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Here is the plan of my lecture:

1. Dualizing Complexes: Overview
2. Rigid Complexes and DG Algebras
3. Properties of Rigid Complexes
4. Rigid Dualizing Complexes
5. Rigid Complexes and CM Homomorphisms

1. Dualizing Complexes: Overview

Let A be a noetherian commutative ring. Denote by Db
f (Mod A) the derived

category of bounded complexes of A-modules with finitely generated cohomology
modules.

Definition 1. (Grothendieck [RD]) A dualizing complex over A is a complex R ∈
Db

f (Mod A) satisfying the two conditions:

(i) R has finite injective dimension.
(ii) The canonical morphism A → RHomA(R, R) is an isomorphism.

Condition (i) means that there is an integer d such that Exti
A(M, R) = 0 for all

i > d and all modules M .

Example 2. If K is a regular noetherian ring of finite Krull dimension (say a field,
or the ring of integers Z) then

R := K ∈ Db
f (ModK)

is a dualizing complex.

Dualizing complexes over commutative rings are part of Grothendieck’s duality
theory in algebraic geometry, which was developed in [RD]. This duality theory
deals with dualizing complexes on schemes and relations between them.

In this lecture I will explain a new approach to dualizing complexes over com-
mutative rings, due to James Zhang and myself (see [YZ4] and [YZ5]). Specifically,
I’ll talk about existence and uniqueness of rigid dualizing complexes.

The purpose of rigidity is to eliminate automorphisms, and to make the dualizing
complexes functorial.
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In a sequel paper [Ye2] we use the technique of perverse coherent sheaves to
construct rigid dualizing complexes on schemes, and we reproduce almost all of the
geometric Grothendieck duality theory. But that’s a subject for a separate lecture.

Related work in noncommutative algebraic geometry (where rigid dualizing com-
plexes were first introduced) can be found in [VdB, YZ1, YZ2, YZ3].

2. Rigid Complexes and DG Algebras

By default all rings considered in this talk are commutative.

Let me start with a discussion of rigidity for algebras over a field. Suppose K is
a field, B is a K-algebra, and M ∈ D(Mod B).

According to Van den Bergh [VdB] a rigidifying isomorphism for M is an iso-
morphism

(1) ρ : M
'→ RHomB⊗KB(B,M ⊗K M)

in D(Mod B).

Now suppose A is any ring.

Trying to write A instead of K in formula (1) does not make sense: instead of
M ⊗A M we must take the derived tensor product M ⊗L

A M ; but then there is no
obvious way to make M ⊗L

A M into a complex of B ⊗A B - modules.

The problem is torsion: B might fail to be a flat A-algebra.

This is where differential graded algebras (DG algebras) enter the picture.

A DG algebra is a graded ring Ã =
⊕

i∈Z Ãi, together with a graded derivation
d : Ã → Ã of degree 1, satisfying d ◦ d = 0.

A DG algebra quasi-isomorphism is a homomorphism f : Ã → B̃ respecting
degrees, multiplications and differentials, and such that H(f) : HÃ → HB̃ is an
isomorphism (of graded algebras).

We shall only consider super-commutative non-positive DG algebras. Super-
comm- utative means that ab = (−1)ijba and c2 = 0 for all a ∈ Ãi, b ∈ Ãj and
c ∈ Ã2i+1. Non-positive means that Ã =

⊕
i≤0 Ãi.

We view a ring A as a DG algebra concentrated in degree 0. Given a DG algebra
homomorphism A → Ã we say that Ã is a DG A-algebra.

Let A be a ring. A semi-free DG A-algebra is a DG A-algebra Ã, such that
after forgetting the differential Ã is isomorphic, as graded A-algebra, to a super-
polynomial algebra on some graded set of variables.

Definition 3. Let A be a ring and B an A-algebra. A semi-free DG algebra
resolution of B relative to A is a quasi-isomorphism B̃ → B of DG A-algebras,
where B̃ is a semi-free DG A-algebra.

Such resolutions always exist, and they are unique up to quasi-isomorphism.

Example 4. Take A := Z and B = Z/(6). Define B̃ to be the super-polynomial
algebra Z[ξ] on the variable ξ of degree −1. So B̃ = Z⊕ Zξ as free Z-module, and
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ξ2 = 0. Let d(ξ) := 6. Then B̃ → Z/(6) is a semi-free DG algebra resolution of
Z/(6) relative to Z.

For a DG algebra A one has the category DGMod Ã of DG Ã-modules. It is anal-
ogous to the category of complexes of modules over a ring, and by a similar process
of inverting quasi-isomorphisms we obtain the derived category D̃(DGMod Ã); see
[Ke], [Hi].

