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1. DUuALIZING COMPLEXES: OVERVIEW

Let A be a noetherian commutative ring. Denote by DF(Mod A) the derived
category of bounded complexes of A-modules with finitely generated cohomology
modules.

Definition 1. (Grothendieck [RD]) A dualizing complex over A is a complex R €
DP(Mod A) satisfying the two conditions:

(i) R has finite injective dimension.
(ii) The canonical morphism A — RHom (R, R) is an isomorphism.

Condition (i) means that there is an integer d such that Ext’y (M, R) = 0 for all
1 > d and all modules M.

Example 2. If K is a regular noetherian ring of finite Krull dimension (say a field,
or the ring of integers Z) then

R :=K € D?(ModK)

is a dualizing complex.

Dualizing complexes over commutative rings are part of Grothendieck’s duality
theory in algebraic geometry, which was developed in [RD]. This duality theory
deals with dualizing complexes on schemes and relations between them.

In this lecture I will explain a new approach to dualizing complexes over com-
mutative rings, due to James Zhang and myself (see [YZ4] and [YZ5]). Specifically,
I'll talk about existence and uniqueness of rigid dualizing complezes.

The purpose of rigidity is to eliminate automorphisms, and to make the dualizing
complexes functorial.
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In a sequel paper [Ye2] we use the technique of perverse coherent sheaves to
construct rigid dualizing complexes on schemes, and we reproduce almost all of the
geometric Grothendieck duality theory. But that’s a subject for a separate lecture.

Related work in noncommutative algebraic geometry (where rigid dualizing com-
plexes were first introduced) can be found in [VdB, YZ1, YZ2, YZ3|.

2. RiGID COMPLEXES AND DG ALGEBRAS

By default all rings considered in this talk are commutative.

Let me start with a discussion of rigidity for algebras over a field. Suppose K is
a field, B is a K-algebra, and M € D(Mod B).

According to Van den Bergh [VdB] a rigidifying isomorphism for M is an iso-
morphism

(1) p: M = RHompg,5(B, M @k M)
in D(Mod B).
Now suppose A is any ring.
Trying to write A instead of K in formula (1) does not make sense: instead of

M ®4 M we must take the derived tensor product M ®% M; but then there is no
obvious way to make M ®% M into a complex of B ®4 B - modules.

The problem is torsion: B might fail to be a flat A-algebra.
This is where differential graded algebras (DG algebras) enter the picture.

A DG algebra is a graded ring A= P,cz A, together with a graded derivation
d: A — A of degree 1, satisfying d o d = 0.

A DG algebra quasi-isomorphism is a homomorphism f : 4 — B respecting
degrees, multiplications and differentials, and such that H(f) : HA — HB is an
isomorphism (of graded algebras).

We shall only consider super-commutative non-positive DG algebras. Super-
comm- utative means that ab = (—1)¥ba and ¢ = 0 for all a € A, b € A’ and
¢ € A**1 Non-positive means that A = @, , A"

We view a ring A as a DG algebra concentrated in degree 0. Given a DG algebra
homomorphism A — A we say that A is a DG A-algebra.

Let A be a ring. A semi-free DG A-algebra is a DG A-algebra A, such that
after forgetting the differential A is isomorphic, as graded A-algebra, to a super-
polynomial algebra on some graded set of variables.

Definition 3. Let A be a ring and B an A-algebra. A semi-free DG algebra
resolution of B relative to A is a quasi-isomorphism B — B of DG A-algebras,
where B is a semi-free DG A-algebra.

Such resolutions always exist, and they are unique up to quasi-isomorphism.

Example 4. Take A :=Z and B = Z/(6). Define B to be the super-polynomial
algebra Z[€] on the variable £ of degree —1. So B = Z @ Z¢ as free Z-module, and
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€2 = 0. Let d(¢) := 6. Then B — 7Z/(6) is a semi-free DG algebra resolution of
Z/(6) relative to Z.

For a DG algebra A one has the category DGMod A of DG A-modules. It is anal-
ogous to the category of complexes of modules over a ring, and by a similar process

of inverting quasi-isomorphisms we obtain the derived category D(DGMod fl); see
[Ke], [Hi].

