essentially étale) over A if it is essentially finite type and formally smooth (resp. formally étale).

Example 10. If A' is a localization of A then $A \to A'$ is essentially étale. If $B = A[t_1, \ldots, t_n]$ is a polynomial algebra then $A \to B$ is smooth, and hence also essentially smooth.

Let A be a noetherian ring and $f^*: A \to B$ an essentially smooth homomorphism. Then $\Omega^1_{B/A}$ is a finitely generated projective B-module.

Let

$$\operatorname{Spec} B = \coprod_{i} \operatorname{Spec} B_{i}$$

be the decomposition into connected components, and for every i let n_i be the rank of $\Omega^1_{B_i/A}$. We define a functor

$$f^{\sharp}: \mathsf{D}(\mathsf{Mod}\,A) \to \mathsf{D}(\mathsf{Mod}\,B)$$

by

$$f^{\sharp}M := \bigoplus_{i} \Omega^{n_{i}}_{B_{i}/A}[n_{i}] \otimes_{A} M.$$

Recall that a ring homomorphism $f^*: A \to B$ is called finite if B is a finitely generated A-module. Given such a finite homomorphism we define a functor

$$f^{\flat}: \mathsf{D}(\mathsf{Mod}\,A) \to \mathsf{D}(\mathsf{Mod}\,B)$$

by

$$f^{\flat}M := \mathrm{RHom}_A(B, M).$$

Theorem 11. ([YZ4]) Let A be a noetherian ring, let B, C be essentially finite type A-algebras, let $f^*: B \to C$ be an A-algebra homomorphism, and let

$$(M, \rho) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,B)_{\mathrm{rig}/A}.$$

(1) If f^* is finite and $f^{\flat}M$ has finite flat dimension over A, then $f^{\flat}M$ has an induced rigidifying isomorphism

$$f^{\flat}(\rho): f^{\flat}M \stackrel{\cong}{\to} \operatorname{Sq}_{C/A} f^{\flat}M.$$

(2) If f^* is essentially smooth then $f^{\sharp}M$ has an induced rigidifying isomorphism

$$f^{\sharp}(\rho): f^{\sharp}M \xrightarrow{\simeq} \operatorname{Sq}_{G/A} f^{\sharp}M.$$

4. RIGID DUALIZING COMPLEXES

Let \mathbb{K} be a noetherian regular ring of finite Krull dimension. We denote by $\mathsf{EFTAlg} / \mathbb{K}$ the category of essentially finite type \mathbb{K} -algebras.

Definition 12. A rigid dualizing complex over A relative to \mathbb{K} is a rigid complex (R_A, ρ_A) such that R_A is a dualizing complex.

Theorem 13. ([YZ5]) Let \mathbb{K} be a regular finite dimensional noetherian ring, and let A be an essentially finite type \mathbb{K} -algebra.

(1) The algebra A has a rigid dualizing complex (R_A, ρ_A) , which is unique up to a unique rigid isomorphism.

- (2) Given a finite homomorphism f*: A → B, there is a unique rigid isomorphism f^b(R_A, ρ_A) ≃ (R_B, ρ_B).
 (3) Given an essentially smooth homomorphism f*: A → B, there is a unique
- (3) Given an essentially smooth homomorphism $f^*: A \to B$, there is a unique rigid isomorphism $f^{\sharp}(R_A, \rho_A) \stackrel{\simeq}{\to} (R_B, \rho_B)$.

Here is how the rigid dualizing complex (R_A, ρ_A) is obtained. We begin with the tautological rigid complex

$$(\mathbb{K}, \rho^{\mathrm{tau}}) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,\mathbb{K})_{\mathrm{rig}/\mathbb{K}},$$

which is dualizing. Now the structural homomorphism $\mathbb{K} \to A$ can be factored into

$$\mathbb{K} \xrightarrow{f^*} B \xrightarrow{g^*} C \xrightarrow{h^*} A.$$

where f^* is smooth (B is a polynomial algebra over K); g^* is finite (a surjection); and h^* is also smooth (a localization). Then

$$(R_A, \rho_A) := h^{\sharp} g^{\flat} f^{\sharp}(\mathbb{K}, \rho^{\mathrm{tau}}) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{f}}(\mathsf{Mod}\,A)_{\mathrm{rig}/\mathbb{K}}.$$

Definition 14. Given a homomorphism $f^*: A \to B$ in EFTAlg/K, define the twisted inverse image functor

$$f^!: \mathsf{D}^+_\mathsf{f}(\mathsf{Mod}\,A) \to \mathsf{D}^+_\mathsf{f}(\mathsf{Mod}\,B)$$

by the formula

$$f^!M := \operatorname{RHom}_B(B \otimes_A^{\operatorname{L}} \operatorname{RHom}_A(M, R_A), R_B).$$

It is not hard to show that the assignment $f^* \mapsto f^!$ is a 2-functor from the category EFTAlg/ \mathbb{K} to the 2-category Cat of all categories.

One can show, using Theorem 13, that this operation has very good properties. For instance, when f^* is finite, then there is a functorial, nondegenerate trace morphism

$$\operatorname{Tr}_f: f^!M \to M.$$

5. RIGID COMPLEXES AND CM HOMOMORPHISMS

In this final section I'll talk about the relation between rigid complexes and Cohen-Macaulay homomorphisms.