For a ring A (a DG algebra concentrated in degree 0) we have

D̃(DGMod A) = D(Mod A),

the usual derived category.

It is possible to derive functors of DG modules, again in analogy to D(Mod A).

An added feature is that for a quasi- isomorphism Ã → B̃ the restriction of
scalars functor

D̃(DGMod B̃) → D̃(DGMod Ã)

is an equivalence.

Getting back to our original problem, suppose A is a ring and B is an A-algebra.
Choose a semi-free DG algebra resolution B̃ → B relative to A. For M ∈ D(Mod B)
define

SqB/A M := RHomB̃⊗AB̃(B, M ⊗L
A M)

in D(Mod B).

Theorem 5. ([YZ4]) The functor

SqB/A : D(Mod B) → D(Mod B)

is independent of the resolution B̃ → B.

The functor SqB/A, called the squaring operation, is nonlinear. In fact, given a
morphism φ : M → M in D(Mod B) and an element b ∈ B one has

(2) SqB/A(bφ) = b2 SqB/A(φ)

in

HomD(Mod B)(SqB/A M, SqB/A M).

Definition 6. Let B be a noetherian A-algebra, and let M be a complex in
Db

f (Mod B) that has finite flat dimension over A. Assume

ρ : M
'→ SqB/A M

is an isomorphism in D(Mod B). Then the pair (M,ρ) is called a rigid complex over
B relative to A.

Definition 7. Say (M,ρ) and (N, σ) are rigid complexes over B relative to A. A
morphism φ : M → N in D(Mod B) is called a rigid morphism relative to A if the
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diagram
M

ρ−−−−→ SqB/A M

φ

y
ySqB/A(φ)

N
σ−−−−→ SqB/A N

is commutative.

We denote by Db
f (Mod B)rig/A the category of rigid complexes over B relative to

A.

Example 8. Take M = B := A. Then

SqA/A A = RHomA⊗AA(A, A⊗A A) = A,

and we interpret this as the tautological rigidifying isomorphism

ρtau : A
'→ SqA/A A.

The tautological rigid complex is

(A, ρtau) ∈ Db
f (Mod A)rig/A.

3. Properties of Rigid Complexes

The first property of rigid complexes explains their name.

Theorem 9. ([YZ4]) Let A be a ring, B a noetherian A-algebra, and

(M, ρ) ∈ Db
f (Mod B)rig/A.

Assume the canonical homomorphism

B → HomD(Mod B)(M, M)

is bijective. Then the only automorphism of (M, ρ) in

Db
f (Mod B)rig/A

is the identity 1M .

The proof is very easy: an automorphism φ of M has to be of the form φ = b1M

for some invertible element b ∈ B. If φ is rigid then b = b2 (cf. formula (2)), and
hence b = 1.

We find it convenient to denote ring homomorphisms by f∗ etc. Thus a ring
homomorphism f∗ : A → B corresponds to the morphism of schemes

f : Spec B → Spec A.

Let A be a noetherian ring. Recall that an A-algebra B is called essentially finite
type if it is a localization of some finitely generated A-algebra.

We say that B is essentially smooth (resp. essentially étale) over A if it is essen-
tially finite type and formally smooth (resp. formally étale).
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Example 10. If A′ is a localization of A then A → A′ is essentially étale. If
B = A[t1, . . . , tn] is a polynomial algebra then A → B is smooth, and hence also
essentially smooth.

Let A be a noetherian ring and f∗ : A → B an essentially smooth homomor-
phism. Then Ω1

B/A is a finitely generated projective B-module.

Let
Spec B =

∐

i

Spec Bi

be the decomposition into connected components, and for every i let ni be the rank
of Ω1

Bi/A. We define a functor

f ] : D(Mod A) → D(Mod B)

by
f ]M :=

⊕

i

Ωni

Bi/A[ni]⊗A M.

Recall that a ring homomorphism f∗ : A → B is called finite if B is a finitely
generated A-module. Given such a finite homomorphism we define a functor

f [ : D(Mod A) → D(Mod B)

by
f [M := RHomA(B, M).

Theorem 11. ([YZ4]) Let A be a noetherian ring, let B,C be essentially finite
type A-algebras, let f∗ : B → C be an A-algebra homomorphism, and let

(M, ρ) ∈ Db
f (Mod B)rig/A.

(1) If f∗ is finite and f [M has finite flat dimension over A, then f [M has an
induced rigidifying isomorphism

f [(ρ) : f [M
'→ SqC/A f [M.

(2) If f∗ is essentially smooth then f ]M has an induced rigidifying isomorphism

f ](ρ) : f ]M
'→ SqC/A f ]M.