For a ring A (a DG algebra concentrated in degree 0) we have
D(DGMod A) = D(Mod A),
the usual derived category.
It is possible to derive functors of DG modules, again in analogy to D(Mod A).

An added feature is that for a quasi- isomorphism A — B the restriction of
scalars functor

D(DGMod B) — D(DGMod A)
is an equivalence.

Getting back to our original problem, suppose A is a ring and B is an A-algebra.
Choose a semi-free DG algebra resolution B — B relative to A. For M € D(Mod B)
define

Sap/a M := RHompg, 5(B, M @% M)
in D(Mod B).
Theorem 5. ([YZ4]) The functor
S /4 : D(Mod B) — D(Mod B)

is independent of the resolution B — B.

The functor Sqp, 4, called the squaring operation, is nonlinear. In fact, given a
morphism ¢ : M — M in D(Mod B) and an element b € B one has

(2) Sap/a(b¢) = b”Sapa(¢)
in
Homp mod 5)(Sap/a M, Sag 4 M).
Definition 6. Let B be a noetherian A-algebra, and let M be a complex in
DP(Mod B) that has finite flat dimension over A. Assume
p: M= Sap/a M

is an isomorphism in D(Mod B). Then the pair (M, p) is called a rigid complex over
B relative to A.

Definition 7. Say (M, p) and (N, o) are rigid complexes over B relative to A. A
morphism ¢ : M — N in D(Mod B) is called a rigid morphism relative to A if the



diagram

M —— Sap/a M

4{ lSqB Ja(®)

N —— Sqpa N

is commutative.

We denote by Df(Mod B),;, /A the category of rigid complexes over B relative to
A.

Example 8. Take M = B := A. Then
Sqs/a A =RHomag,a(A, A®4 A) = A,
and we interpret this as the tautological rigidifying isomorphism
Pt A S Sqy A
The tautological rigid complex is

(A, p'™) € Df(Mod A),ig/a-

3. PROPERTIES OF RIGID COMPLEXES
The first property of rigid complexes explains their name.

Theorem 9. ([YZ4]) Let A be a ring, B a noetherian A-algebra, and
(M, p) € D} (Mod B).ig /4.
Assume the canonical homomorphism
B — Hompmod ) (M, M)
is bijective. Then the only automorphism of (M, p) in
Dp (Mod B)rig/a
is the identity 1p;.
The proof is very easy: an automorphism ¢ of M has to be of the form ¢ = b1y,

for some invertible element b € B. If ¢ is rigid then b = b? (cf. formula (2)), and
hence b = 1.

We find it convenient to denote ring homomorphisms by f* etc. Thus a ring
homomorphism f*: A — B corresponds to the morphism of schemes

f : Spec B — Spec A.
Let A be a noetherian ring. Recall that an A-algebra B is called essentially finite
type if it is a localization of some finitely generated A-algebra.

We say that B is essentially smooth (resp. essentially étale) over A if it is essen-
tially finite type and formally smooth (resp. formally étale).
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Example 10. If A’ is a localization of A then A — A’ is essentially étale. If
B = Alty,...,t,] is a polynomial algebra then A — B is smooth, and hence also
essentially smooth.

Let A be a noetherian ring and f* : A — B an essentially smooth homomor-
phism. Then Q}g /A is a finitely generated projective B-module.
Let
Spec B = H Spec B;
i

be the decomposition into connected components, and for every i let n; be the rank
of Q. /4. We define a functor

f*: D(Mod A) — D(Mod B)
by
FIM =P Q4] @a M.

Recall that a ring homomorphism f* : A — B is called finite if B is a finitely
generated A-module. Given such a finite homomorphism we define a functor

f* : D(Mod A) — D(Mod B)
by
f°M := RHomy (B, M).
Theorem 11. ([YZ4]) Let A be a noetherian ring, let B,C be essentially finite
type A-algebras, let f*: B — C be an A-algebra homomorphism, and let
(M, P) € D})(MOd B)rig/A-
(1) If f* is finite and f°M has finite flat dimension over A, then f°M has an
induced rigidifying isomorphism
£(p) s M = Sagya 7M.
(2) If f* is essentially smooth then f*M has an induced rigidifying isomorphism

fu(ﬂ) : fﬂM - SQC/A fﬁM-

4. RiciDb DuALIZING COMPLEXES

Let K be a noetherian regular ring of finite Krull dimension. We denote by
EFTAlg /K the category of essentially finite type K-algebras.