Definition 15. A ring A is called *tractable* if there is an essentially finite type homomorphism $\mathbb{K} \to A$, for some regular noetherian ring of finite Krull dimension \mathbb{K} .

The homomorphism $\mathbb{K} \to A$ is *not* part of the structure – there is no preferred \mathbb{K} . "Most commutative noetherian rings we know" are tractable...

Theorem 16. ([YZ5], [Ye2]) Let A be a tractable ring, and let B be an essentially finite type A-algebra of finite flat dimension (e.g. B is flat over A).

(1) There exists a unique (up to unique rigid isomorphism) rigid complex $R_{B/A}$ over B relative to A, which is nonzero on each connected component of Spec B.

(2) If A is a Gorentein ring (e.g. a regular ring) then $R_{B/A}$ is a dualizing complex over B

Let $f^*: A \to B$ be a finite type flat homomorphism of relative dimension n; namely the fibers of $f: \operatorname{Spec} B \to \operatorname{Spec} A$ are all equidimensional of dimension n.

Recall that f^* is called a *Cohen-Macaulay* homomorphism if the fibers of f are all *n*-dimensional Cohen-Macaulay schemes.

Theorem 17. ([Ye2]) Let A be a tractable ring, and let $f^*: A \to B$ be a finite type flat homomorphism of relative dimension n. Then the following conditions are equivalent:

- (i) f^* is a Cohen-Macaulay homomorphism.
- (ii) $H^i R_{B/A} = 0$ for all $i \neq -n$, and the B-module

$$\omega_{B/A} := H^{-n} R_{B/A}$$

is flat over A.

The module $\omega_{B/A}$ is the dualizing module of B relative to A.

Note that the complex $\omega_{B/A}[n]$ is rigid relative to A, but in general it is not a dualizing complex (cf. part (2) of previous theorem.) Still the fibers of $\omega_{B/A}[n]$ are dualizing complexes – this can be seen by taking A' to be a field in the next result.

Let me end with a "rigid" version of Conrad's base change theorem [Co]:

Theorem 18. ([Ye2]) Let

Theorem 18. ([1e2]) Let
$$A \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow$$

$$A' \longrightarrow B'$$
be a cartesian diagram of rings, i.e.

$$B' \cong A' \otimes_A B$$
,

with A and A' tractable rings. Assume $A \rightarrow B$ is a Cohen-Macaulay homomorphism. (There isn't any restriction on the homomorphism $A \to A'$.) Then:

- (1) $A' \to B'$ is a Cohen-Macaulay homomorphism.
- (2) There is a unique isomorphism of B'-modules

$$\boldsymbol{\omega}_{B'/A'} \cong A' \otimes_A \boldsymbol{\omega}_{B/A}$$

which respects rigidity.

References

- A. Altman and S. Kleiman, "Introduction to Grothendieck Duality," Lecture Notes in [AK] Math. 20, Springer, 1970.
- [AJL] L. Alonso, A. Jeremías and J. Lipman, Duality and flat base change on formal schemes, in "Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes," Contemp. Math. 244, Amer. Math. Soc., 1999, 3-90.
- [Be] K. Behrend, Differential Graded Schemes I, preprint.
- [Co] B. Conrad, "Grothendieck Duality and Base Change," Lecture Notes in Math. 1750, Springer, 2000.

- [Hi] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291-3323
- [HS] R. Hübl and P. Sastry, Regular differential forms and relative duality, Amer. J. Math. 115 (1993), no. 4, 749-787.
- [HK] R. Hübl and E. Kunz, Regular differential forms and duality for projective morphisms, J. Reine Angew. Math. 410 (1990), 84-108.
- [Hu] R. Hübl, "Traces of Differential Forms and Hochschild Homology," Lecture Notes in Math. 1368, Springer, 1989.
- [Ke] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102.
- [Li] J. Lipman, "Residues and Traces of Differential Forms via Hochschild Homology," Contemporary Mathematics 61, Amer. Math. Soc., Providence, RI, 1987.
- [Ne] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236.
- [RD] R. Hartshorne, "Residues and Duality," Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
- [VdB] M. Van den Bergh, Existence theorems for dualizing complexes over non-commutative graded and filtered ring, J. Algebra 195 (1997), no. 2, 662-679.
- [Ye1] A. Yekutieli, "An Explicit Construction of the Grothendieck Residue Complex" (with an appendix by P. Sastry), Astérisque 208 (1992).
- [Ye2] A. Yekutieli, Rigidity, Residues, and Grothendieck Duality for Schemes, in preparation.
- [YZ1] A. Yekutieli and J.J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), no. 1, 1-51.
- [YZ2] A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes and Perverse Sheaves over Differential Algebras, Compositio Math. 141 (2005), 620-654.
- [YZ3] A. Yekutieli and J.J. Zhang, Dualizing Complexes and Perverse Sheaves on Noncommutative Ringed Schemes, Selecta Math. 12 (2006), 137-177.
- [YZ4] A. Yekutieli and J.J. Zhang, Rigid Complexes via DG Algebras, to appear in Trans. Amer. Math. Soc. Eprint math.AC/0603733 at http://arXiv.org.
- [YZ5] A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes over Commutative Rings, eprint math. AG/0601654 http://arXiv.org.