4. Rigid Dualizing Complexes

Let K be a noetherian regular ring of finite Krull dimension. We denote by
EFTAlg /K the category of essentially finite type K-algebras.

Definition 12. A rigid dualizing complex over A relative to K is a rigid complex
(RA, ρA) such that RA is a dualizing complex.

Theorem 13. ([YZ5]) Let K be a regular finite dimensional noetherian ring, and
let A be an essentially finite type K-algebra.

(1) The algebra A has a rigid dualizing complex (RA, ρA), which is unique up
to a unique rigid isomorphism.
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(2) Given a finite homomorphism f∗ : A → B, there is a unique rigid isomor-
phism f [(RA, ρA) '→ (RB , ρB).

(3) Given an essentially smooth homomorphism f∗ : A → B , there is a unique
rigid isomorphism f ](RA, ρA) '→ (RB , ρB).

Here is how the rigid dualizing complex (RA, ρA) is obtained. We begin with the
tautological rigid complex

(K, ρtau) ∈ Db
f (ModK)rig/K,

which is dualizing. Now the structural homomorphism K→ A can be factored into

K f∗−→ B
g∗−→ C

h∗−→ A,

where f∗ is smooth (B is a polynomial algebra over K); g∗ is finite (a surjection);
and h∗ is also smooth (a localization). Then

(RA, ρA) := h] g[ f ](K, ρtau) ∈ Db
f (Mod A)rig/K.

Definition 14. Given a homomorphism f∗ : A → B in EFTAlg /K, define the
twisted inverse image functor

f ! : D+
f (Mod A) → D+

f (Mod B)

by the formula

f !M := RHomB

(
B ⊗L

A RHomA(M, RA), RB

)
.

It is not hard to show that the assignment f∗ 7→ f ! is a 2-functor from the
category EFTAlg /K to the 2-category Cat of all categories.

One can show, using Theorem 13, that this operation has very good properties.
For instance, when f∗ is finite, then there is a functorial, nondegenerate trace
morphism

Trf : f !M → M.

5. Rigid Complexes and CM Homomorphisms

In this final section I’ll talk about the relation between rigid complexes and
Cohen-Macaulay homomorphisms.

Definition 15. A ring A is called tractable if there is an essentially finite type
homomorphism K→ A, for some regular noetherian ring of finite Krull dimension
K.

The homomorphism K → A is not part of the structure – there is no preferred
K. “Most commutative noetherian rings we know” are tractable...

Theorem 16. ([YZ5], [Ye2]) Let A be a tractable ring, and let B be an essentially
finite type A-algebra of finite flat dimension (e.g. B is flat over A).

(1) There exists a unique (up to unique rigid isomorphism) rigid complex RB/A

over B relative to A, which is nonzero on each connected component of
Spec B.



7

(2) If A is a Gorentein ring (e.g. a regular ring) then RB/A is a dualizing
complex over B

Let f∗ : A → B be a finite type flat homomorphism of relative dimension n;
namely the fibers of f : Spec B → Spec A are all equidimensional of dimension n.

Recall that f∗ is called a Cohen-Macaulay homomorphism if the fibers of f are
all n-dimensional Cohen-Macaulay schemes.

Theorem 17. ([Ye2]) Let A be a tractable ring, and let f∗ : A → B be a finite
type flat homomorphism of relative dimension n. Then the following conditions are
equivalent:

(i) f∗ is a Cohen-Macaulay homomorphism.
(ii) HiRB/A = 0 for all i 6= −n, and the B-module

ωB/A := H−nRB/A

is flat over A.

The module ωB/A is the dualizing module of B relative to A.

Note that the complex ωB/A[n] is rigid relative to A, but in general it is not a
dualizing complex (cf. part (2) of previous theorem.) Still the fibers of ωB/A[n] are
dualizing complexes – this can be seen by taking A′ to be a field in the next result.

Let me end with a “rigid” version of Conrad’s base change theorem [Co]:

Theorem 18. ([Ye2]) Let
A −−−−→ By

y
A′ −−−−→ B′

be a cartesian diagram of rings, i.e.

B′ ∼= A′ ⊗A B,

with A and A′ tractable rings. Assume A → B is a Cohen-Macaulay homomor-
phism. (There isn’t any restriction on the homomorphism A → A′.) Then:

(1) A′ → B′ is a Cohen-Macaulay homomorphism.
(2) There is a unique isomorphism of B′-modules

ωB′/A′
∼= A′ ⊗A ωB/A

which respects rigidity.
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[Hu] R. Hübl, “Traces of Differential Forms and Hochschild Homology,” Lecture Notes in Math.
1368, Springer, 1989.

[Ke] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1,
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