Definition 12. A rigid dualizing complex over A relative to K is a rigid complex
(Ra, pa) such that R4 is a dualizing complex.

Theorem 13. ([YZ5]) Let K be a regular finite dimensional noetherian ring, and
let A be an essentially finite type K-algebra.

(1) The algebra A has a rigid dualizing complex (Ra, pa), which is unique up
to a unique rigid tsomorphism.



(2) Given a finite homomorphism f* : A — B, there is a unique rigid isomor-

phism f*(Ra,pa) = (Rg, pB).
(3) Given an essentially smooth homomorphism f* : A — B, there is a unique

~

rigid isomorphism fY(Ra,pa) — (Rp,pB).

Here is how the rigid dualizing complex (R4, p4) is obtained. We begin with the

tautological rigid complex
(K, p'™") € DP (Mod K),ig/x,
which is dualizing. Now the structural homomorphism K — A can be factored into
K. B ol g

where f* is smooth (B is a polynomial algebra over K); g* is finite (a surjection);
and h* is also smooth (a localization). Then

(Ra,pa) == h g’ f{(K, p"™") € DP(Mod A),ig k.

Definition 14. Given a homomorphism f* : A — B in EFTAIg /K, define the
twisted inverse image functor
f':Df (Mod A) — D;f (Mod B)
by the formula
f'M := RHomp (B ®4 RHom (M, Ra), Rp).

It is not hard to show that the assignment f* — f' is a 2-functor from the
category EFTAlg /K to the 2-category Cat of all categories.

One can show, using Theorem 13, that this operation has very good properties.
For instance, when f* is finite, then there is a functorial, nondegenerate trace
morphism

Try: f'M — M.

5. RiGID COMPLEXES AND CM HOMOMORPHISMS

In this final section I'll talk about the relation between rigid complexes and
Cohen-Macaulay homomorphisms.

Definition 15. A ring A is called tractable if there is an essentially finite type
homomorphism K — A, for some regular noetherian ring of finite Krull dimension
K.

The homomorphism K — A is not part of the structure — there is no preferred
K. “Most commutative noetherian rings we know” are tractable...

Theorem 16. ([YZ5], [Ye2]) Let A be a tractable ring, and let B be an essentially
finite type A-algebra of finite flat dimension (e.g. B is flat over A).

(1) There exists a unique (up to unique rigid isomorphism) rigid complex Rp /4
over B relative to A, which is nonzero on each connected component of
Spec B.



2) If A is a Gorentein ring (e.g. a reqular ring) then Rp,a is a dualizing
/
complex over B

Let f*: A — B be a finite type flat homomorphism of relative dimension n;
namely the fibers of f : Spec B — Spec A are all equidimensional of dimension n.

Recall that f* is called a Cohen-Macaulay homomorphism if the fibers of f are
all n-dimensional Cohen-Macaulay schemes.

Theorem 17. ([Ye2]) Let A be a tractable ring, and let f* : A — B be a finite
type flat homomorphism of relative dimension n. Then the following conditions are
equivalent:

(i) f* is a Cohen-Macaulay homomorphism.
(ii) HiRB/A =0 for all i # —n, and the B-module
wp/A = HinRB/A
1s flat over A.

The module wp, 4 is the dualizing module of B relative to A.

Note that the complex wp,4[n] is rigid relative to A, but in general it is not a
dualizing complex (cf. part (2) of previous theorem.) Still the fibers of wp,4[n] are
dualizing complexes — this can be seen by taking A’ to be a field in the next result.

Let me end with a “rigid” version of Conrad’s base change theorem [Co]:

Theorem 18. ([Ye2]) Let

A —— B

Lo

A — B

be a cartesian diagram of rings, i.e.
B' =2 A ®4B,

with A and A’ tractable rings. Assume A — B is a Cohen-Macaulay homomor-
phism. (There isn’t any restriction on the homomorphism A — A’.) Then:

(1) A’ — B’ is a Cohen-Macaulay homomorphism.
(2) There is a unique isomorphism of B'-modules

wpa =A @swp/a

which respects rigidity.
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